Die Kristallstrukturen von TlPbI3 und Tl4PbI6

The Crystal Structures of TlPbI₃ and Tl₄PbI₆

W. STOEGER

Max-Planck-Institut für Festkörperforschung, Stuttgart

(Z. Naturforsch. 32b, 975-981 [1977]; eingegangen am 25. April/8. Juni 1977)

Halides, X-ray, Structure Determination

TlPbI₃, which is prepared from PbI₂ and TlI by the BRIDGMAN-STOCKBARGER technique, crystallizes in the orthorhombic space group Cmcm with a=4.625(2), b=14.885(4), c=11.857(4) Å, Z = 4. Tl₄PbI₆ is prepared from PbI₂ and TlI in n/10 HCl under hydrothermal conditions. The compound crystallizes in the orthorhombic space group Pbam with a=19.117(9), b=9.877(9), c=4.586(4) Å, Z = 2. Both structures were solved by direct methods. Both compounds contain PbI₆-octahedra which are found in PbI₂ and the structural elements of TlI.

1. Einleitung

TlPbI₃ und Tl₄PbI₆ gehören dem von uns untersuchten System TlI–PbI₂¹ an. Obwohl TlPbI₃ erstmals 1920 von Barlot ² und später von Il'Yasov et al. ³⁻⁶ beschrieben wurde, waren außer d-Werten aus Röntgenpulveraufnahmen ⁵ keine weiteren kristallographischen Daten bekannt. Die Verbindung Tl₄PbI₆ war bisher unbekannt, sie wurde von uns bei der Erstellung des Phasendiagrammes zwischen TlI und PbI₂ gefunden und synthetisiert.

2. Experimentelles

TlPbI₃ bildet leuchtend rote Kristalle, die langsam an der Oberfläche durch Lichteinwirkung zersetzt werden und sich dabei schwarz färben. Die Verbindung schmilzt kongruent bei 346 °C. TlPbI₃ läßt sich durch Zusammenschmelzen äquimolarer Mengen von TlI und PbI₂ in evakuierten, abgeschmolzenen Glasampullen synthetisieren. Große Einkristalle mit einem Volumen von einigen cm³ (ca. 25 g) lassen sich mit Hilfe der Bridgmanstockbargeb-Technik⁷ züchten. Bruchstücke davon wurden zur Strukturbestimmung benutzt.

Tl₄PbI₆ bildet nadelförmige Kristalle, deren Farbe je nach Dicke zwischen gelb und orange schwankt. Die Verbindung zersetzt sich peritektoid bei 298 °C in TlI und Tl₃PbI₅. Tl₄PbI₆ entsteht beim Abkühlen einer heißgesättigten wäßrigen Lösung von TlI und PbI₂ in Form von sehr dünnen

Sonderdruckanforderungen an Dr. W. Stoeger, Max-Planck-Institut für Festkörperforschung, Büsnauer Straße 171, D-7000 Stuttgart-80.

gelben Nadeln, die stark verfilzt sind. Große orangefarbene Nadeln mit einer Länge bis zu 20 mm und einer Dicke bis ca. 2 mm erhält man durch Hydrothermalsynthese nach Rabenau und Rau⁸ in n/10 HCl bei $T_{\rm max} = 260$ °C und einem Temperaturgradienten von 0.2 °C/cm. Unter diesen wurden auch Kristalle gefunden, die für die Strukturbestimmung geeignet waren.

3. Kristallographische Daten von TlPbI₃ und Tl₄PbI₆

Die Präzessionsaufnahmen von TlPbI $_3$ und Tl $_4$ PbI $_6$ zeigten orthorhombische Symmetrie. Für TlPbI $_3$ ließen die seriale Auslöschung hkl für h+k=2n+1 und die zusätzliche zonale Auslöschung h0l für l=2n+1 die Raumgruppen Cmcm und Cmc 2_1 zu. Für Tl $_4$ PbI $_6$ ergaben die zonalen Auslöschungen 0kl für k=2n+1 und h0l für

Tab. I. Kristallographische Daten von TlPbI₃ und Tl₄PbI₆. Die Zahlen in Klammern sind hier wie an anderen Stellen dieser Arbeit Standardabweichungen und beziehen sich auf die letzte angegebene Stelle.

	$\mathrm{TlPbI_3}$	${ m Tl_4PbI_6}$
Kristall-		
symmetrie	Orthorhombisch	Orthorhombisch
Raumgruppe	Cmcm	Pbam
\mathbf{Z}	4	2
a Å	4,625(2)	19,117(9)
b Å	14,885(4)	9,877(9)
c Å	11.857(4)	4,586(4)
$ m V~\AA^3$	816,27	865,92
$ m d_{r\ddot{o}}~g/cm^3$	6,45	6,85
$ m d_{exp}~g/cm^3$	6,60	6,70

h=2n+1 die Raumgruppen Pbam oder Pba 2_1 . Die eindeutige Bestimmung der Raumgruppen erfolgte jeweils während der Strukturaufklärung. Die Gitterkonstanten wurden aus Guinier-Aufnahmen durch Ausgleichsrechnungen bestimmt. Es ergaben sich die in Tab. I angegebenen Kristalldaten.

4. Die Strukturbestimmung von TlPbI3 und Tl4PbI6

Die Intensitätsdaten von TlPbI₃ und Tl₄PbI₆ wurden mit monochromatischer MoK_a-Strahlung auf einem automatischen Einkristalldiffraktometer im ω -scan gesammelt. Mit 1030 Reflexen beim TlPbI₃ und 2073 Reflexen beim Tl₄PbI₆ wurde jeweils der Bereich bis $\sin \theta / \lambda \sim 0.8 \text{ Å}^{-1}$ erfaßt. Davon waren 646 bzw. 944 beobachtete und 384 bzw. 1129 "less-than" Reflexe ("less-than"-Kriterium: $I < 3\sigma(I)$). Für die Strukturberechnung wurden alle Reflexe verwendet. Bei einem linearen Absorptionskoeffizienten von $\mu = 527.3 \text{ cm}^{-1}$ für TlPbI₃ und $\mu = 581.2 \text{ cm}^{-1} \text{ für Tl}_4\text{PbI}_6 \text{ wurde eine Absorptions}$ korrektur nach der Gauss'schen Integrationsmethode durchgeführt. Der Wert für A*, mit dem F² und $\sigma_{\rm F}^2$ multipliziert wurden, schwankte beim TlPbI₃ zwischen 7,663 und 3,328, beim Tl₄PbI₆ zwischen 3,212 und 2,523.

Die Strukturbestimmung erfolgte beim TlPbI₃ und Tl₄PbI₆ mit Hilfe der direkten Methoden des X-Ray-Systems von 1972⁹. Die Intensitätsstatistik lieferte in beiden Fällen den Hinweis auf eine zentrische Raumgruppe (TlPbI₃: Cmcm; Tl₄PbI₆: Pnma).

Beim TlPbI₃ wurden für die 40 höchsten E-Werte (3,7–1,3) die Phasen bestimmt und eine "E-map" gerechnet. Diese zeigte je 2 Positionen für die Metall- und Jodatome. Da Tl+ und Pb²+ mit je 80 Elektronen gleiches Streuvermögen zeigen, konnte

erst aufgrund der Koordination und der Metall-Jod-Abstände entschieden werden, welche der beiden Lagen von Pb²⁺ besetzt wird.

Beim Tl₄PbI₆ wurden von den 196 höchsten E-Werten (3,8–1,7) die Phasen bestimmt. Die "E-map" zeigte 3 Positionen für die Metallatome und 3 für die Jodatome. Hier konnte die Position von Pb²⁺ sofort festgelegt werden, da nur eine Lage im Gegensatz zu den übrigen zweizählig ist.

In beiden Fällen wurde eine Dispersionskorrektur nach Templeton ¹⁰ für alle Atome und eine isotrope Extinktionskorrektur nach Larson ¹¹ durchgeführt. Danach ergaben sich für isotrope und anisotrope Temperaturfaktoren folgende R-Werte: TlPbI₃: 0,094 bzw. 0,044; Tl₄PbI₆: 0,073 bzw. 0,042. Die Extinktionskoeffizienten betragen 0,45(2) für TlPbI₃ bzw. 22,8(4) für Tl₄PbI₆. Die Atomparameter sind den Tabellen II und III zu entnehmen.

Tab. II. Atomparameter von TlPbI₃. Die Koeffizienten der Temperaturfaktoren sind als U-Werte $(U_{ij}\cdot 10^{-2} \mathring{A}^2)$ angegeben. Der anisotrope Temperaturfaktor wurde berechnet mit:

 $B = \exp\left[-2\pi^2 \left(U_{11}h^2a^{*2} + \ldots + 2U_{12}hka^*b^* + \ldots\right)\right].$

	Tl	Pb	I(1)	I (2)
x	0	0	0	0
y	0.2489(1)	0	0.6436(1)	0,9224(2)
z	0,25	0	0.0565(2)	0,25
U_{11}	3,84(9)	2,81(6)	2,61(7)	4,7(1)
U_{22}	6.4(1)	3,07(7)	2,94(8)	5,2(2)
U_{33}	6,4(1)	3,10(7)	4,5(1)	2,1(1)
U_{12}	0	0	0	0
U_{13}^{12}	0	0	0	0
U_{23}	0 -	-0.01(6) -	-0.50(1)	0
Wyckof		, ()	, , ,	
Bezeich				
nung	4 c	4a	8 f	4c
0				

Tab. III. Atomparameter von Tl_4PbI_6 . Die Koeffizienten der Temperaturfaktoren sind als U-Werte $(U_{ij}\cdot 10^{-2} \mathring{A}^2)$ angegeben. Der anisotrope Temperaturfaktor wurde berechnet mit:

B = $\exp\left[-2\pi^2 \left(\mathbf{U}_{11}h^2a^{*2} + \ldots + 2\mathbf{U}_{12}hka^*b^* + \ldots \right) \right].$

	Tl (1)	Tl (2)	Pb	I (1)	I (2)	I (3)
x	0,08072(4)	0,20458(5)	0	0,05377(7)	0,11548(7)	0,28607(7)
y	0,60279(8)	0,29303(9)	0	0,3055(1)	0.9396(1)	0.0929(1)
z	1/2	1/2	0	0	1/2	0
U_{11}	3,65(4)	4,79(5)	3,65(5)	3,33(6)	2,68(6)	3,35(6)
U_{22}	3,48(4)	4,95(5)	2,14(4)	2,10(5)	2,96(6)	3,62(6)
U_{33}^{-}	4.28(6)	4.32(6)	2,92(6)	3,32(7)	3,50(8)	2,76(7)
U_{12}	-0.10(4)	1,66(4)	-0.25(4)	-0.29(5)	0.07(5)	0,50(6)
U_{13}	0	0	0	0	0	0
U_{23}	0	0	0	0	0	0
Wyckoff-Bezeichnung	4 h	4 h	2a	4 g	4 h	4 g

Tl

Pb

-I(1)-Tl

- I (2) - Pb

 $-\mathbf{I}(2)-\mathbf{Tl}$

- I (2) - Tl

5. Beschreibung der Struktur von TlPbI₃

Die Struktur von TlPbI₃ ist in den Abb. 1a und 1b dargestellt. Sie zeigt parallel zur *ac*-Ebene in der Höhe b=0 und 1/2 gewellte Schichten aus

Abb. 1. Kristallstruktur von TlPbI₃. 1a) Projektion in Richtung [100]. 1b) Projektion in Richtung [001]. Die starken Linien zeigen die PbI₆-Oktaeder, die gestrichelten Linien deuten die Tl-I-Bindungen an.

PbI₆-Oktaedern, welche in Richtung der a-Achse kanten- und in Richtung der c-Achse unter einem Winkel von 137,4(1)° ecken-verknüpft sind. Diese Schichten sind in Richtung der a-Achse um a/2gegeneinander versetzt, wobei die Oktaeder mit Pb-I-Bindungsabständen von 3,181 Å $(2\times)$ und $3,220 \text{ Å} (4 \times)$ nur leicht verzerrt sind. Die eckenverknüpfenden Jodatome besitzen den kürzeren Abstand zum Zentralatom. Die I-Pb-I-Winkel variieren zwischen 87,3° und 92,7° (vgl. Tab. IV). Die Oktaeder-Schichten werden durch die Thalliumatome verknüpft. Die Tl-Atome sind dabei jeweils von 8 Jodatomen mit Abständen von 3,467 Å bis 3,971 Å umgeben. Der nächstgrößere Tl-I-Abstand liegt bei 4,86 Å. Das TlI₈-Polyeder läßt sich als trigonales Prisma mit den Dreiecksflächen in der bc-Ebene beschreiben, bei dem über zwei Rechteckflächen je ein Jodatom unter Bildung einer verzerrten quadratischen Pyramide sitzt (Abb. 1a und 2).

Tab. IV. TlPbI₃ Bindungslängen [Å], Bindungswinkel [°] und Häufigkeit.

kel [°]	und Häufigkeit.	
Atom-Atom	Abstand	Anzahl
Pb - I (1)	3,220(1)	$4 \times$
Pb - I(2)	3,181(1)	$\boldsymbol{2} \times$
TI - I(1) $TI - I(1)$	3,614(1)	$4 \times$
Tl - I(1)	3,971(1)	$2\times$
Tl - I(2)	3,467(1)	$2\times$
Atom-Atom-Atom	Bindungswinkel	Anzahl
I(1) - Pb - I(1)	88,19(3)	$2 \times$
- (-)	91,81(3)	$2\times$
	180,00(3)	$2 \times$
I(1) - Pb - I(2)	87,30(1)	$4 \times$
_ (-,	92,70(1)	$4 \times$
I(2) - Pb - I(2)	180,00(3)	$1 \times$
$\mathbf{I}(1) - \mathbf{T}\mathbf{l} - \mathbf{I}(1)$	66,03(2)	$\boldsymbol{2} \times$
. ,	74,18(2)	$2\times$
	78,79(3)	$2\times$
	79,56(3)	$2 \times$
	128,64(2)	$\boldsymbol{2} \times$
	132,50(2)	$1 \times$
	139,07(1)	$\boldsymbol{2} \times$
	140,22(1)	$2 \times$
I(1) - Tl - I(2)	64,77(1)	$\boldsymbol{2} \times$
	72,53(1)	$2\times$
	84,04(2)	f 4 imes
	138,56(1)	$4\times$
I(2) - Tl - I(2)	83,67(3)	$1 \times$
Pb - I(1) - Pb	91,81(3)	$1 \times$
Pb - I(1) - Tl	87,72(2)	$\boldsymbol{2} \times$

Das Thallium ist in Richtung der gemeinsamen Kante dieser Flächen aus dem Zentrum verschoben. Die kürzesten Tl-I-Bindungen mit 3,467 Å werden zu den I-Atomen ausgebildet, die auch die kürzesten Pb-I-Abstände zeigen.

94,42(1)

113.97(2)

137,43(2)

105,69(1)

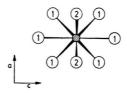
83,67(3)

 $2 \times$

 $4 \times$

 $1 \times$

Die Jodidionen im TlPbI₃ besetzen zwei unabhängige Positionen (vgl. Tab. II) und sind auch verschieden koordiniert. I(1) ist in Form einer verzerrten quadratischen Pyramide von 3Tl⁺ und



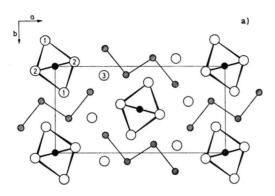

Abb. 2. TlPbI₃. TlI₈-Polyeder.

Abb. 3. TlPbI₃. Koordinationspolyeder der Jodatome. 3a) I(1)Pb₂Tl₃-Polyeder; 3b) I(2)Pb₂Tl₂-Polyeder.

 $2Pb^{2+}$ mit Abständen von 3,22 Å bis 3,97 Å umgeben, wobei die Grundfläche von $2Tl^+$ und $2Pb^{2+}$ gebildet wird (Abb. 3a). I(2), das die kurzen Abstände zu Tl^+ und Pb^{2+} aufweist, ist dagegen verzerrt tetraedrisch von $2Tl^+$ und $2Pb^{2+}$ koordiniert (Abb. 3b). Sämtliche Bindungsabstände und Winkel sind in Tab. IV zusammengefaßt.

6. Beschreibung der Struktur von Tl₄PbI₆

Die Struktur von Tl₄PbI₆ ist in Abb. 4 dargestellt. Sie weist parallel zur c-Achse liegende Bänder auf,

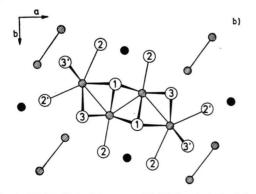


Abb. 4. Kristallstruktur von Tl₄PbI₆. 4a) Projektion in Richtung [001]. Die starken Linien zeigen die PbI₆-Oktaeder, die schwachen Linien schematisch die Tl₄-Bänder. 4b) Bindungsverhältnisse im Tl₄-Band.

die von vier über Rechteckflächen zickzackförmig verknüpften Ketten aus ihrerseits über die Rechteckflächen verknüpften trigonalen TlI₆-Prismen gebildet werden, wobei über den übrigen Rechteckflächen je ein Jodatom in Form einer verzerrten quadratischen Pyramide angeordnet ist. In Richtung der a-Achse sind die Bänder gewinkelt zueinander angeordnet und um b/2 gegeneinander versetzt. Verknüpft sind sie in dieser Richtung jeweils über zwei Pyramidenflächen. In Richtung der b-Achse sind die Bänder parallel zueinander angeordnet und über oktaedrisch von Jod koordinierte Pb-Atome verknüpft. Die PbI₆-Oktaeder bilden in Richtung der c-Achse kantenverknüpfte Ketten und sind nur leicht verzerrt: die Pb-I-Bindungsabstände betragen zweimal 3,187 Å und viermal 3,239 Å, wobei die kantenverknüpfenden Jodatome den längeren Bindungsabstand aufweisen. Die I-Pb-I-Winkel variieren zwischen 87,4° und 92,6° (vgl. Tab. V). Die Elementarzelle von Tl₄PbI₆ enthält je zwei Tl₄I₁₈- und zwei PbI₆-Baueinheiten.

Tab. V. Tl_4PbI_6 Bindungslängen [Å], Bindungswinkel [°] und Häufigkeit.

Atom-Atom	Abstand	Anzahl
Pb - I (1)	3,187(2)	$2 \times$
Pb - I(2)	3,234(2)	$4\times$
$\mathbf{Tl}(1) - \mathbf{I}(1)$	3,562(2)	$2 \times$
()	3,716(2)	$2 \times$
Tl(1) - I(2)	3,392(3)	$1 \times$
$\mathbf{Tl}(1) - \mathbf{I}(3)$	3,428(2)	$2 \times$
Tl(1) - Tl(1)	3,649(2)	$1 \times$
Tl(1) - Tl(2)	3,869(2)	$1 \times$
Tl(2) - I(1)	3,686(2)	$2 \times$
$\operatorname{Tl}(2) - \operatorname{I}(2)'$	3,732(2)	$1 \times$
$\mathbf{Tl} (2) - \mathbf{I} (2)$	3,885(3)	$1 \times$
Tl(2) - I(3)'	3,405(2)	$2 \times$
$\mathbf{Tl} \ (2) - \mathbf{I} \ (3)$	3,750(3)	$2\times$
Atom-Atom-Atom	Bindungswinkel	Anzah
$\overline{I(1)} - Pb - \overline{I(1)}$	180,00(4)	$1 \times$
T (1) Db T (0)	97 40(9)	1 1

Atom-Atom-Atom	Bindungswinkel	Anzah
I(1) - Pb - I(1)	180,00(4)	$1 \times$
I(1) - Pb - I(2)	87,40(2)	$4 \times$
	92,60(2)	$4\times$
I(2) - Pb - I(2)	89,85(6)	$2 \times *$
	90,15(6)	2 imes *
	180,00(4)	$\boldsymbol{2}\times$
I(1) - Tl(1) - I(1)	72,99(4)	$2 \times$
	75,13(7)	$1 \times$
	80,14(6)	$1 \times$
	119,49(3)	$2\times$
I(1) - Tl(1) - I(2)	83,80(2)	$2\times$
T (1)	142,42(4)	$2\times$
I(1) - Tl(1) - I(3)	70,84(3)	$2\times$
	$96,\!48(6)$	$\boldsymbol{2} \times$

(Fortsetzung Tab. V)

Atom-Atom-Atom	Bindungswinkel	Anzahl
	119,16(3)	$2\times$
T (1) TP1 (1)	$166,89(1) \\ 57,08(3)$	${\overset{2}{\times}}$
I(1) - Tl(1) - Tl(1)	62,41(4)	$\overset{2}{\times}$
I(1) - Tl(1) - Tl(2)	57,75(4)	$2\times$
	130,01(2)	$2\times$
I(2) - Tl(1) - I(3)	83,24(1)	$2\times$
$egin{array}{lll} I & (2) & -Tl & (1) - I & (3) \\ I & (2) & -Tl & (1) - Tl & (1) \\ I & (2) & -Tl & (1) - Tl & (2) \\ I & (3) & -Tl & (1) - I & (3) \\ \end{array}$	134,64(2) $130,96(4)$	$^{1}_{1} imes$
I(2) = II(1) - II(2) I(3) = II(1) - I(3)	83,96(6)	$\stackrel{\scriptstyle 1}{\scriptstyle 1} \times$
1(3) - T1(1) - T1(1)	127,23(3)	$2 \times$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	61,50(2) $94,40(6)$ $76,94(6)$ $135,08(3)$	$2 \times$
Tl(1) - Tl(1) - Tl(2)	94,40(6)	$^{1}_{1} imes$
$\begin{array}{c} \mathbf{I}(\mathbf{I}) & \mathbf{TI}(\mathbf{I}) & \mathbf{I}(\mathbf{I}) \\ \mathbf{I}(\mathbf{I}) & -\mathbf{TI}(\mathbf{I}) & \mathbf{I}(\mathbf{I}) \\ \mathbf{I}(\mathbf{I}) & -\mathbf{TI}(\mathbf{I}) & -\mathbf{I}(\mathbf{I}) \\ \mathbf{I}(\mathbf{I}) & -\mathbf{TI}(\mathbf{I}) & -\mathbf{I}(\mathbf{I}) \\ \mathbf{I}(\mathbf{I}) & -\mathbf{TI}(\mathbf{I}) & -\mathbf{I}(\mathbf{I}) \end{array}$	135.08(3)	$\overset{1}{2}\overset{ imes}{ imes}$
I(1) = II(2) - I(2) I(1) = II(2) - I(2)'	71,76(2)	$\widetilde{2} \times$
$\overrightarrow{\mathbf{I}}$ (1) $-\overrightarrow{\mathbf{Tl}}$ (2) $-\overrightarrow{\mathbf{I}}$ (3)	68,32(3)	$2 \times$
	113,04(3)	$2\times$
I(1) - Tl(2) - I(3)'	87,61(5)	$egin{array}{c} 2 imes \ 2 imes \end{array}$
I(1) - Tl(2) - Tl(1)	$142,77(2) \\ 59,66(2)$	$\overset{2}{2}\overset{ imes}{ imes}$
I(2) - I(2) - I(2)'	138,82(2)	$\widetilde{1} \times$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69.42(2)	$\boldsymbol{2} \times$
I(2) - Tl(2) - I(3)'	78,67(3)	$2 \times$
$\frac{1}{1} \frac{(2)}{(2)} - \frac{1}{1} \frac{(2)}{(2)} - \frac{1}{1} \frac{(2)}{(2)}$	104,92(5)	$1\times$
$egin{array}{cccc} oldsymbol{\mathrm{I}} & (2)' & -\operatorname{Tl} & (2) & -\operatorname{II} & (3) \\ oldsymbol{\mathrm{I}} & (2)' & -\operatorname{Tl} & (2) & -\operatorname{II} & (3)' \end{array}$	$136,95(4) \\ 71,27(4)$	${\bf 2}\times\\ {\bf 2}\times$
I(2) - I(2) - I(3) I(2)' - I(2) - I(1)	116,28(5)	$\widetilde{1} \times$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$75,39(7) \\ 91,43(6)$	$1 \times$
I(3) - Tl(2) - I(3)'	91,43(6)	$2\times$
T (9) TPI (9) TPI (1)	148,05(2)	${{\bf 2} \times \atop {\bf 2} \times}$
$egin{array}{lll} { m I} \; (3) & - { m Tl} \; (2) - { m Tl} \; (1) \ { m I} \; (3)' & - { m Tl} \; (2) - { m I} \; (3)' \end{array}$	$53,46(4) \\ 84,68(6)$	$\overset{2}{1}\overset{\wedge}{ imes}$
I(3)' - Tl(2) - Tl(1)	137,66(3)	$2 \times$
$\mathbf{P}\dot{\mathbf{b}}' - \mathbf{I}(\dot{\mathbf{l}})' - \mathbf{T}\mathbf{l}(\dot{\mathbf{l}})$	90,46(3)	$\boldsymbol{2} \times$
T (1) (11)	141,56(3)	$2\times$
$egin{array}{lll} { m Pb} & -{ m I} \; (1) & -{ m Tl} \; (2) \ { m Tl} \; (1) -{ m I} \; (1) & -{ m Tl} \; (1) \end{array}$	$102,75(2) \ 60,51(3)$	${\bf 2} \times \\ {\bf 2} \times$
$\Pi(1) = \Pi(1) = \Pi(1)$	75,13(7)	$\overset{2}{1}\times$
	80,14(6)	$1 \times$
	107,02(4)	$2 \times$
Tl(1) - I(1) - Tl(2)	62,59(2)	$1\times$
	$76,94(6) \\ 99,94(5)$	${\overset{1}{2}}\times$
	107,35(3)	$\overset{2}{2}\overset{\wedge}{ imes}$
	166,78(1)	$1 \times$
Tl(2) - I(1) - Tl(2)	76,94(6)	$1 \times$
Pb * - I (2) - Pb	90,15(6)	$1\times$
$\begin{array}{ccc} \text{Pb} & -\text{I} & (2) & -\text{Tl} & (1) \\ \text{Pb} & & \text{I} & (2) & \text{Tl} & (2) \end{array}$	$92,71(2) \\ 97,66(3)$	${\bf 2} \times \\ {\bf 2} \times$
Pb - I(2) - Tl(2)	134,42(3)	$\overset{f{z}}{\overset{\wedge}{\sim}}$
Tl(1) - I(2) - Tl(2)	78,48(3)	$1 \times$
	128,69(3)	$1 \times$
Tl(2) - I(2) - Tl(2)	86,81(4)	$1 \times$
Tl(1) - I(3) - Tl(1)	$89,96(6) \\ 65,04(3)$	${\overset{1}{2}}\times$
Tl(1) - I(3) - Tl(2)	82,70(5)	$\overset{2}{2}\overset{\wedge}{ imes}$
	113,33(3)	$\overset{\mathbf{z}}{\overset{\wedge}{\scriptscriptstyle{\sim}}}$
	140,70(3)	$2\times$
Tl(2) - I(3) - Tl(2)	75,39(7)	$1\times$
	$84,68(6) \\ 93,93(6)$	$^{1\times}_{2\times}$

^{*} Mittelwert 90,00.

Das Thallium im Tl_4PbI_6 besetzt zwei unabhängige Positionen (vgl. Tab. VII). Es ist auch unterschiedlich koordiniert, je nachdem ob das Thallium innerhalb [Tl(1)] oder am Rande des Bandes [Tl(2)] liegt.

Tl(1) ist von 7 Jod- und 2 Thalliumatomen mit Abständen von 3,392 Å bis 3,869 Å umgeben. Das Tl(1) (I₇Tl₂)-Polyeder läßt sich als verzerrtes trigonales Prisma mit den Dreiecksflächen in der ab-Ebene beschreiben, bei dem über den Reckteckflächen zwei Thallium- und ein Jodatom unter Bildung von verzerrt quadratischen Pyramiden liegen. Das zentrale Thalliumatom ist in Richtung der Rechteckfläche verschoben, über der das Jodatom sitzt. Zu diesem hat es auch mit 3,392 Å seinen kürzesten Abstand (Abb. 4a). Das Koordinationspolyeder ist in Abb. 5a wiedergegeben.

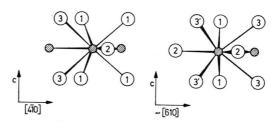


Abb. 5. Tl_4PbI_6 . Koordinationspolyeder der Thalliumatome. 5a) $Tl(1)I_7Tl_2$ -Polyeder; 5b) $Tl(2)I_8Tl$ -Polyeder.

Tl(2) ist von acht Jod- und einem Thalliumatom mit Abständen von 3,405 Å und 3,885 Å koordiniert. Das Tl(2) (I₈Tl)-Polyeder ist ebenfalls wie beim Tl(1) ein verzerrtes trigonales Prisma mit den Dreiecksflächen in der ab-Ebene, bei dem über den Rechteckflächen aber im Gegensatz zum Tl(1) nur ein Thallium- und zwei Jodatome in Form von verzerrt quadratischen Pyramiden angeordnet sind (Abb. 5 b). Das Thallium ist nur wenig aus dem Zentrum verschoben, und zwar in Richtung der I(3)'-Atome (vgl. Abb. 4 b). Zu diesen Jodatomen, die gleichzeitig 2 benachbarte Bänder verknüpfen, werden auch die kürzesten Bindungen mit 3,405 Å ausgebildet.

 Tl_4PbI_6 enthält 3 unabhängige Jodlagen, die unterschiedlich koordiniert sind. I(1) ist siebenfach von sechs Thallium- und einem Bleiatom koordiniert. Dabei bilden die Thalliumatome ein stark verzerrtes trigonales Prisma mit den Dreiecksflächen in der ab-Ebene, während das Bleiatom über einer Rechteckfläche liegt, und mit den Thalliumatomen eine verzerrte quadratische Pyramide bildet. Das

Abb. 6. Tl_4PbI_6 . Koordinationspolyeder der Jodatome. 6a) $I(1)PbTl_6$ -Polyeder; 6b) $I(2)Pb_2Tl_3$ -Polyeder; 6c) $I(3)Tl_6$ -Polyeder.

Jodatom ist in Richtung des Bleiatoms aus dem Prisma herausgerückt und weist dazu auch mit 3,187 Å den kürzesten Bindungsabstand auf (vgl. Abb. 6a). I(2) ist fünffach in Form einer verzerrten trigonalen Bipyramide von drei Thallium- und 2 Bleiatomen koordiniert, wobei die beiden Bleiatome in der Pyramidengrundfläche liegen. Das Jod ist in Richtung der Bleiatome aus dem Zentrum gerückt, zu denen es mit je 3,239 Å die kürzesten Abstände hat (vgl. Abb. 6b). I(3) ist verzerrt trigonalprismatisch von 6 Thalliumatomen koordiniert, wobei die Dreiecksflächen in der ab-Ebene liegen. Das Jod ist nur wenig aus dem Zentrum herausgerückt (vgl. Abb. 4b). Das Koordinationspolyeder ist in Abb. 6c dargestellt. Sämtliche Bindungsabstände und -winkel sind in der Tab. V angegeben.

7. Diskussion

Im TlPbI $_3$ und Tl $_4$ PbI $_6$ bleibt die oktaedrische Koordination des Bleis, wie sie im PbI $_2$ 12 gegeben ist, nahezu erhalten. Die Verzerrung des PbI $_6$ Oktaeders gegenüber dem des PbI $_2$ (Pb–I-Abstand: 3,215 Å) ist sehr gering (s. Tabn. IV und V). Während das PbI $_2$ -Gitter aus Schichten von kantenverknüpften PbI $_6$ -Oktaedern aufgebaut wird, treten im TlPbI $_3$, einem zu 50% mit TlI verdünnten PbI $_2$, Schichten von kanten- und eckenverknüpften PbI $_6$ -Oktaedern auf (vgl. Abb. 1). Im Tl $_4$ PbI $_6$, einem zu 80% mit TlI verdünnten PbI $_2$, werden nurmehr kantenverknüpfte PbI $_6$ -Oktaederketten gebildet.

Die Koordination des Thalliums im TlPbI₃ und Tl₄PbI₆ ist im wesentlichen die gleiche wie im TlI. Die verzerrt trigonal-prismatische Anordnung von 6 I-Atomen wird stets aufrechterhalten. Dabei sind die Höhen der Prismen, die gleichzeitig den Längen der kürzesten Achsen entsprechen, im TlI und Tl₄PbI₆ innerhalb der Standardabweichung gleich und weichen im TlPbI₃ nur wenig davon ab (TlI:

a=4,582 Å; Tl₄PbI₆: c=4,586(2) Å; TlPbI₃: a=4,625(4) Å). Die unterschiedliche Verzerrung der Prismen, die aus der Tab. VI hervorgeht, und die unterschiedliche Lage des Thalliums innerhalb des

Tab. VI. Längen [Å] der Dreieckskanten der verzerrten trigonalen I₆-Prismen um die verschiedenen Thalliumatome.

	PbI ₆	
Tl (1)	Tl (2)	$\mathrm{TlPbI_3}$
4,176(2) $4,358(3)$	4,176(2) 4,912(2)	4,588(2) $4,741(1)$
5,215(2)	5,127(4)	4,741(1) $4,741(1)$

Prismas hängen von der Art und Anzahl der Liganden ab, die über den Rechteckflächen liegen, und zwar hat das Tl immer den größten Abstand von den Rechteckflächen, über denen Tl-Atome liegen. So unterscheidet sich im Tl₄PbI₆ das Koordinationspolyeder um das Tl(1) nur geringfügig von dem im TlI, da hier ebenfalls ein Jod- und zwei Thalliumatome über den Rechteckflächen angeordnet sind. Das Tl(1) ist wie im TlI weit aus dem Zentrum des Prismas in Richtung dieses einen Jodatoms herausgerückt (vgl. Abb. 4a).

Beim Tl(2) dagegen liegen zwei Jodatome und nur ein Thallium über den Rechteckflächen. Hier ist das Thallium in Richtung der Prismenkante aus dem Zentrum verschoben, die dem über der Rechteckfläche angeordneten Thallium gegenüber liegt, d. h. in Richtung der I(3)'-Atome (vgl. Abb. 4b).

Im TlPbI3 liegt das Thallium in einem Prisma, bei dem sich nur über 2 Rechteckflächen je ein Jodatom befindet, während die 3. Position unbesetzt ist. Hierbei ist das Prisma nur sehr wenig verzerrt, wobei das Thallium in Richtung der Prismenkante herausgerückt ist, die gegenüber der unbesetzten Fläche liegt, d.h. in Richtung der I(2)-Atome. Allerdings zeigen die Tl-Atome hohe Temperaturfaktoren parallel zu den Dreiecksflächen des Prismas $(U_{22} = U_{33} = 6.4 \times 10^{-2} \text{Å}^{-2})$, die auf Lagefehlordnungen hinweisen könnten. Die mittlere Auslenkung A aus der berechneten Atomposition läßt sich abschätzen, wenn man einen isotropen Temperaturfaktor von $U_{11} = 3.84 \times 10^{-2} \text{Å}^{-2}$ für die wahre thermische Schwingung annimmt. Es gilt dann $A = \sqrt{U_{22} - U_{11}} = \sqrt{U_{33} - U_{11}} = \pm 0.16 \text{ Å}.$

Daraus ergibt sich die Möglichkeit, daß das Thallium in statistischer Verteilung zu jeder der drei Prismenkanten aus dem Zentrum herausgerückt ist.

Die Strukturen von TlPbI3 und Tl4PbI6 werden aus den Koordinationspolyedern aufgebaut, wie sie im PbI2 und TlI verwirklicht sind. Dabei bleibt das PbI₆-Oktaeder nahezu erhalten. Das Koordinations-

polyeder des Thalliums ist dagegen hinsichtlich der Verzerrung des trigonalen I₆-Prismas wie auch der Anzahl und Art der über den Rechteckflächen gelegenen Liganden variabler.

¹ W. Stoeger and A. Rabenau, First European Conference on Crystal Growth, Abstract Book S. 190. ECCG-1 Zürich 1976.

² M. Barlot, C. R. Acad. Sci. **171**, 794 [1920].

³ I. I. IL'YASOV u. A. G. BERGMAN, Zh. Neorg. Khim. 12, 2771 [1957].

⁴ I. I. IL'YASOV u. S. D. DIONIS'EV, Russ. J. Inorg.

Chem. 9, 1222 [1964].
5 I. I. IL'YASOV, D. G. BARSEGOV, I. G. BERIKASHVI-LI U. L. P. DANILENKO, Russ. J. Inorg. Chem. 14, 776 [1969].

⁶ I. I. IL'YASOV u. Yu. G. LITVINOV, Russ. J. Inorg.

Chem. 18, 1788 [1973].

⁷ J. Brice, The Growth of Crystals from Liquids, S. 4-5, North Holland Publ. Co. Amsterdam, London 1973; E. Schönherr in: L. Genzel, Die feste

- Materie, S. 277ff. Umschau Verlag, Frankfurt a.M.
- ⁸ A. Rabenau u. H. Rau, Inorg. Synth. **14**, 160 [1973].
- ⁹ X-ray system, version of June 1972; Technical Report TR-192 of the Computer Science Center, University of Maryland.
- "International Tables for X-Ray Crystallography",
- Vol. III, S. 216, Kynoch Press, Birmingham 1962.

 11 A. C. Larson, in F. R. Ahmed: Crystallographic Computing, S. 291ff., Munksgaard, Copenhagen 1970.
- ¹² R. W. G. Wyckoff, Crystal Structure, Vol. 1, S. 269, 270 u. 276-278, Interscience Publisher, New York 1965.
- ¹³ R. W. G. Wyckoff, Crystal Structure, Vol. 1, S. 152, Interscience Publisher, New York 1965.