Notizen 469

NOTIZEN

Reaktion von Natriumanilid mit Natrium-Pentacyanonitrosylferrat(II)

Reaction of Sodium Anilide with Sodium Pentacyanonitrosylferrate(II)

Reinhard Nast und Jörn Schmidt

Institut für Anorganische und Angewandte Chemie der Universität Hamburg und Universität Essen, Gesamthochschule, HDZ

(Z. Naturforsch. 32b, 469-470 [1977]; eingegangen am 17. Dez. 1976)

Pentacyano-phenylnitrosamido-ferrate(II)

Na₂[Fe(CN)₅NO] reacts with two molar equivalents of sodium anilide in liquid ammonia forming a yellow crystalline diamagnetic complex Na₄[Fe(CN)₅N(O)NC₆H₅]. The reaction is an analogon to the well-known nucleophilic attack of OH⁻ ions in water which yields pentacyanonitroferrate(II).

Nucleophile Reaktionen des Nitrosylliganden im [Fe(CN)₅NO]²⁻ und in anderen Nitrosylkomplexen von Ru, Os und Ir sind eingehend untersucht worden^{1, 2}. Nach den bisherigen Ergebnissen sind solche Reaktionen, wie z.B. die gemäß

$$\begin{split} &[Fe(CN)_5NO]^{2-} + OH^- \to \\ &\{[(NC)_5FeN(O)OH]^{3-}\} \xrightarrow{\begin{subarray}{c} + OH^- \\ \hline -H_2O \end{subarray}} [(NC)_5FeNO_2]^{4-} \ (1) \end{split}$$

ablaufende Bildung von Pentacyanonitroferrat-(II), erst bei Kraftkonstanten von annähernd $F_{NO} \geq 13.8~\text{mdyn} \cdot \text{Å}^{-1}~(\nu\,\text{NO} = 1886~\text{cm}^{-1})$ möglich ³, eine Bedingung, die mit $F_{NO} \approx 16.5~\text{mdyn} \cdot \text{Å}^{-1}$ im festen $\text{Na}_2[\text{Fe}(\text{CN})_5\text{NO}] \cdot 2~\text{H}_2\text{O}$ ⁴ erfüllt ist. Somit hängt die nucleophile Angreif barkeit des Nitrosylliganden offenbar von der durch Rückbindung verursachten $\pi^*\text{NO-Population}$ ab, die in etwa durch die Lage der $\nu\text{NO-Frequenz}$ markiert wird.

Da früher durchgeführte Umsetzungen von $K_2[Fe(CN)_5NO]$ mit KNH_2 im Ammonosystem Hinweise für eine primär erfolgte Addition von NH_2 - am Nitrosylliganden erbracht hatten⁵, wurde

Sonderdruckanforderungen an Prof. Dr. R. NAST, Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13.

eine Umsetzung mit substituierten Amidionen $[RR'\overline{N}|]^ (R=C_6H_5,\ R'=H\ oder\ C_6H_5;\ R=R'=Si(CH_3)_3)$ versucht.

Bei der Umsetzung von NaNHC $_6H_5$ mit wasserfreiem Na $_2$ [Fe(CN) $_5$ NO] in fl. NH $_3$ bildet sich sogleich ein feinkristalliner Niederschlag. Dessen Analysenwerte lassen darauf schließen, daß die Reaktion gemäß

$$\begin{array}{c} \mathrm{Na_{2}[Fe(CN)_{5}NO]} + \mathrm{NaNHC_{6}H_{5}} \rightarrow \\ 1 \\ \mathrm{\{Na_{3}[(NC)_{5}FeN(O)NHC_{6}H_{5}]\}} \end{array} \tag{2a}$$

abläuft. Das Anlagerungsprodukt 2 ist auch bei Anwendung eines Überschusses an 1 nicht faßbar, da dieses durch ein weiteres Äquivalent Anilidionen nach (2b) rasch deprotoniert wird. Somit entspricht die Gesamtreaktion (2a+b) der Bildung von Pentacyanonitroferrat(II) im Aquosystem gemäß (1). Einen Hinweis auf das im Komplex als Ligand zu postulierende Phenylnitrosamid-Ion [H₅C₆NNO] liefert das IR-Spektrum von 3. Dort tritt im Bereich der ν_{as} NO des $[Fe(CN)_5NO_2]^{4-1}$ eine starke Bande bei 1200 cm $^{-1}$ auf, die wir der v NO-Schwingung zuordnen. Die $\nu \mathrm{CN}$ von 3 bei 2090 cm $^{-1}$ (Sch) und 2050 cm^{-1} (st) sind gegenüber denen von 1 (2170 bis 2142 cm⁻¹) ⁴ stark erniedrigt. Die hieraus ablesbare verstärkte π-Acidität der CN-Liganden in 3 ist zweifellos auf eine, im Vergleich zum NO in 1, geringere π -Akzeptorstärke des Phenylnitrosamid-Liganden zurückzuführen. Dieser scheint ein schwacher Ligand zu sein, denn eine Suspension von 3 in fl. NH₃ reagiert mit NaCN glatt zu [Fe(CN)₆]⁴⁻.

Bei der Umsetzung von I mit Natriumdiphenylamid oder Natrium-bis(trimethylsilyl)amid in fl. NH₃ wird als einzig faßbare Verbindung sogleich Na₃[Fe(CN)₅NH₃] erhalten. Andere Pentacyanonitrosylmetallate wie

$$\begin{array}{l} [Mn(CN)_5NO]^{3-} \; (F_{NO} \approx 13,2 \; mdyn \; \cdot \; \mathring{A}^{-1}) \; ^6 \; und \\ [Cr(CN)_5NO]^{3-} \; (F_{NO} \approx 11,8 \; mdyn \; \mathring{A}^{-1}) \; ^6 \end{array}$$

sind unter denselben Bedingungen gegenüber diesen Amidionen und Anilidionen völlig resistent. Dieser negative Befund ist ein Hinweis darauf, daß auch in fl. NH $_3$ als Reaktionsmedium die nucleophile Angreifbarkeit des koordinierten NO $^+$ einen gewissen Mindestwert der NO-Kraftkonstanten voraussetzt.

470 Notizen

Experimentelles

Alle Umsetzungen wurden in Standard-Hochvakuumapparaturen unter völligem Ausschluß von Luft und Feuchtigkeit in N_2 -Atmosphäre durchgeführt. Wasserfreies $Na_2[Fe(CN)_5NO]$ wurde durch 20-stdg. Trocknen des handelsüblichen 2-Hydrats bei 110–120 °C im Hochvakuum gewonnen. Anilin wurde durch Destillation im Hochvakuum gereinigt und unter N_2 auf bewahrt. Das IR-Spektrum von 3 wurde in Nujol mit Perkin-Elmer-Spektrometer 337 und 225 aufgenommen.

Darstellung $vonNa_4[Fe(CN)_5N(O)NC_6H_5]$

In einem Frittengefäß werden $118 \,\mathrm{mg}$ (5,13 mgAtom) Na in 80 ml fl. NH₃ bei ca. $220 \,\mathrm{K}$ gelöst, mit $480 \,\mathrm{mg}$ (5,15 mMol) Anilin versetzt und mit etwas Platinmohr zur Reaktion gebracht. Die farblose Anilidlösung wird zu einer Lösung von $682 \,\mathrm{mg}$ (2,6 mMol) Na₂[Fe(CN)₅NO] in 70 ml fl. NH₃ bei $220 \,\mathrm{K}$ filtriert. Der aus der intensiv gelben Lösung

- ¹ J. H. SWINEHART, Coord. Chem. Revs. 2, 385 [1967] und die dort zit. Lit.
- ² J. Masek, Inorg. Chim. Acta Revs. 3, 99 [1969] und die dort zit. Lit.
- ³ F. Bottomley, W. V. F. Brooks, S. G. Clarkson und S.-B. Tong, Chem. Commun. 1973, 919.

langsam ausfallende, fein kristalline Niederschlag wird nach 1-stdg. Stehen 8-mal mit je 60 ml siedendem NH₃ gewaschen und 6 h bei Raumtemperatur im Hochvakuum abgepumpt. Ausbeute ca. 70% bezogen auf (2a + b).

Der sehr luft- und feuchtigkeitsempfindliche Komplex ist in schwach polaren Lösungsmitteln praktisch unlöslich, von Methanol, Wasser und vor allem verd. wäßrigen Säuren wird er unter Bildung einer intensiv violetten Lösung zersetzt.

C₁₁H₅ON₇FeNa₄ (399,0)

Magnetische Suszeptibilität $\chi_{\text{Mol}} \cdot 10^6 = -110$ (ber. -180).

Dem Verband der Chemischen Industrie, "Fonds der Chemischen Industrie", danken wir für die Förderung dieser Arbeit.

- ⁴ R. Nast und J. Schmidt, Z. Anorg. Allg. Chem. **421**, 15 [1976].
- ⁵ R. NAST und K. W. KRÜGER, unveröffentlicht; K. W. KRÜGER, Dissertation, Universität Hamburg 1965.
- ⁶ J. Schmidt, Dissertation, Universität Hamburg 1969.