CaCuSb(Bi) und SrCuSb(Bi) – Ternäre Phasen im "aufgefüllten" NiAs-(Ni₂In)-Typ

CaCuSb(Bi) and SrCuSb(Bi) – Ternary Phases in the "Filled" NiAs-(Ni₂In)-Structure

B. EISENMANN, G. CORDIER und HERBERT SCHÄFERE. Zintl-Institut der Technischen Hochschule Darmstadt

(Z. Naturforsch. 29b, 457-459 [1974]; eingegangen am 15. März 1974)

Intermetallic compounds, Crystal structure

The new compounds CaCuSb(Bi) and SrCuSb(Bi) were prepared and their structures determined. They crystallize in the ,,filled" NiAs-(Ni₂In)-structure.

Bei der Diskussion des Übergangs von der Metallzur Ionenbindung haben die Nickelarsenidphasen und deren Varianten in der Literatur breites Interesse gefunden. In diesen Phasen ist nach U. Dehlinger neben einem metallischen Bindungsanteil auch eine heteropolare Wechselwirkung zwischen den A(Ni)-Atomen als positiv geladene Komponente und B(As)-Atomen als negativ geladene Komponente zu diskutieren. Diese Deutung wird durch neuere Überführungsmessungen gestützt².

In diesem Strukturtyp waren bisher noch keine Phasen mit den stark elektropositiven Alkali- und Erdalkalimetallen als A-Komponente bekannt. Aus dieser Sicht verdienen die neu aufgefundenen Phasen CaCuSb, CaCuBi, SrCuSb und SrCuBi besonderes Interesse, die in der "aufgefüllten" NiAs-Struktur (Ni₂In-Typ) kristallisieren.

Die vier Verbindungen bilden metallisch glänzende, hexagonale Prismen {11 $\overline{2}0$ } aus, die zumeist durch hexagonale Pyramiden {11 $\overline{2}1$ } abgeschlossen sind. Die Kristalle waren aber stets an dem einen Ende mit dem Regulus verwachsen, so daß eine vollständige Beschreibung der Kristalltracht nicht möglich ist. Nach Drehkristall-, Weißenberg- (CuKa) und Precession-Aufnahmen (MoKa) sind die vier Verbindungen isotyp und kristallisieren im hexagonalen Kristallsystem. Die kristallographischen Daten sind in der Tab. I zusammengefaßt. Mit den

Sonderdruckanforderungen an Dr. Brigitte Eisenmann, Eduard-Zintl-Institut der Technischen Hochschule, D-6100 Darmstadt, Hochschulstr. 4.

beobachteten Symmetrieebenen ergibt sich die Lauesymmetrie 6/mmm. Reflexe $(hh2\overline{h}l)$ sowie Reflexe mit h-k=3n sind nur für l=2n vorhanden. Innerhalb der möglichen Raumgruppen P6₃/mmc- D_{6h}^4 , $P\overline{6}2c-D_{3h}^4$ und $P6_3mc-C_{6v}^4$ können, vorausgesetzt, daß keine statistische Atomverteilung vorliegt, bei zwei Formeleinheiten in der Zelle nur zweizählige Punktlagen besetzt sein. Damit sind in den Raumgruppen $P6_3/mmc-D_{6h}^4$ und $P\overline{6}2c-$ D_{3h} die (identischen) speziellen zweizähligen Lagen 2a bis 2d oder aber in der Raumgruppe P6₃mc- C_{6v}^4 die halbspeziellen Lagen 2a und 2b möglich. Letztere Lagen haben einen freien z-Parameter. Eine Pattersonprojektion in die u,w-Ebene zeigte aber, daß Maxima nur auf den ausgezeichneten Geraden bei w = 0, $\frac{1}{4}$, $\frac{1}{2}$ und $\frac{3}{4}$ auftreten, so daß die Atomanordnung in den speziellen Lagen der Raumgruppe P6₃/mmc-D⁴_{6h} beschrieben werden kann. Von den 4 in Frage kommenden Lagen können aus sterischen Gründen die Erdalkaliatome nur auf 2a, die Cu-bzw. Sb-Atome nur auf 2c bzw. 2d sitzen. Diese Anordnung wird auch durch einen Vergleich der beobachteten mit den berechneten Intensitäten bestätigt. Für das CaCuSb ergab sich ein R-Wert von 0.07. Eine statistische Verteilung der Cu- und Sb-Atome ist nicht möglich, da dann der AlB₂-Typ mit der halben c-Achse resultieren würde.

In dieser Struktur bilden die Erdalkaliatome dichtest gepackte Schichten aus, die in identischer Lage längs der c-Achse übereinander gestapelt sind. (Schichtenfolge . . . A-A-A . . .). In die Mittelpunkte

	CaCuSb	CaCuBi	SrCuSb	SrCuBi
Kristallsystem	Hexagonal			
Achsen [Å]	a = 4.44	a = 4.54	a = 4.52	a = 4.62
$\pm~0.02~\mathrm{\AA}^{2}$	c = 8.14	c = 8.10		c = 8.84
	c/a = 1.83	c/a = 1.79		c/a = 1.91
Elementarzellen Volumen [ų]	139,3	144,6	155,9	164,1
Dichte rö [g/cm³]	5,37	7,18	5,81	7,29
Dichte exp. [g/cm ³]	5,40	_	-	
Zahl der Formeleinheiten pro Zelle	2	2	2	2
Raumgruppe	P	$ m B_3/mmc$ - $ m D_{6h}^4$		
Punktlagen	2 Erdalkaliatome auf 2a			
	2 Cu-Atome auf 2d			
	2 Sb- bzw. Bi-Atome auf 2c			
Temperaturfaktor [B]	0,25	-		-
$R ext{-Wert}$	0,07			
Atomabstände [Å]				
Ca-Ca (Sr-Sr):	4,44	4,54	4,52	4,64
	4,07	4,05	4,41	4,42
Ca(Sr)–Cu:	$3,\!28$	3,31	3,42	3,47
Ca(Sr)-Sb(Bi):	3,28	3,31	3,42	3,47
Cu-Sb(Bi):	2.57	2.62	2.61	2.67

Tab. I. Die kristallographischen Daten der Verbindungen CaCuSb, CaCuBi, SrCuSb, SrCuBi.

der dadurch gebildeten trigonal prismatischen Lücken sind abwechselnd Sb- bzw. Bi- und Cu-Atome eingelagert, so daß plane Cu-Sb- bzw. Cu-Bi-Sechsecknetze entstehen, die längs der c-Achse so übereinander liegen, daß über jedem Cu-Atom ein Sb- bzw. Bi-Atom und umgekehrt folgt. Diese Atomanordnung ist in der Literatur als Ni₂In-Typ oder auch als "aufgefüllter NiAs-Typ" bekanntgeworden. Die Struktur ist in Abb. 1 dargestellt.

Die Erdalkaliatome haben in dieser Struktur 6 Cu, 6 Sb- bzw. Bi- und 8 Erdalkaliatome als nächste Nachbarn, so daß sich die KZ 20 ergibt. Als Koordinationspolveder wird von den Cu- und Sb- bzw. Bi-Atomen zusammen ein sechsseitiges Prisma ausgebildet, über dessen Seitenflächen jeweils ein Erdalkaliatom angeordnet ist. Ferner findet sich ein weiteres Erdalkaliatom über der Basis- und Deckfläche des Prismas. In der Abb. 2 ist dieses Koordinationspolyeder dargestellt. Um die Cu-Atome bilden 6 Erdalkaliatome ein trigonales Prisma aus, über dessen Seitenflächen jeweils ein Sb- bzw. Bi-Atom angeordnet ist. Die Atomanordnung um das Sb- bzw. Bi-Atom ist analog. Über den Seitenflächen des Erdalkaliatomprismas finden sich aber hier Cu-Atome. Abb. 3 zeigt dieses Koordinationspolyeder, die Atomabstände sind in Tab. I zusammengestellt.

Die hier untersuchten Ca- bzw. Sr-Kupferantimonide bilden im Gegensatz zu den entsprechenden Mg-Verbindungen³, die im CaF₂-Gitter kristallisieren, den "aufgefüllten" NiAs-Typ aus, wobei die Plätze der A(Ni)-Atome von den Erdalkali-

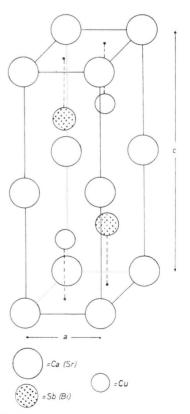


Abb. 1. Die Elementarzelle des "aufgefüllten" Ni Δ s-Typs.

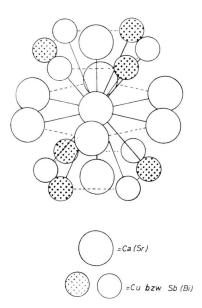


Abb. 2. Das Koordinationspolyeder um die Erdkaliatome

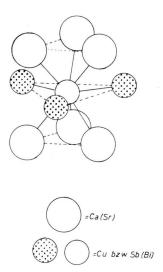


Abb. 3. Das Koordinationspolyeder um die Cu- bzw. Sb (Bi)-Atome.

- ¹ U. Dehlinger und H. Nowotny, Z. Metallkde. 35, 151 [1943].
- ² H. WEVER u. G. WINTERMANN, Z. Metallkde. 52, 329 [1961].
- ³ H. Nowotny u. W. Siebert, Z. Metallkde. 33, 391 [1941].
- ⁴ U. Dehlinger, Z. Elektrochem. 46, 633 [1940].
- ⁵ F. Laves u. H. J. Wallbaum, Z. angew. Mineralogie 4, 17 [1941].

atomen eingenommen werden. Dies bedeutet, daß in diesen Verbindungen d-Elektronenwechselwirkungen zwischen den A-Atomen längs der c-Achse wie sie bei vielen anderen Vertretern des NiAs-Types diskutiert werden⁴⁻⁹ nicht gegeben sind, zumal die Ca-Ca bzw. die Sr-Sr-Abstände gleich oder größer als die Abstände in den Metallen selbst sind. Hingegen sind die beobachteten Atomabstände innerhalb der Cu-Sb- bzw. Cu-Bi-Sechsecknetze verglichen mit den Radien in den Elementen bemerkenswert kurz. ($r_{\text{Cu}} = 1.28 \text{ Å}, r_{\text{Sb}} = 1.43 \text{ Å},$ $r_{
m Bi}=1{,}55$ Å). Sie sind auch kürzer als in der Verbindung Cu₂Sb¹⁰ (2,62 Å, 2,70 Å und 2,83 Å), in der Phase MgCuSb⁹ (2.67 Å) und in der Phase MgCuBi⁹ (2,71 Å). Da die Elektronegativität von Cu praktisch gleich der des Sb bzw. Bi ist, ist eine heteropolare Wechselwirkung zwischen diesen Atomen unwahrscheinlich.

Material und Methoden

Alle Phasen wurden in direkter Synthese aus den Elementen unter Argonatmosphäre in Tantaltiegeln bei 1350–1400 °C erschmolzen. Bei Ansätzen im stöchiometrischen Verhältnis A:Cu:B (A = Ca, Sr; B = Sb, Bi) wie 1:1:1 entstanden metallische Reguli mit sehr dichtem Gefüge, aus denen keine Einkristalle isoliert werden konnten. Die Reaktionsprodukte sind aber einheitlich, alle Pulverinterferenzen lassen sich mit den gefundenen Gitterkonstanten indizieren. Versuchsreihen ergaben, daß bei Ansätzen mit dem atomaren Verhältnis A: Cu: B wie 2:1:3 grobkristalline Phasengemenge entstanden, aus denen auch gut ausgebildete Einkristalle der hier beschriebenen Verbindungen gebrochen werden konnten. Das Atomverhältnis A: Cu: B wurde im Falle des CaCuSb durch die Analyse von ausgelesenen Einkristallagglomeraten zu 0,90:1:1.05 bestimmt.

⁶ A. J. Cornish, Acta met. 6, 371 [1958].

⁷ W. B. Pearson, Canad. J. Phys. **35**, 886 [1957]. ⁸ E. Uchida, H. Kondoh u. N. Fukuoka, J. phys.

Soc. Jap. 11, 27 [1956].

 H. Schmid, Cobalt 7, 26 [1960].
 M. Elander, G. Hägg u. A. Westgren, Ark. Kem. Mineral. Geol. 12B, 6 [1935].