Untersuchungen der kernmagnetischen Resonanz von Phosphorverbindungen, XXIX 1

Chemische Verschiebung der ³¹P-Kernresonanz von weißem Phosphor in Benzolderivaten und halogenfreien Lösungsmitteln

³¹P Chemical Shifts of White Phosphorus in Substituted Benzenes and Halogen-free Solvents

GERNOT HECKMANN und EKKEHARD FLUCK

Institut für Anorganische Chemie der Universität Stuttgart

(Z. Naturforsch. 27 b, 764-766 [1972]; eingegangen am 20. März 1972)

The n.m.r. signal of white phosphorus in some substituted benzenes and halogen-free solvents was measured. In both types of solvents the chemical shifts were caused mainly by van der Waals interactions. An average anisotropy term of +2.4 ppm was obtained for phosphorus dissolved in benzene derivatives. A possible use for the large solvent effects of white phosphorus is given.

Die durch Lösungsmittel verursachten Änderungen der chemischen Verschiebung einer Substanz werden gewöhnlich additiv aus fünf Anteilen zusammengesetzt. Neben dem von der Suszeptibilität hervorgerufenen Beitrag und dem Term δ_n , der die van der Waalssche Wechselwirkung in der Lösung berücksichtigt, können spezifische Wechselwirkungen und Polarisationseffekte permanenter elektrischer Dipole in der Lösung zu weiteren Verschiebungen führen; δ_a beschreibt den Einfluß von magnetisch anisotropen Molekülen auf die Resonanz der gelösten Moleküle. Über δ_n wurde kürzlich im Zusammenhang mit Messungen der ³¹P-Resonanz von elementarem Phosphor in der Gasphase berichtet 2. Für δ_n verwendeten wir folgende Beziehung 3, 4 (n_D ist der Brechungsindex der Lösung bei der Wellenlänge der D-Linien des Natriums):

$$\delta_{\rm n} \sim \frac{n_{\rm D}^2 - 1}{2 n_{\rm D}^2 + 1} \ .$$
 (1)

In Tab. 1 sind die gemessenen chemischen Verschiebungen δ_g und die suszeptibilitätskorrigierten Verschiebungen δ_c des weißen Phosphors in einigen substituierten Benzolen aufgeführt. Abb. 1 zeigt für diese Lösungsmittel eine lineare Abhängigkeit:

$$\delta_{\rm c}/{\rm Hz} = -7100 \; \frac{n_{\rm D}^2 - 1}{2 \, n_{\rm D}^2 + 1} + 20671 \; .$$
 (2)

Die Steigung von $-7100\,\mathrm{Hz}$ ($-194,8\,\mathrm{ppm}$) stimmt mit jenen Geradensteigungen überein, die für gelösten weißen Phosphor³ und für die Ringatome

Sonderdruckanforderungen an Prof. Dr. E. Fluck, Univ. Stuttgart, Institut für Anorgan. Chemie, *D-7000 Stuttgart 1*, Schellingstr. 26.

Lösungsmittel		$rac{n_{ ext{ iny D}}^2-1}{2n_{ ext{ iny D}}^2+1} \cdot 10^2$	$\delta_{ m g}/{ m Hz}$	$\delta_{ m c}/{ m Hz}$
1	C_6H_5F	21,74	19 156	19 146
2	$C_6H_5(CH_2)_4CH_3$	22,34	19 069	19 061
3	$p\text{-}\mathrm{C_6H_4(CH_3)_2}$	22,59	19 091	19 081
4	$\mathrm{C_6H_5CH_3^6}$	22,64	19 070	19 060
5	$m - C_6H_4(CH_3)_2$	22,65	19 104	19 094
6	$C_6H_6^3$	22,76	19 023	19012
7	$C_6H_5OCH_3$	23,25	19 053	19 047
8	C_6H_5Cl	23,45	19 006	19 001
9	$m\text{-}\mathrm{CH_3C_6H_4NH_2}$	24,67	18 968	18 963
10	$\mathrm{C_6H_5NH_2}$	25,14	18878	18873
11	C_6H_5NCS	26,72	18 767	18764
12	C_6H_5CHCl	23,86	18933	18 9 30
13	$C_6H_5CH_2Cl_2$	24,17	18 886	18887
14	$C_6H_5CCl_3$	24,39	18862	18 866
15	C_6H_5Br	24,43	18864	18864
16	C_6H_5J	25,99	18540	18545

Tab. 1. Gemessene und korrigierte chemische Verschiebungen der Kernresonanz von weißem Phosphor in einigen Benzolderivaten mit zugehörigem $(n_{\rm D}^2-1)/(2\,n_{\rm D}^2+1)$ -Term. Die Konzentration der Lösungen ist $\leq 0,1$ Mol-% P₄; als Standard wurde 85-proz. wäßrige H₃PO₄ verwendet (36,4473 MHz).

von gelöstem P_4S_3 ⁴ gefunden wurden. Nach Gl. (1) ist damit die Änderung von δ_c bei diesen Lösungsmitteln im wesentlichen durch unterschiedliche van der Waalssche Wechselwirkung bedingt; ferner sollte die Eigenassoziation der Phosphortetraeder in diesen Lösungen gleich sein ³.

Zwischen Cl-, Br- und J-Atomen und gelöstem Phosphor wurde eine in dieser Reihenfolge zunehmende spezifische Wechselwirkung festgestellt; diese verschiebt die Resonanz des Phosphors nach tieferem Feld³. Eine entsprechende Abhängigkeit folgt nach Tab. 1 aus dem von Verbindung 12 bis 16 wachsenden Abstand von der Geraden (2) nach tie-

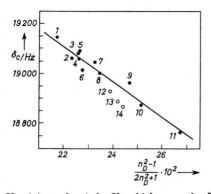


Abb. 1. Korrigierte chemische Verschiebungen der 31 P-Resonanz von in einigen Benzolderivaten gelöstem Phosphor als Funktion von $(n_D^2-1)/(2n_D^2+1)$. Die Zahlen bei den einzelnen Meßpunkten geben die zugehörigen Lösungsmittel nach Tab. 1 wieder. Zur Erklärung der drei offenen Meßpunkte siehe Text.

ferem Feld beim zugehörigen $(n_D^2-1)/(2\,n_D^2+1)$ -Wert. Außerdem verursacht erwartungsgemäß 3 die Zunahme von Cl-Atomen in den Molekülen der Reihe Benzylchlorid, Benzylidenchlorid, Benzotrichlorid (offene Kreise in Abb. 1) einen steigenden Abstand von dieser Geraden nach tieferem Feld.

Um die von diesen spezifischen Wechselwirkungen verursachten Verschiebungen auszuschließen, wurde $\delta_{\rm g}$ und $\delta_{\rm c}$ des Phosphors in einigen halogenfreien Lösungsmitteln bestimmt (s. Tab. 2). In Abb. 2 sind diese $\delta_{\rm c}$ -Werte gegen den Term von

	Lösungsmittel	$n_{\rm D}^2-1_{-102}$	$\delta_{ m g}/{ m Hz}$	$\delta_{ m c}/{ m Hz}$
		$rac{n_{ m D}^2-1}{2n_{ m D}^2+1}\!\cdot 10^2$		
1	$(C_2H_5)_2O$	17,81	19 299	19 282
2	$(CH_3)_2CO$	18,04	19 283	19 260
3	$C_2H_5OH^3$	18,12	19 319	19305
4	$\mathrm{CH_{3}COOC_{2}H_{5}}$	18,55	1931 0	19295
5	$(C_2H_5)_2NH^3$	19,06	19 230	19 214
6	Tetrahydrofuran	19,69	19 250	19 241
7	Furan	20,25	19 187	19 175
8	1.4-Dioxan	20,28	19 145	19 134
9	CH ₂ CH ₂ CHCOCH ₃	20,34	19 205	19 187
10	Pyrrolidin	20,96	19 13 0	19 123
11	Cyclohepten	21,33	19 130	19 119
12	$\lceil (CH_3)_2 \hat{N} \rceil_3 PO$	21,47	19 042	19 030
13	$(C_8H_{17})_3P^6$	21,79	19 000	18995
14	1.3-Cyclohexadien ³	21,98	19 048	19 029
15	Tetrahydrothiophen	22,87	18912	18 909
16	Pyrrol	22,96	18 961	18 956
17	Thiophen	23,56	18870	18868

Tab. 2. Gemessene und korrigierte chemische Verschiebungen der 31 P-Resonanz von weißem Phosphor in einigen halogenfreien Lösungsmitteln mit zugehörigem $(n_D^2-1)/(2 n_D^2+1)$ -Term. Die Konzentration der Lösungen liegt bei $\leq 0,1$ Mol-% P_4 (Referenz: 85-proz. wäßrige H_3PO_4).

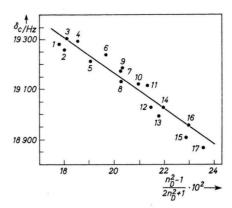


Abb. 2. Korrigierte chemische Verschiebungen der Resonanz von weißem Phosphor in verschiedenen halogenfreien Lösungsmitteln in Abhängigkeit von $(n_D^2-1)/(2\,n_D^2+1)$, Die zu den einzelnen Meßpunkten gehörenden Lösungsmittel sind durch die Zahlen in der ersten Spalte von Tab. 2 gekennzeichnet.

Gl. (1) aufgetragen. Berücksichtigt man die Verschiebungen von bis zu 1 ppm nach tieferem Feld, die bei den polaren Lösungsmitteln Aceton, Äthanol und Hexamethylphosphorsäuretriamid durch den "Stark Term" entstehen 3, so streuen die Meßpunkte in Abb. 2 um folgende Gerade:

$$\delta_{\rm c}/{\rm Hz} = -7100 \frac{n_{\rm D}^2 - 1}{2 n_{\rm D}^2 + 1} + 20584.$$
 (3)

Die unterschiedlichen δ_c -Werte werden also auch für die Lösungsmittel von Tab. 2 hauptsächlich durch van der Waalssche Wechselwirkungen verursacht. Es ist bemerkenswert, daß Gl. (3) exakt mit jener Geraden übereinstimmt, die wir kürzlich für die δ_c -Werte von Phosphor-Amin-Lösungen ermittelt haben 3 .

Da die Verbindungen von Tab. 2 keine Benzolringe enthalten, sollte der Abstand der beiden parallelen Geraden (2) und (3) dem im Mittel durch Lösungsmittelmoleküle mit Benzolringen verursachten Anisotropieterm δ_a entsprechen, wobei in den Lösungen dieselbe Eigenassoziation des Phosphors vorausgesetzt wird. Die Gerade (2) liegt, wie zu erwarten ist, relativ zu (3) bei höherem Feld; daher sollte man für in Benzolderivaten gelösten Phosphor im Mittel $\delta_a = +87\,\mathrm{Hz}\ (+2.4\,\mathrm{ppm})$ erwarten. Dieser Wert stimmt größenordnungsmäßig mit dem früher durch Vergleich der Verschiebungen von Benzol und 1.3-Cyclohexadien erhaltenen δ_a von 1 ppm überein.

Die $\delta_{\rm g}$ -Werte der Tabn. 1 und 2 sowie sämtliche bisher an verdünnten Phosphorlösungen gemessenen Verschiebungen $^{3, 5, 6}$ liegen innerhalb eines Verschiebungsintervalls von $41,3~{\rm ppm}^2$. Diese starke Abhängigkeit von $\delta_{\rm g}$ vom Lösungsmittel kann dazu benützt werden, solche flüssige Verbindungen mit Hilfe der $^{31}{\rm P}$ -Resonanz des Phosphors zu identifizieren, die selbst keine resonanzempfindlichen Kerne enthalten oder einer Kernresonanzmessung nur schwer zugänglich sind. Dabei ist Voraussetzung, daß sich etwa $0,1~{\rm Mol}$ - $\%~{\rm P_4}$ in der betrachteten Verbindung auflösen. Die Linienbreiten der Phosphorresonanz solcher Lösungen liegen unter $1~{\rm Hz}$.

² G. HECKMANN u. E. FLUCK, Molecular Physics 23, 175 [1972].

³ G. HECKMANN u. E. FLUCK, Z. Naturforsch. 26 b, 282 [1971].

⁴ G. HECKMANN u. E. FLUCK, Z. Naturforsch. **26 b**, 982 [1971].

⁵ G. Krabbes u. G. Grossmann, Z. Chem. **11**, 270, 470 [1971].

Experimentelles

Die Aufnahme der ³¹P-Resonanzlinien erfolgte mit einem Bruker HFX-Kernresonanzspektrometer bei (30,0±0,5) °C ebenso, wie kürzlich beschrieben wurde ³. Das Signal der als externer Standard benützten 85-proz. wäßrigen H₃PO₄ wurde stets bei 36,4473 MHz registriert. Zur Bestimmung der Brechungsindices n_D der Lösungsmittel von Tabn. 1 und 2 vgl. l. c. ³. Sofern die für die Suszeptibilitätskorrektur benötigten Suszeptibilitäten nicht aus Tabellenwerken ^{7,8} zu entnehmen waren, verwendete man zu ihrer Berechnung die Pascalschen Konstanten ⁹. Die Lösungen wurden unmittelbar nach ihrer Herstellung gemessen. Bei den Lösungsmitteln und dem verwendeten weißen Phosphor handelt es sich um Substanzen hoher Reinheit; Hersteller vgl. l. c. ^{3,4}.

- ⁶ G. HECKMANN u. E. FLUCK, Z. Naturforsch. 26 b, 63 [1971].
- ⁷ LANDOLT-BÖRNSTEIN, Zahlenwerte und Funktionen, II/10, Springer-Verlag, Berlin 1967.
- 8 Handbook of Chemistry and Physics, The Chemical Rubber Company, Cleveland, Ohio 1967.
- ⁹ H. Suhr, Anwendungen der kernmagnetischen Resonanz in der organischen Chemie, Springer-Verlag, Berlin 1965.

¹ XXVIII. Mitt.: W. HAUBOLD u. E. FLUCK, Z. Naturforsch., im Druck.