ESR-Parameter und Bindungseigenschaften der Liganden in [Fe(NO)₂(EZ₃)X]-Komplexen*

ESR Parameter and Bonding Properties of Ligands in [Fe(NO)2(EZ3)X] Complexes

JÖRN SCHMIDT

Institut für Anorganische und Angewandte Chemie der Universität Hamburg

(Z. Naturforsch. 27 b, 600-607 [1972]; eingegangen am 24. März 1972)

Dinitrosyleisenhalogenid-Komplexe, isotrope ESR-Parameter, Bindungseigenschaften

Isotropic g factors and hyperfine coupling constants of a series of complexes $[Fe(NO)_2(EZ_3)X]$ are reported. In accord with theoretical suggestions, the g factors arrange the ligands EZ_3 corresponding to their π acceptor abilities. Both donor and acceptor properties of the ligands exhibit considerable influence on the spin densities.

Die Donor- und Akzeptoreigenschaften von Liganden der 5. Hauptgruppe, insbesondere der Phosphine **, in Übergangsmetallkomplexen sind Gegenstand häufigen Interesses. Zahlreiche an derartigen Komplexen oder an den freien Liganden meßbare Größen, darunter Schwingungskraftkonstanten ¹⁻⁷, massenspektrometrische Ionisationspotentiale ^{8, 9}, NMR-Verschiebungen ^{10, 11}, Reaktionsgeschwindigkeiten ¹² und polarografische Halbwellenpotentiale ¹³ sind für den Versuch ausgenutzt worden, eine Reihe von relativen Donor- oder Akzeptorstärken aufzustellen. Die gemessenen Parameter erwiesen sich jedoch meist als in komplexer Weise von beiden Ligandeneigenschaften abhängig.

Die Diskussion über die Art dieser Abhängigkeit leidet vor allem unter dem Fehlen einer exakten Definition der gesuchten Größen "σ-Donorstärke" und "π-Akzeptorstärke". Dies hat dazu geführt, daß einerseits pauschal von "Donor-Akzeptor-Verhalten" ⁸, andererseits von "induktiven" und "mesomeren" Effekten ⁵ der Liganden gesprochen wird. Wenn letztere auch als isotrope bzw. anisotrope Anteile elektronischer Ligandeneinflüsse leichter durch Messung faßbar sind ^{2, 4, 5}, so ist doch fraglich, wie weit eine solche Trennung bei Komplexen niedriger Symmetrie überhaupt aufrecht erhalten werden kann und ob sie den intuitiven Vorstellungen von Donor- und Akzeptorwirkung entspricht.

In der vorliegenden Arbeit sollen isotrope g-Faktoren und Hyperfeinstruktur-(*Hfs*)-Kopplungskon-

Sonderdruckanforderungen an Dr. J. SCHMIDT, Institut für Anorganische und Angewandte Chemie der Universität Hamburg, D-2000 Hamburg 13, Papendamm 6. stanten von niedersymmetrischen Komplexen des Typs [Fe(NO)₂(EZ₃)X] auf Beziehungen zu Donorund Akzeptoreigenschaften der Liganden untersucht werden.

Ergebnisse

Wie bereits früher ¹⁴⁻¹⁶ berichtet, zeigen die Komplexe [Fe(NO)₂(EZ₃)X] in Lösung ESR-Spektren mit *Hfs* des Donoratoms des Liganden EZ₃ und des Halogens X. Die isotropen ESR-Parameter, – *Hfs*-Kopplungskonstanten, *s*-Spindichten und *g*-Faktoren –, der vermessenen Komplexe finden sich in Tab. 1.

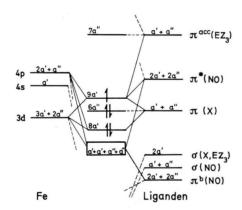
Die scheinbaren Peak-Peak-Breiten der Dispersionssignale liegen in etwa $10^{-2}\,\mathrm{M}$ Lösung bei $12\,\mathrm{G}$ für $\mathrm{X}=\mathrm{J}$ und bei $7-10\,\mathrm{G}$ für $\mathrm{X}=\mathrm{Br}$. Die $^{14}\mathrm{N}\text{-}H/s$ der zwei äquivalenten NO-Gruppen ist nur für $\mathrm{X}=\mathrm{Cl}$ abzuschätzen. Diese Spektren lassen sich unter alleiniger Berücksichtigung von $^{31}\mathrm{P}$, $^{35}\mathrm{Cl}$ und $^{37}\mathrm{Cl}\text{-}\mathrm{Kopplungen}$ nicht, unter Hinzunahme von $^{14}\mathrm{N}$ -Kopplungen in der Größenordnung von $1,8\,\mathrm{G}$ bei einer Peak-Peak-Breite von $2-3\,\mathrm{G}$ jedoch zufriedenstellend simulieren. Diese Größenordnung ist nach den Ergebnissen für die ähnlichen Komplexe $[\mathrm{Fe}(\mathrm{NO})_2\mathrm{YX}]$ $(\mathrm{Y}=\mathrm{H}_2\mathrm{O},~\mathrm{X}^-;~\mathrm{X}=\mathrm{Br},~\mathrm{J})$ 17 nicht unerwartet.

Exemplarische Messungen von $[Fe(NO)_2P\Phi_3Cl]$ in verschiedenen Lösungsmitteln (s. Tab. 1) erga-

^{*} E = P, As, Sb; Z = H, Alkyl, Aryl, OR, NR₂, Cl, Br; X = Cl, Br, J.

^{**} Die Bezeichnung "Phosphine" ist in dieser Arbeit als Sammelbezeichnung für Verbindungen des Typs PZ₃ mit beliebigen Gruppen Z verstanden.

Nr.	Ligand EZ ₃	$\langle g \rangle$	$\langle a\left(\mathrm{X} ight) angle \ \left[\mathrm{G} ight]$	$c_{\rm s}^2({\rm X})$	$\langle a({ m E}) angle \ [{ m G}]$	$c_{\mathrm{s}^2}(\mathrm{E})$	$rac{v\mathrm{(NO)}}{\mathrm{[cm^{-1}]}}$	
	$[\mathrm{Fe}(\mathrm{NO})_2(\mathrm{EZ}_3)\mathrm{Br}]$							
1	$P(NEt_2)_3$	2,0502	14,8	0,00183	58,5	0,01592	1775	1719
2	$PO(NEt_2)_2$	2,0506	14,5	0,00180	58,1	0,01580	1785	1726
3	$P(C_6H_4NMe_2)_3$	2,0510	14,0	0,00174	45,0	0,01224		
4	$P(C_6H_4OMe)_3$	2,0519	14,1	0,00175	47,8	0,01300	1783	1728
5	$PO_2(NMe_2)$	2,0520	14,5	0,00180	52,2	0,01420	1783	1727
6	$P(C_6H_{11})_3$	*2,0521	14,6	0.00181	38,4	0.01044	1781	1729a
7	$PO(C_6H_{11})_2$	2,0523	14,7	0,00182	44,5	0,01211	1786	1731
8	PO_3	*2,0528	14,4	0,00179	48,3	0.01313	1789	1734a
9	$P(C_6H_4F)_3$	2,0529	14,7	0.00182	50,2	0.01366		
10	PEt ₃	2,0529	14,0	0,00174	43,9	0,01194	1780	1727
11	$P(nC_4H_9)_3$	2,0529	14,1	0,00175	43,8	0,01192	1783	1727b
12	$PO_2(OEt)$	2,0530	14,8	0,00183	55,4	0,01507	1787	1732
13	$PO_2(CH=CH_2)$	2,0531	14,7	0,00182	48,7	0,01325	1788	1733
4	$P(C_6H_4Me)_3$	2,0531	14,6	0,00181	47,9	0,01303	1784	1730
15	PØ ₂ Me	2,0533	14,1	0.00175	48,7	0,01325	1787	1731
6	PØMe ₂	2,0533	14.1	0.00175	49,5	0.01347	1.01	1.01
7	$PH(C_6H_{11})_2$	2,0533	15,1	0,00187	43,9	0,01194		
18	PHEt ₂	2,0539	14,7	0,00182	47,6	0,01295		
9	$P\varnothing_2(C_6F_5)$	2,0542	14,8	0,00183	55,3	0,01504	1787	1730
20	$PO(OEt)_2$	2,0545	15.1	0,00187	65,5	0,01782	1794	1731
21	$PØ_2H$	2,0546	15,1	0,00187	51,8	0,01408	1101	1701
22	PH ₂ Ø	2,0546	15,2	0,00188	54, 0	0,01469		
23	$P(CH_2C_6H_5)_3$	*2,0547	13,9	0,00172	47,2	0,01282		
24	PØ ₂ Cl	2,0549	14,8	0,00183	64,4	0,01752		
25	PBr_3	*2,0549	15,2	0,00188	78.7	0,02140	1812	1763
26	$P(OEt)_3$	2,0551	15,0	0,00186	77,4	0,02140	1797	1738
27	$PO(OO)_2$	2,0560	15,7	0,00195	64,7	0,01760	1101	1700
28	$P(OO)_3$	2,0577	16,3	0,00202	88,6	0,02410		
29	$As(C_6H_4NMe_2)_3$	2,0535	14,4	0,00179	58,9	0,01717	1777	1730
30	AsEt ₃	2,0549	14,4	0,00179	55,0	0,01603	1781	1727
31	AsO_3	*2,0550	14,4	0,00179	61,4	0,01790	1795	1739a
32	$Sb(C_6H_4NMe_2)_3$	2,0570	15,0	0,00173	163,0)		(^{121}Sb)	11000
	Sb(C611414Me2)3	2,0570	10,0	0,00100	88,7	0,02678	(^{123}Sb)	
33	$SbEt_3$	2,0578	15,3	0,00189	150,9)		(50)	
,,	Solits	2,0010	10,0	0,00100	82,0	0,02480		
34	SbO_3	2,0593	15,2	0,00188	170,2)			
7	5003	2,0000	10,2	0,00100	92,5	0,02797		
	$[Fe(NO)_2(EZ_3)J]$				02,0)			
35	$P(C_6H_{11})_3$	*2.0823	15,7	0,00215	31,3	0,00851	1781	1730a
36	PO_3	*2,0852	15,1	0,00215	41,5	0,01129	1789	1730a 1738
37 37	AsO_3	*2,0864	16,0	0,00219	55,2	0,01129	1792	1745
01	$[Fe(NO)_2(EZ_3)Cl]$	2,0004	10,0	0,00213	55,2	0,01003	1102	1140
38		2,0351			42,2	0.01148		
9 9	$P(C_6H_{11})_3 P\varnothing_3$	2,0362	C C		52,1	0,01148	1789	1731a
10	AsO_3	2,0302 $2,0374$	unaufgelös	4	66,0	0.01418 0.01925	1789	1731a 1736
		2,0406			180,9)	•		1/30
41	$\mathrm{Sb} \mathcal{O}_3$	2,0400	unaufgelös	U		0,02973	1793	1740
39a	DO	9.0961 : 1	Dannal		98,8)	-		
	PO_3	2,0361 in]			51,7			
89 b	PO_3	2,0369 in A			49,8			
39 c	$PØ_3$	2,0363 in 1	13UUN		48,9			


Tab. 1. Isotrope g-Faktoren $\langle g \rangle$, Hfs-Kopplungskonstanten $\langle a \rangle$, Spindichten c_8^2 in Toluollösuneg (* in Benzol) und ν (NO)-Frequenzen in CCl₄ für einige Komplexe [Fe (NO) $_2$ (EZ $_3$) X]. Werte für Arsin- und Stibinkomplexe sind bis zur zweiten Ordnung korrigiert ¹⁶. Spindichten sind mit A_0 -Werten nach Goodman und Raynor ³⁶ berechnet, für Br mit dem Mittelwert von A_0 (⁷⁹Br) und A_0 (⁸¹Br). (a): nach l. c. ³⁴, (b): nach l. c. ¹⁵. (c): Die Spektren können mit $\langle a$ (³⁷Cl) $\rangle = 2,8$ G, $\langle a$ (³⁵Cl) $\rangle = 2,4$ G, c_8^2 (Cl) =0,0016 und $\langle a$ (N) $\rangle = 1,8$ G, c_8^2 (N) =0,0032 simuliert werden.

ben, daß die ³¹P-*H/s*-Kopplung mit der Polarität des Lösungsmittels wächst, die *g*-Faktoren dagegen fast unverändert bleiben.

Diskussion

1. Elektronenkonfiguration und g-Faktor

Die Spindichte ist in den Komplexen [Fe(NO)₂ (EZ₃)X] in erheblichem Ausmaß über die Liganden EZ₃ und X verteilt, weniger offenbar über die Nitrosylgruppen. Das läßt vermuten, daß die Ursachen für die Stabilität der paramagnetischen Komplexe dieses Typs Rückbindung zu Akzeptor- π -Orbitalen $\pi^{\rm acc}$ des Liganden EZ₃, — seien dies nun leere d-Orbitale oder antibindende Molekülorbitale —, und π -Elektronendelokalisierung über die Gruppierung X—Fe—EZ₃ sind. Hier wie im folgenden beziehen sich die Bezeichnungen π und σ auf die Mikrosymmetrie der Bindung Metall—Ligand. Abb. 1 zeigt die relevanten Teile des zur Interpretation der Meßergebnisse vorgeschlagenen qualitativen Einelektronen-MO-Schemas.

 $\label{eq:Abb. 1. Qualitatives Einelektronen-MO-Schema für Komplexe} \quad \ [Fe\,(NO)_{\,2}\,(EZ_3)\,X] \ unter\ lokaler\ Symmetrie\ C_s\ .$

Als angenäherte Reihenfolge der Coulombintegrale ist dabei in Anlehnung an Ergebnisse von Fenske $^{18, 19}$ und Gray $^{20, 21}$ $\pi^{\rm b}({\rm NO}) < \sigma({\rm NO}, {\rm X}, {\rm EZ}_3) < 3{\rm d} \approx \pi({\rm X}) < 4{\rm s} \approx \pi^*({\rm NO}) < \pi^{\rm acc}$ (EZ3) angenommen. $\pi\text{-Donorwirkung}$ des Liganden EZ3 widr zur Vereinfachung vernachlässigt. Damit ordnen sich im MO-Schema über den relativ stabilen Fe – NO-Rückbindungsorbitalen aufgrund des $\pi\text{-Donoreinflusses}$ des Halogens die Orbitale 8a' (hoher Metall- und Halogencharakter), 6a'' (schwach antibindendes Halogen-p-Orbital) und 9a' ($\pi^{\rm acc}$ (EZ3)-,

Metall- und Halogencharakter) an. π -Donoreinfluß des Halogens und π -Akzeptorwirkung von EZ₃ sind direkt über dasselbe Metall-d-Orbital verknüpft. Wird die Spiegelebene des Moleküls σ_h als x,y-Ebene gewählt, so überlappt $3d_{x^2-y^2}(a')$ mit dem in der Ebene liegenden Halogen-p- und einem entsprechenden π^{acc} -Orbital von EZ₃. 9a' enthält als höchstes besetztes MO (HOMO) das ungepaarte Elektron.

Der g-Faktor kann vereinfacht in der Form

$$\langle g \rangle = 2,0023 + \langle g_{qq'} \rangle$$

$$\begin{split} & \text{mit} \\ & g_{\text{qq'}} = \sum_{i} \\ & \underline{\langle \psi_{\text{0}} \, | \, \text{L}_{\text{q}} \, \lambda \, | \, \psi_{\text{i}} \rangle \langle \psi_{\text{i}} \, | \, \text{L}_{\text{q'}} \, \lambda \, | \, \psi_{\text{0}} \rangle + \langle \psi_{\text{0}} \, | \, \text{L}_{\text{q'}} \, \lambda \, | \, \psi_{\text{i}} \rangle \langle \psi_{\text{i}} \, | \, \text{L}_{\text{q}} \, \lambda \, | \, \psi_{\text{0}} \rangle}{\varepsilon_{\text{0}} - \varepsilon_{\text{i}}} \end{split}$$

angesetzt werden $^{22}.~\psi_{o}$, ε_{0} stellen darin Eigenfunktion und Energieeigenwert des Grundzustandes $^{2}A'$ (aus (7a') 1) dar, ψ_{i} , ε_{i} die der relevanten angeregten Zustände. Da der g-Faktor der vermessenen Komplexe über dem des freien Elektrons liegt, muß Wechselwirkung von ψ_{0} mit besetzten Molekülorbitalen vorherrschen. Das nächstliegende 6a'' liefert den angeregten Zustand $^{2}A''$. Die Konsequenzen dieser Annahme können an den für verschiedene Halogene X und Liganden EZ $_{3}$ erhaltenen ESR-Parametern überprüft werden.

2. Variation des Halogens in der Reihe Cl-Br-J

 $\langle g \rangle$ steigt in der Reihe X = Cl - Br - J an, und zwar um eine Größenordnung mehr als bei Änderung von E in der Reihe P-As-Sb. Proportional dazu nehmen die Spindichten cs2(E) ab, während $c_{\rm s}^{2}({\rm X})$ nur unwesentlich wächst. Obwohl $c_{\rm s}^{2}({\rm E})$ ungefähr proportional mit der Elektronegativität der Halogene abnimmt, sind induktive Effekte kaum als Grund dafür anzusehen, weil die v(NO)-Frequenzen fast unverändert bleiben. Der Anstieg der Halogen-π-Donororbitale zum J hin 18 muß dagegen auch einen Anstieg des 6a" nach sich ziehen, einen wesentlich schwächeren jedoch des HOMO 9a', da dieses weiterhin erhebliche Fe-E-Rückbindungsanteile enthält. Infolgedessen verringert sich der Energieabstand $\varepsilon_0 - \varepsilon_i$, der g-Faktor steigt. Im gleichen Sinne wirken zum J hin zunehmende Spin-Bahn-Kopplung und Halogencharakter des HOMO 9a'. Die Fe-NO-Rückbindung wird nicht beeinflußt, da offenbar bei der π-Donor-Wechselwirkung des Halogens kaum Ladung übertragen wird 18. Die Verminderung bzw. Erhöhung der Spindichten $c_{\rm s}^{\,2}({\rm E})$ und $c_{\rm s}^{\,2}({\rm X})$ zum J hin spiegelt die zu erwartende Veränderung des Charakters des HOMO 9a' wider.

3. Variation des Liganden EZ₃

g-Faktoren

Beim Vergleich der g-Faktoren innerhalb der Komplexreihe mit X = Br und E = P fällt sofort auf, daß Phosphine, die gemeinhin als starke π -Akzeptoren gelten $^{7,\ 10,\ 23,\ 3}$ (Phosphite, Halogenphosphine), hohes $\langle g \rangle$, Phosphine mit schlechten π -Akzeptoreigenschaften 24 (z. B. Aminophosphine) hingegen besonders niedriges $\langle g \rangle$ aufweisen. Auch die Korrelation zwischen g-Werten und $\nu_{\rm NO}$ -Frequenzen (Abb. 2) stützt die Vermutung, daß die $\langle g \rangle$ -Skala eine Anordnung der Liganden nach dem π -Akzeptorvermögen liefert.

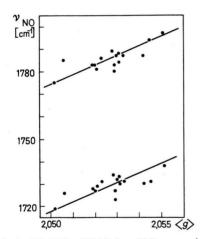


Abb. 2. $[Fe(NO)_2(EZ_3)Br]: \nu(NO) \text{ gegen } \langle g \rangle$.

Als π -Akzeptorstärke eines Liganden L mit leerem Akzeptororbital in bezug auf ein besetztes Metallorbital $\psi_{\rm M}$ sei hier schematisch vereinfacht die Differenz $\varDelta \varepsilon_{\rm A}$ zwischen den Einelektronenenergien des ursprünglichen Metallorbitals $\psi_{\rm M}$ und des bei der Rückbindung entstehenden Molekülorbitals (Abb. 3) definiert 18 .

Analog kann die σ -Donorstärke $\Delta \varepsilon_{\rm D}$ als Energiedifferenz zwischen Donororbital des Liganden und dem die σ -Bindung repräsentierenden Molekülorbital angesehen werden. Diese Definitionen scheinen dann ausreichend zu sein, wenn man lediglich Aussagen über relative Akzeptor- und Donorstärken erzielen will. Es ist zu betonen, daß Donor- und Ak-

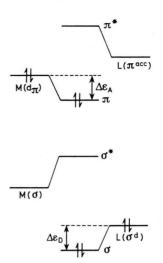


Abb. 3. Schematisierte Akzeptor- und Donorstärke.

zeptorvermögen nicht Eigenschaften des isolierten Liganden, sondern stets auf die gesamte intramolekulare Umgebung bezogen sind.

Im Sinne des vorgeschlagenen qualitativen MO-Schemas ist bei stärkeren π -Akzeptoren EZ $_3$ in erster Linie eine Stabilisierung des HOMO 9a' zu erwarten, während 6a" wenig beeinflußt werden sollte. Die Verringerung der Energiedifferenz zwischen 9a' und 6a" bewirkt die Erhöhung des g-Faktors. Dieser wird offensichtlich von einer Änderung des σ -Donororbitals des Liganden EZ $_3$ in erster Näherung nicht betroffen. Die g-Faktoren der Phosphinkomplexe [Fe(NO) $_2$ (PZ $_3$)Br] sind nicht mit der Summe Σ EN der Elektronegativitäten der drei an den Phospor gebundenen Gruppen korreliert. Deshalb darf geschlossen werden, daß die Größe von $\langle g \rangle$ nicht durch induktive oder elektrostatische Effekte beherrscht wird.

Verschiedene weitere empirische Parameter von Phosphinen und Phosphinkomplexen wurden auf eine Korrelation mit den g-Faktoren hin überprüft. Eine durchgehend monotone Abhängigkeit von $\langle g \rangle$ kann dabei u. a. für die massenspektrometrischen Ionisationspotentiale 8, 9, die Halbneutralisationspotentiale nach STREULI 25, 31P-NMR-Verschiebungen δ der freien Phosphine und Phosphinoxide 26, 27, für δ und Δδ-Werte der TiCl₄-Phosphin-Addukte 11, für die Summe der Taftkonstanten der an den Phosphor gebundenen Gruppen, für die σ- und π-Parameter von GRAHAM ⁵ und für δ (³¹P) von Phosphin-substituierten Carbonylkomplexen der 6. Nebengruppe 28 ausgeschlossen werden. Eine ge-

wisse Beziehung scheint zu den Co-NMR-Verschiebungen in den ähnlichen Komplexen [Co(NO)2 (PZ₂)X] zu bestehen ²⁹. Dagegen liefert die g-Faktorenskala dieselbe Anordnung der Liganden $P(C_6H_4OMe)_3\!<\!P\varPhi_3\!<\!As\varPhi_3\!<\!Sb\varPhi_3$ wie die polarografischen Halbwellenpotentiale 13 der Komplexe [Co(NO), (CO) (EZ₃)]. Sie deckt sich weiterhin mit einer π -Akzeptorreihe $P\Phi_3 < PMe\Phi_2 \approx As\Phi_3 <$ $P(O\Phi)_3$, die von Crow et al. 15 aus Mößbauer-Quadrupolaufspaltungen in den Komplexen [Fe (NO) 2 (EZ3) 2] abgeleitet wurde. Schließlich kann der von Jones und Coskran 24 für [M(CO)5(EZ3)]-Komplexe angegebenen π-Akzeptorreihe P(OMe)₃ $> PMe(OMe)_2 > PMe_3 > PMe(NMe_2)_2 > P(NMe_2)_3$ die g-Faktorreihe $P(OEt)_3 > P\Phi(OEt)_2 > PEt_3 >$ $P\Phi(NEt_2)_2 > P(NEt_2)_3$ zur Seite gestellt werden. Somit scheint es empirisch gerechtfertigt, die g-Faktorenreihe als repräsentativ für die relativen π -Akzeptorstärken der Phosphine, mit einiger Vorsicht auch der Arsine und Stibine zu interpretieren.

H/s-Kopplungskonstanten des Donoratoms des Liganden EZ₃

Als Ursache für die isotropen Hfs-Kopplungskonstanten $\langle a(E) \rangle$ ist wegen der geringen Symmetrie der Komplexe direkte Beteiligung der ψ_s -Funktion des Donoratoms von EZ₃ am HOMO 9a' wahrscheinlich. Die nach $c_s^2 = \langle a \rangle/A_0$ erhaltenen Spindichten $c_s^2(E)$ in der Größenordnung von 0,01 bis 0,03 können vor allem auf folgende Weise durch den Liganden EZ₃ verändert werden:

- Mit geringerem Energieabstand des Ligandendonororbitals vom HOMO, d.h. entweder (a) mit zunehmendem σ-Donorvermögen, oder (b) mit zunehmendem π-Akzeptorvermögen (Stabilisierung des HOMO) ist eine Zunahme der Spindichte zu erwarten.
- ii) Mit abnehmendem s-Anteil am σ -Donororbital von EZ₃ nimmt die Spindichte ab. Damit wird sie von den Bindungswinkeln im Liganden EZ₃ (sterische Effekte) oder auch vom Ausmaß einer $Z \rightarrow E \pi$ -Bindung abhängig.

Anhand von Korrelationen der Spindichten mit den oben genannten empirischen Parametern wurden diese Effekte näher untersucht. Eine systematische Abhängigkeit der Spindichten $c_s^2(P)$ von der Summe Σ EN der Elektronegativitäten der drei an den Phosphor gebundenen Gruppen ergibt sich aus Abb. 4.

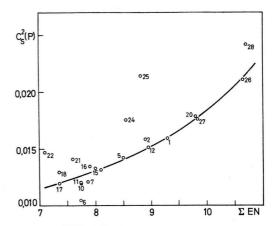


Abb. 4. $[\mathrm{Fe\,(NO)_2\,(PZ_3)\,Br}]$: Spindichten $c_s^2(P)$ gegen die Summe der Elektronegativitäten der an den Phosphor gebundenen Gruppen Σ EN.

Unterhalb der angedeuteten Linie sind vorwiegend Phosphine mit sterisch umfangreichen Gruppen (z. B. $P(C_6H_{11})_3$) zu finden, oberhalb einerseits solche mit kleinen Bindungswinkeln (z. B. PHR_2 , PH_2R), andererseits solche mit Gruppen starken induktiven Effekts (Halogene). Die Größe der Spindichte wird offenbar nicht vorwiegend im Sinne von i(a) durch das σ -Donorvermögen bestimmt, denn dieses sollte mit wachsendem Σ EN eher abnehmen. Das zeigt sich etwa an den Ionisationspotentialen $^{8, 9}$, wenn man diese unter der Einschränkung, daß die intramolekulare Umgebung des Phosphins im Komplex nicht berücksichtigt ist, als einigermaßen repräsentativ für die σ -Donorstärken ansieht.

Ein ähnliches Ergebnis liefert die Abhängigkeit der Spindichte von den ³¹P-NMR-Verschiebungen der freien Phosphine (Abb. 5).

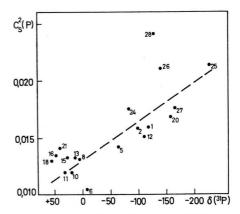


Abb. 5. [Fe(NO)₂(PZ₃)Br]: c_8^2 (P) gegen δ (31P) der freien Phosphine 26, 27.

Mit abnehmendem δ , d. h. stärkerer Verlagerung der s-Elektronen in die P-Z-Bindungen oder stärkerer $Z \rightarrow P - \pi$ -Bindung, nimmt auch die Spindichte – abgesehen von Abweichungen durch sterische und induktive Effekte – im wesentlichen zu. Die Interpretation der Größe von $c_s^2(P)$ allein auf der Basis von σ -Donorvermögen (im Sinne von i(a)) und sterischen Effekten (ii) würde gerade den umgekehrten Trend erwarten lassen.

Es ist gezeigt worden ^{11, 30}, daß δ (³¹P) der Änderung $\Delta\delta$ bei der Komplexbildung proportional ist. Dies wird durch die Annahme erklärt, daß die Koordination durchweg eine fast tetraedrische Konfiguration am Phosphoratom induziert. Damit werden unterschiedliche s-Anteile am Donorelektronenpaar, wie sie in den freien Phosphinen vorhanden sind, verwischt und können nicht mehr die Größe von $c_s^2(P)$ bestimmen.

Eine interessante Beziehung scheint auch zwischen $c_s^2(P)$ und den P=O-Kraftkonstanten der entsprechenden Phosphinoxide ³¹ zu bestehen (Abb. 6). Die wenigen verfügbaren Werte lassen sich unter der Annahme vergleichen, daß sich die P=O-Kraftkonstanten von $OP(OMe)_3$, $OPMe_3$ und $OP(NMe_2)_3$ nicht wesentlich von denen der analogen Äthylverbindungen unterscheiden.

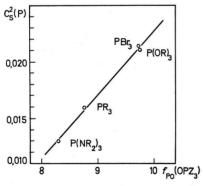


Abb. 6. $[Fe(NO)_2(PZ_3)Br]: c_s^2(P)$ gegen f(P=O) der entsprechenden Phosphinoxide OPZ_3 .

Da die P=O-Kraftkonstanten als Maß für die P-O-Bindungsstärke anzusehen sind, ist es möglich, daß $c_s^2(P)$ die gesamte, aus σ -Donor- und π -Akzeptorbindung zusammengesetzte Phosphin-Metall-Bindungsstärke wiedergibt, zumindest solange nicht sterische Effekte durchschlagen.

Die c_s²(P)-Werte gegen die g-Faktoren aufgetragen ergäben (Abb. 7) nach diesen Vorstellungen

ein Gesamtbindungsstärke - π - Akzeptorstärke-Diagramm.

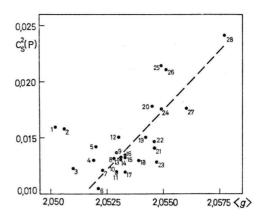


Abb. 7. [Fe (NO)₂ (PZ₃) Br] : c_8^2 (P) gegen $\langle g \rangle$.

Darin sind die hohen Spindichten bei großen g-Faktoren vorwiegend durch die hohe π -Akzeptorstärke und die starke Stabilisierung des HOMO hervorgerufen. Die relativ hohen Spindichten der durch Dialkylaminogruppen substituierten Phosphine sind durch hohe σ -Donorstärke verständlich.

Die Spindichten vergleichbarer Phosphine, Arsine und Stibine verhalten sich wie die kovalenten Atomradien der Donoratome (Abb. 8). Das kann als Hinweis auf den Einfluß der Ausdehnung der Ligandenorbitale auf die Überlappung verstanden werden.

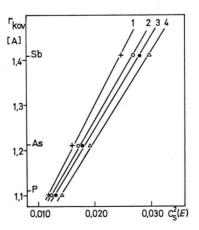


Abb. 8. [Fe(NO)₂(EZ₃)X]: Kovalenter Radius r_{kov} des Donoratoms E gegen Spindichte $c_s^2(E)$. 1: [Fe(NO)₂ (EEt₃)Br], 2: [Fe(NO)₂(E(C₆H₄NMe₂)₃)Br], 3: [Fe(NO)₂ (E Φ_3)Br], 4: [Fe(NO)₂(E Φ_3)Cl].

Hjs-Kopplungskonstanten des Halogenatoms

Die Hfs-Kopplung bzw. die Spindichte auf dem Halogen, beispielsweise $c_{\rm s}^2({\rm Br})$, ändert sich nur wenig mit Variation des Phosphinliganden. Sie zeigt allenfalls schwache Korrelation mit den $\delta(^{31}{\rm P})$ -Verschiebungen der freien Phosphine.

 $c_{\rm s}^{\ 2}({\rm Br})$ wächst grob gesehen einerseits mit wachsendem π -Akzeptorvermögen der Phosphine, andererseits bei verstärktem Donorvermögen. Dies mag in beiden Fällen daran liegen, daß der Metallcharakter des HOMO 9a' zugunsten des Ligandencharakters abnimmt.

Schlußfolgerungen

Unter vereinfachenden Annahmen ist also zu vermuten, daß die isotropen g-Faktoren der Komplexe $[Fe(NO), (PZ_2)X]$ eine relative Skala der π -Akzeptorstärke von Phosphinen in diesen Komplexen liefern. Hyperfeinstrukturkopplungskonstanten bzw. Spindichten am Halogen und Phosphor dagegen sind abgesehen von sterischen Effekten offenbar in komplexer Weise sowohl durch π -Akzeptor- als auch durch σ-Donorstärke bestimmt. Möglicherweise kann die s-Spindichte auf dem Phosphoratom in Beziehung zur Gesamtbindungsstärke der Metall-Phosphin-Bindung gesetzt werden. Im vorliegenden Komplextyp kann nach diesen Messungen die π -Akzeptorstärke der Phosphine PR_3 ($R = Alkyl \neq Me$ thyl, Aryl) nicht nur durch schrittweise Substitution von -R durch -OR oder Halogen gesteigert werden, sondern auch durch - H und in geringerem Ausmaß durch - CH₃ (vgl. l. c. ¹⁵). Offenbar besitzt auch in diesen Komplexen Triphenylphosphin keine höhere π -Akzeptorstärke als Trialkylphosphine. Daß Einführung einer C₆F₅-Gruppe die Akzeptorstärke erhöht, kommt traditionellen Vorstellungen entgegen. Weniger evident scheint das beträchtliche Akzeptorvermögen des Tribenzylphosphins zu sein. Letzteres besitzt jedoch nur schwache σ-Donoreigenschaften, da sowohl $c_s^2(X)$ als auch $c_s^2(P)$ erheblich unter den Werten von Phosphinen vergleichbarer Akzeptorstärke liegen.

Das Akzeptorvermögen des Triphenylphosphins wird andererseits gesenkt vermöge p-Substitution am Phenyl durch Gruppen mit starkem mesomeren Effekt (-NMe₂, -OMe) oder auch bei Ersatz der Phenylgruppen durch Dialkylaminogruppen ²⁴. Die

trotzdem relativ hohen Spindichten $c_s^2(P)$ der Aminophosphine können entweder durch hohen s-Anteil am Donorelektronenpaar oder durch hohes σ -Donorvermögen erzeugt werden, beides aufgrund starker $N \to P - \pi$ -Bindungen verständlich $^{24, 32, 33}$. Die ESR-Spektren zeigen eindeutig, daß Aminophosphine im vorliegenden Komplextyp über den Phosphor gebunden sind.

Weitere Aussagen über das σ-Donorvermögen der Phosphine scheinen aus den isotropen ESR-Parametern nicht zu gewinnen zu sein. Auch darüber, ob die Akzeptororbitale der Phosphine leere d-Orbitale sind oder antibindende Molekülorbitale, können nur vollständige Hyperfeintensoren Hinweise liefern.

Experimenteller Teil

Die Dinitrosyleisenhalogenide $[Fe\,(NO)\,_2LX]_2$ wurden nach verbesserten Methoden 37 durch Sättigen einer Suspension von gleichen Gewichtsmengen Eisenpulver und Eisenhalogenid-Hydrat in Aceton mit NO dargestellt. Die entstehende rotbraune Lösung wird bei Zimmertemperatur eingedampft und im Hochvakuum getrocknet. Aus dem Rückstand können bei $60-100\,^{\circ}\mathrm{C}$ im Hochvakuum die gewünschten Verbindungen in ca. 40% (X=Cl), 60% (X=Br) und — bei Einsatz wasserfreien Eisen (II) jodids — bis 80% (X=J) Ausbeute sublimiert werden.

Die benutzten Liganden wurden, soweit nicht im Handel erhalten, nach Standardverfahren hergestellt und gereinigt. Sämtliche Komplexe wurden entsprechend früher beschriebenen Verfahren 34, 14, 15 unter Stickstoff als Schutzgas in geschlossenen Apparaturen bei Temperaturen unter 0 °C dargestellt. Als Lösungsmittel diente unter Stickstoff absolutiertes Tetrahydrofuran. Ein Teil der Verbindungen (10, 12, 13, 17, 18, 20-22, 24-29, 32) blieb beim Abziehen des Lösungsmittels als Öl zurück. Das Öl wurde direkt zur Messung verwendet. Die ESR-Spektren wurden unter Stickstoff bei 22 °C an unmittelbar vorher bereiteten, etwa 10⁻³ bis 10⁻² M Lösungen der frisch hergestellten Komplexe in Toluol mit einem VARIAN X-Band-Spektrometer V 4500 bei 100 kHz Modulation aufgenommen. Bei den besonders instabilen Komplexen wurden Kontrollspektren bei unter -20 °C von mit Toluol verdünnten Proben des bei -50 °C hergestellten Reaktionsgemisches gefahren. Feldstärken wurden mit einem Kernresonanz-Magnetfeldmesser der AEG, Frequenzen mit einem HEWLETT-PACKARD-Zähler, Typ 5246L, gemessen ***. Damit wird eine Genauigkeit von ca. 0,0001 im g-Faktor und ca. 1% in den Kopplungskonstanten bei den hier vermessenen Lösungen erreicht.

^{***} Für die Überlassung dieser Geräte danke ich der Stiftung Volkswagenwerk.

Die IR-Spektren wurden an frisch bereiteten, konzentrierten CCl₄-Lösungen der Komplexe mit einem PERKIN-ELMER-Gitterspektrometer, Typ 225, gewon-

nen. Viele dieser IR-Spektren zeigen sofort Banden der Zersetzungsprodukte 35 [Fe(NO), (EZ₃),].

¹ L. S. Meriwether u. M. L. Fiene, J. Amer. chem. Soc. 81, 4200 [1959].

C. S. Kraihanzel u. F. A. Cotton, Inorg. Chem. 2, 533 [1963]

W. D. HORROCKS u. R. C. TAYLOR, Inorg. Chem. 2, 723 [1963].

⁴ F. A. COTTON, Inorg. Chem. 3, 702 [1964].

W. A. G. GRAHAM, Inorg. Chem. 7, 315 [1968].

- H. J. PLASTAS, J. M. STEWART u. S. O. GRIM, J. Amer. chem. Soc. 91, 4326 [1969].
- W. STROHMEIER u. F. J. MÜLLER, Chem. Ber. 100, 2812 [1967].
- J. MÜLLER, K. FENDERL u. B. MERTSCHENK, Chem. Ber. 104, 700 [1971].
- G. DISTEFANO, G. INNORTA, S. PIGNATARO U. A. FOFFANI, J. Organomet. Chem. 14, 165 [1968]
- H. BEALL, C. H. BUSHWELLER u. M. GRACE, Inorg. Nucl. Chem. Letters 7, 641 [1971].
- F. CALDERAZZO, S. A. LOSI u. B. P. Susz, Helv. Chim. Acta **54**, 1136 [1971].
- G. R. Dobson u. L. A. H. Smith, Inorg. Chem. 9, 1001 [1970].
- 13 R. PRIBIL, MAŠEK u. A. A. VLČEK, Inorg. Chim. Acta 5, 57 [1971].
- R. KRAMOLOWSKY u. J. SCHMIDT, Z. Naturforsch. 25 b, 1487 [1970].
- J. P. Črow, W. R. Herring, J. R. Sams u. R. L. Tapping, Inorg. Chem. 10, 1616 [1971].
- J. SCHMIDT, W. L. DORN u. R. KRAMOLOWSKY, Inorg. Chim. Acta, im Druck.
- L. Burlamacchi, G. Martini u. E. Tiezzi, Inorg. Chem. **8**, 2021 [1969].
- R. F. FENSKE u. R. L. DEKOCK, Inorg. Chem. 9, 1053 [1970].
- R. L. DEKOCK, A. C. SARAPU u. R. F. FENSKE, Inorg. Chem. 10, 41 [1971].

- ²⁰ H. B. Gray, E. Billig, A. Wojcicki u. M. Farona, Canad. J. Chem. 41, 1281 [1963].
- ²¹ P. T. Manoharan u. H. B. Gray, J. Amer. chem. Soc. 87, 3340 [1965].
- ²² P. W. ATKINS u. M. C. R. SYMONS, The Structure of Inorganic Radicals, S. 241, Elsevier, Amsterdam, London, New York 1967.
- ²³ F. A. COTTON u. G. WILKINSON, Anorganische Chemie, S. 695, Verlag Chemie, Weinheim 1967.
- ²⁴ C. E. Jones u. K. J. Coskran, Inorg. Chem. 10, 55 [1971].

²⁵ C. A. Streuli, Analyt. Chem. 32, 985 [1960].

- ²⁶ J. H. LETCHER u. J. R. VAN WAZER, J. chem. Physics 44, 815 [1960].
- V. MARK, C. H. DUNGAN, M. M. CRUTCHFIELD u. J. R. VAN WAZER, Topics in Phosphorus Chemistry 5, 238 ff. [1967].
- S. O. GRIM, D. A. WHEATLAND U. W. McFARLANE, J. Amer. chem. Soc. 89, 5573 [1967].
- D. REHDER u. J. SCHMIDT, Z. Naturforsch., im Druck.
- B. E. MANN, C. MASTERS, B. L. SHAW, R. M. SLADE u. R. E. STAINBANK, Inorg. Nucl. Chem. Letters 7, 881 [1971].
- 31 J. GOUBEAU u. A. LENTZ, Spectrochim. Acta 27 A, 1703 [1971].
- 32 E. D. Morris u. C. E. Nordman, Inorg. Chem. 8, 1673 [1969].
- 33 C. G. BARLOW, J. F. NIXON u. M. WEBSTER, J. chem. Soc. [London], Ser. A 1968, 2216.
- 34 W. HIEBER u. R. KRAMOLOWSKY, Z. Naturforsch. 16b, 555 [1961]; Z. anorg. allg. Chem. 321, 94 [1963].
- 35 S. PIGNATARO, G. DISTEFANO u. A. FOFFANI, J. Amer. chem. Soc. 92, 6425 [1970].
- B. A. GOODMAN u. J. B. RAYNOR, Advances in Inorganic Chemistry and Radiochemistry 13, 156 ff. [1970]
- 37 D. REHDER, H. RUST u. J. SCHMIDT, unveröffentlicht.