NOTIZEN 731

GaPS₄ — Eine neue Verbindung im System Ga—P—S

GaPS₄ - A New Compound in the System Ga-P-S
P. Buck und R. Nitsche

Kristallographisches Institut der Universität Freiburg i. Br. (Z. Naturforsch. 26 b., 731 [1971]; eingegangen am 13. Mai 1971)

Im Rahmen unserer Untersuchungen zur Kristallzucht ternärer Chalkogenide aus der Gasphase 1 wurden im System Ga-P-S Einkristalle der neuen Verbindung GaPS₄ hergestellt. Die Kristallzucht erfolgte durch chemischen Transport der aus den Elementen synthetisierten Verbindung mittels Jod in einem Temperaturgradienten von 650-600°. GaPS₄ bildet farblose Polyeder (bis 2·2·2 mm³). Beobachtete Flächen sind die monoklinen Pinakoide {100}, {102} und die Pris-

men {011}, {11\$\bar{1}\$}. Die Kristalle sind stark licht- und doppelbrechend ($n_{||c}=2,50\pm0,02$, $n_{||b}=2,05\pm0,02$ für $\lambda=5490$ Å). Sie sind gegen mechanische Einwirkungen äußerst empfindlich und zeigen eine ausgezeichnete Spaltbarkeit und Gleitung nach (100). Aus Guinier- und Weissenberg-Aufnahmen ergab sich eine monokline Zelle mit $a=8,61\pm0,03$, $b=7,78\pm0,02$, $c=11,85\pm0,05$ Å, $\beta=135,4^\circ$. Aus den Auslöschungen (h0l): l=2n und (0k0): k=2n folgt die Raumgruppe $P2_1/c$. Die Pyknometerdichte $\varrho=2,65$ gcm $^{-3}$ führt zu Z=4. Die Bestimmung der Kristallstruktur ist beabsichtigt.

Wir danken der Deutschen Forschungsgemeinschaft für materielle Hilfe.

¹ R. NITSCHE u. P. WILD, Mat. Res. Bull. 5, 419 [1970].

Eine neue Synthese für unsymmetrische Diphosphine bzw. Arsinophosphine

A New Synthesis of Unsymmetrical Diphosphines and Arsinophosphines

REINHARD DEMUTH, JOSEPH GROBE und LOTHAR STEINER

Institut für Anorganische Chemie der Universität (T.H.) Karlsruhe und Erduard-Zintl-Institut der Technischen Hochschuchle Darmstadt

(Z. Naturforsch. 26 b, 731—732 [1971]; eingegangen am 5. Mai 1971)

Auf der Suche nach einem günstigeren Weg zur Darstellung von $(CH_3)_3SiP(CF_3)_2$ wurde die Umsetzung von $(CH_3)_3SiPH_2$ mit $(CF_3)_2PJ$ untersucht. $(CH_3)_3SiP(CF_3)_2$ ist zwar durch Umphosphinierung nach Gl. $(1 \ a)$ und Gl. $(1 \ b)$

$$[(CH_3)_3Si]_2PH + 2 HP(CF_3)_2 \rightarrow 2(CH_3)_3SiP(CF_3)_2 + PH_3 (1 a)$$

$$(CH_3)_3SiPH_2 + HP(CF_3)_2$$

 $\rightarrow (CH_3)_3SiP(CF_3)_2 + PH_3$ (1 b)

in guter Ausbeute zugänglich ^{1, 2}, doch laufen diese Reaktionen äußerst langsam ab und setzen die Umwandlung von (CF₃)₂PJ in (CF₃)₂PH voraus. Auf Grund der Bindungspolaritäten war als 1. Schritt eine Reaktion nach Gl. (2) zu erwarten:

$$(CH_3)_3^{\delta+}$$
 $\stackrel{\delta^-}{Si} - PH_2 + (CF_3)_2^{\delta-} P - \stackrel{\delta^+}{J} \rightarrow (CH_3)_3 SiP(CF_3)_2 + PH_2J$. (2)

In dem innerhalb von 48 Stdn. von -78 °C auf Raumtemperatur erwärmten Reaktionsgemisch wurden nach Fraktionierung bei 10⁻³ Torr [Kühlfallen:

Sonderdruckanforderungen an Prof. Dr. J. Grobe, Lehrstuhl I für Anorg. Chemie i. Eduard-Zintl-Institut d. T.H. D-6100 Darmstadt, Hochschulstr. 4.

-36°; -78°; -126° und -196°C] folgende Produkte nachgewiesen: PH₃, HP(CF₃)₂, P₂(CF₃)₄, (CF₃)₂PPH₂, (CH₃)₃SiJ und (PH)_x. Sie lassen sich durch die Folgereaktionen Gl. (3) bis Gl. (6) deuten:

$$3 PH2J \rightarrow 2 PH3 + PJ3.$$
 (3)

$$\begin{array}{l} (CH_3)_3 SiP(CF_3)_2 \ + \ (CF_3)_2 PJ \\ \ \ \rightarrow \ (CH_3)_3 SiJ \ + \ P_2 (CF_3)_4^{\ 2} \, . \end{array} \ (4)$$

$$+ PH2J$$

$$\rightarrow (CH3)3SiJ + (CF3)2PPH2. (5)$$

$$(CF_3)_2PPH_2 \rightarrow (CF_3)_2PH + \frac{1}{x} (PH)_x.$$
 (6)

Um durch Nachweis des als Zwischenstufe vermuteten $(CH_3)_3SiP(CF_3)_2$ einen genaueren Einblick in den Reaktionsablauf zu erhalten, wurden die Umsetzungen von $(CH_3)_3SiPH_2$ mit $(CF_3)_2PJ$ und $(CF_3)_2AsJ$ bei $-25\,^{\circ}C$ durchgeführt. Unter diesen Bedingungen wurden als Produkte neben wenig PH_3 in guter Ausbeute $(CH_3)_3SiJ$ und $(CF_3)_2EPH_2$ erhalten, während $(CH_3)_3SiP(CF_3)_2$ und $P_2(CF_3)_4$ bzw. $As_2(CF_3)_4$ im Reaktionsgemisch nicht nachzuweisen waren. Danach ist zumindest bei tiefer Temperatur der durch die Gln. (2)-(5) wiedergegebene Reaktionsablauf auszuschließen und die Bruttoreaktion durch Gl. (7) zu beschreiben (E=P-As):

$$(CH_3)_3Si-PH_2 + (CF_3)_2EJ \rightarrow (CH_3)_3SiJ + (CF_3)_2EPH_2.$$
 (7)

Die neuen Verbindungen (CF₃)₂EPH₂ konnten trotz sorgfältiger Fraktionierung bisher noch nicht rein isoliert werden, da die Siedepunktsdifferenzen zu den Ausgangs- und Reaktionsprodukten [(CH₃)₃SiPH₂, (CF₃)₂EJ, (CH₃)₃SiJ] zu gering sind. Der eindeutige

¹ J. Grobe, Z. Naturforsch. 23 b, 1609 [1968].

² Zulassungsarbeit P. SCHMID, Univ. Karlsruhe 1969.

732 NOTIZEN

Nachweis gelang durch ¹H-, ¹⁹F- und ³¹P-Kernresonanzuntersuchungen ³:

Für das unsymmetrische Diphosphin (CF3) 2PIIPIH2 ergibt sich als Protonenresonanz ein Dublett (TH = 6.97 ppm) als Folge der ${}^{31}P_{1}$ -H-Kopplung I(PH) = 202.0Hz]. Jede Dublettlinie ist durch Kopplung mit dem $^{31}P_{II}$ -Kern in ein Dublett aufgespalten $[^{2}J(PH)]$ 12,3 Hz]. Bei größerer Auflösung zeigt jede Dublett-linie Septettstruktur, die auf die Wechselwirkung der PH₂-Protonen mit den sechs F-Atomen der (CF₂)₂P-Gruppe zurückzuführen ist [${}^{4}J(FH) = 0.35 \text{ Hz}$]. Als 19F-Resonanz wird erwartungsgemäß ein Dublett aus Dubletts erhalten, wobei jedes Signal bei höherer Auflösung Triplettstruktur zeigt [$\Phi_{\rm F} = 52,5$ ppm; ${}^2J({\rm PF})$ = 70.0 Hz; ${}^{3}J(PF) = 5.5 \text{ Hz}$; ${}^{4}J(FH) = 0.35 \text{ Hz}$]. Das 31 P-Spektrum enthält zwei Resonanzsignale $\delta_{\rm I}=199$ ppm; $\delta_{\rm II} = 12,5$ ppm. Für die PH₂-Gruppe ergibt sich ein Triplett, das durch Kopplung mit dem 31PII-Kern in ein Dublett aufspaltet $[\hat{J}(PH) = 198,0 \text{ Hz}; J(P_IP_{II})]$ =195 Hz]. Die Wechselwirkung von PI mit den sechs F-Atomen der $(CF_3)_2$ P-Gruppe führt schließlich zur Septettaufspaltung jeder Linie $[^3J(FP_I)=5,8\ Hz]$. Als Resonanz für den P_{II} -Kern wird ein Dublett $[J(P_IP_{II})$ = 195 Hz] aus Septetts $[^2J(FP_{II}) = 70.0 \text{ Hz}]$ registriert. Jede Septettlinie zeigt als Folge der ¹H-P_{II}-Kopplung Triplettstruktur $[{}^{2}J(HP_{II}) = 12,0 Hz]$.

Die KMR-Spektren des $(CF_3)_2$ AsP H_2 sind wesentlich einfacher, da der Kernspin des 75 As (I=3/2) erfahrungsgemäß nicht zu einer Signalaufspaltung führt. Als Protonenresonanz tritt ein Dublett (durch $^{31}P-^{1}H$ -Kopplung) aus Septetts (durch $^{19}F-^{1}H$ -Wechselwirkung) auf $[\tau_H=7,21$ ppm, J(PH)=186,0 Hz; $^{4}J(FH)=0,45$ Hz]. Das ^{19}F -Spektrum enthält ein Dublett $[^{3}J(PF)=5,25$ Hz] aus Tripletts $[^{4}J(FH)=0,46$ Hz; $\Phi_F=47,7$ ppm]. Im ^{31}P -Spektrum findet sich erwartungsgemäß nur eine Signalgruppe $[\delta=204$ ppm]. Die ^{31}P -Resonanz ist durch die zwei benachbarten Protonen in ein Triplett aufgespalten [J(PH)=184,0 Hz], wobei jede Linie bei höherer Auflösung Septettstruktur

zeigt $\lceil {}^{3}J(\text{FP}) = 5.3 \text{ Hz} \rceil$.

(CF₃)₂PPH₂ und (CF₃)₂AsPH₂ sind farblose, leicht bewegliche Flüssigkeiten, die an der Luft rasch oxidiert

Die ³¹P-Spektren wurden bei 27 °C mit Hilfe des KMR-Spektrometers HFX 90 der Fa. Brucker Physik aufgenommen. Wir danken Herrn Prof. Dr. G. FRITZ für die Mög-

werden. Auch bei Raumtemperatur unter Luftausschluß sind die Verbindungen nicht beständig. Sie zersetzen sich langsam unter Abscheidung eines orangeroten Feststoffes nach Gl. (8).

$$(CF_3)_2EPH_2 \rightarrow (CF_3)_2EH + \frac{1}{r}(PH)_x^4 (E=P, As).$$
 (8)

Die Zerfallsreaktion erfolgt für E=As sogar schon bei -25°C, während die Verbindung mit E=P bei dieser Temperatur keine Zersetzungserscheinungen zeigt. Reaktion (8) wurde durch Kernresonanzuntersuchung [Nachweis der Zunahme von $(CF_3)_2EH$ auf Kosten von $(CF_3)_2EPH_2$] und Analyse des orangeroten Feststoffs auf Phosphor sichergestellt.

Versuche, durch analoge Umsetzung von $(CH_3)_3MPH_2$ (M=Si,Sn) mit $(CH_3)_2PCl$ das entspechende unsymmetrische Dimethyldiphosphin $(CH_3)_2PPH_2$ darzustellen, waren bisher ohne Erfolg. In den nach Erwärmen auf Raumtemperatur erhaltenen Reaktionsgemischen wurden folgende Verbindungen nachgewiesen:

Für
$$M = Si$$
:
 $(CH_3)_2PH$, $(CH_3)_3SiCl$, PH_3 , $(PH)_x$ und $[(CH_3)_2PH_2]Cl$;

für
$$M=Sn$$
:
 $(CH_3)_2PH$, $(CH_3)_3SnCl$, $(CH_3)_3SnCl \cdot PH$ $(CH_3)_2$, $(PH)_x$.

Die Bildung des Dimethylphosphins als Hauptprodukt neben $(CH_3)_3MCl$ (M=Si oder Sn) und das Auftreten von $(PH)_x$ lassen sich am einfachsten durch Annahme der instabilen Zwischenverbindung $(CH_3)_2PPH_2$ deuten. Die $(CF_3)_2EPH_2$ -Verbindungen besitzen also eine beträchtlich höhere Stabilität als das $(CH_3)_2PPH_2$.

Das hier zum ersten Mal eindeutig charakterisierte Diphosphin (CF₃)₂PPH₂ wurde von HARRIS ⁵ als Zwischenstufe bei der Umsetzung von (CF₃)₂PJ mit PH₃, die zur Bildung von (CF₃)₂PH führt, postuliert. Ein den synthetisierten Verbindungen analoges Diphosphin F₂PPH₂ wurde vor kurzem von RUDOLPH und SCHILLER ⁶ bei der Reaktion von P₂F₄ mit PH₃ isoliert. Doch enthält die Notiz keine Angaben über seine Stabilität.

lichkeit zur Benutzung der Geräte, Herrn Domnick für die Aufnahme der Spektren.

- ⁴ J. R. VAN WAZER, Phosphorus and its Compounds, Vol. 1, S. 215 ff., Interscience, New York 1964.
- ⁵ G. S. HARRIS, J. chem. Soc. [London] 1958, 512.
- ⁶ R. W. Rudolph u. H. W. Schiller, J. Amer. chem. Soc. 90, 3581 [1968].

 $^{^3}$ $^1\mathrm{H}\text{--}$ und $^{19}\mathrm{F}\text{--}$ Spektren wurden bei -25 $^{\circ}\mathrm{C}$ mit Hilfe eines Varian A56/60 KMR-Spektrometers registriert. Die chemischen Verschiebungen (τ_{H} bzw. $\varPhi_{\mathrm{F}})$ sind auf TMS bzw. CCl $_3\mathrm{F}$ (äußerer Standard) bezogen.