## Infrared Spectroscopic Studies of Calcium Sulphate heated to High Temperatures

JOHN BENSTED and SATYA PRAKASH VARMA

Associated Portland Cement Manufacturers Limited, Research Laboratories, London Road, Greenhithe, Kent, England

(Z. Naturforsch. 26 b, 690-693 [1971]; received March 29, 1971)

Infrared spectroscopic investigations have shown that on the basis of changes in the  $v_3$ , SO<sub>4</sub> band which occur when calcium sulphate is heated from 400° to 1400°C, there are two forms of insoluble anhydrite, designated as  $\beta'$ - and  $\beta$ -CaSO<sub>4</sub>.  $\beta'$ -CaSO<sub>4</sub> is metastable and is completely converted into  $\beta$ -CaSO<sub>4</sub> by heating above 1000°C. With longer heating periods this conversion can even take place at lower temperatures.  $\beta$ -CaSO<sub>4</sub> is stable and is of the same type as the naturally occurring form of anhydrite.

Several forms of calcium sulphate have been recognised within the system  $CaSO_4 - H_2O^{1,2}$ , viz. gypsum  $(CaSO_4 \cdot 2 H_2O)$ , hemihydrate  $(CaSO_4 \cdot 2 H_2O)$ , soluble anhydrite  $(\gamma \cdot CaSO_4)$ , insoluble anhydrite  $(\beta \cdot CaSO_4)$  and high temperature anhydrite  $(\alpha \cdot CaSO_4)$ . Hemihydrate and soluble anhydrite have both been reported to exist in two forms, the socalled  $\alpha$ - and  $\beta$ -varieties 1. (These  $\alpha$ - and  $\beta$ -forms should not be confused with  $\beta \cdot CaSO_4$  and  $\alpha \cdot CaSO_4$ , which refer to insoluble and high temperature anhydrite respectively.) The existence of  $\alpha \cdot CaSO_4$  above  $1200^\circ$  has been mentioned  $2^{-5}$ , but some workers have cast doubt upon its existence 6, 7.

In previous work on the dehydration of  $CaSO_4$ ·  $2~H_2O$  different infrared absorption spectra were obtained for gypsum, hemihydrate, soluble anhydrite and insoluble anhydrite; no noteworthy spectral differences were obtained between the so called  $\alpha$ -and  $\beta$ -forms of hemihydrate or soluble anhydrite  $^8$ . This showed that there are no significant structural differences between the respectively  $\alpha$ - and  $\beta$ -forms. Small differences in properties as may arise can be attributed to differences in the surface areas  $^9$ ,  $^{10}$ .

The infrared spectra of  $\gamma$ -CaSO<sub>4</sub> and CaSO<sub>4</sub> ·  $\frac{1}{2}$  H<sub>2</sub>O have shown strong similarities in their SO<sub>4</sub> bands <sup>8</sup>.

 $\gamma\text{-CaSO}_4$  is essentially a dehydrated hemihydrate, since it is basically a hemihydrate lattice from which the  $H_2O$  molecules have been removed. The hemihydrate structure is open and includes channels through which water molecules can migrate; certain sites are more energetically favourable for their retention; when these sites are all occupied, the formula of hemihydrate  $\text{CaSO}_4 \cdot \frac{1}{2} H_2O$  is achieved  $^{11}$ . It is the removal of this water from the channels in the hemihydrate lattice that gives rise to the  $\gamma\text{-CaSO}_4$  structure.  $\gamma\text{-CaSO}_4$  is usually associated with up to 0.9%  $H_2O$  in practice  $^{12}$ , and readily rehydrates back to the hemihydrate.

As a continuation of these studies, the infrared spectra of  $CaSO_4$  have been investigated further, after heating the samples from  $400\,^{\circ}C$  to  $1400\,^{\circ}C$ .

## **Experimental**

Various samples of A.R. CaSO<sub>4</sub>·2 H<sub>2</sub>O (obtained from British Drug Houses Limited, Poole, Dorset) were heated at constant temperature within the range 400 –

Reprint requests to Dr. J. Bensted, Associated Portland Cement Manufacturers Limited, Research Laboratories, London Road, *Greenhithe*, Kent, England.

<sup>1</sup> K. K. Kelley, J. C. Southard, and C. T. Anderson, U.S. Bur. of Mines Tech. Paper No. 625 [1941].

- O. W. Flörke, Neues Jahrbuch für Mineralogie, Abh., 84
   (2), 189 [1951]; Naturwissenschaften 39, 478 [1952].
- <sup>3</sup> W. Grahmann, Z. anorg. Chem. **81**, 257 [1913].
- M. MASUDA, Proc. Imp. Acad. [Tokyo] 8, 436 [1932].
   W. GUTT and M. A. SMITH, Trans. Brit. Ceram. Soc. 66, 337 [1967].
- <sup>6</sup> W. A. DEER, R. A. HOWIE, and J. ZUSSMAN, "Rock Forming Minerals, Vol. V, Non-Silicates", Longmans, Green & Co., London 1962.
- P. GAY, Mineral. Mag. J. mineralog. Soc. 35, 354 [1965].
   J. BENSTED and S. PRAKASH, Nature [London] 219,
- (5149); **60** [1968].

  A. KRUIS and H. SPÄTH, Tonind.-Ztg. **75**, 347, 395 [1951].
- 10 J.Bensted and S. Prakash Varma, unpublished results.
- <sup>11</sup> O. P. MTSCHEDLOW-PETROSSIAN and F. G. BERSCHADSKI, Silikattechnik 18, (5), 147 [1967].
- <sup>12</sup> H. E. Schwiete and A. N. Knauf, "Gips Alte und neue Erkenntnisse in der Herstellung und Anwendung der Gipse", Merziger Druckerei und Verlags-GmbH., Merzig 1969.

 $1400\,^{\circ} C$  in a muffle furnace for intervals of time between 1 and 6 hours. Immediately after cooling the samples in a desiccator, the infrared spectra were recorded on a Unicam SP200 G spectrophotometer in the region  $650-4000\,\mathrm{cm^{-1}}$ , using both KBr discs and Nujol mulls. These specimens were also examined by X-ray diffraction on a Philips' diffractometer using the CuK\_{\alpha} line. Some of the samples were checked by DTA and refractive index measurements.

## Results and Discussions

In Fig. 1, the infrared spectra of  $CaSO_4$  samples heated from  $400\,^{\circ}\text{C}$  to  $1400\,^{\circ}\text{C}$  at intervals of  $100\,^{\circ}\text{C}$  and recorded as Nujol mulls have been reproduced in the region  $1000-1250\,\text{cm}^{-1}$ . It can be seen that the  $\nu_3$ ,  $SO_4$  vibration shows different behaviour in the spectra of the samples heated from  $400^{\circ}$  to  $1300\,^{\circ}\text{C}$ . Two types of band structure are evident. In one case splitting is shown with maxima at 1095 and  $1158\,\text{cm}^{-1}$ . The characteristic contour of this band remains dominant in the spectra of the samples heated from  $400^{\circ}$  up to  $600\,^{\circ}\text{C}$  (Figs. 1A, 1B and 1C). For the samples heated to

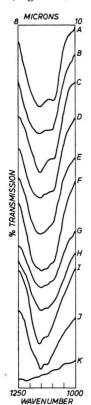



Fig. 1. Infrared Spectra of  $CaSO_4$  heated to  $A-400\,^{\circ}C$ ,  $B-500\,^{\circ}C$ ,  $C-600\,^{\circ}C$ ,  $D-700\,^{\circ}C$ ,  $E-800\,^{\circ}C$ ,  $F-900\,^{\circ}C$ ,  $G-1000\,^{\circ}C$ ,  $H-1100\,^{\circ}C$ ,  $I-1200\,^{\circ}C$ ,  $J-1300\,^{\circ}C$ ,  $K-1400\,^{\circ}C$ , as Nujol mulls in the region  $1000-1250\,$  cm $^{-1}$ .

P. GAUBERT, Bull. Soc. franç. Minéralog. 57, 252 [1934].
 A. DUBUISSON, Rev. Matér. Construct. Trav. publ. 418, 228; 419, 259; 420, 282; 421, 313 [1950].

 $700^{\circ}$ ,  $800^{\circ}$ ,  $900^{\circ}$  and  $1000^{\circ}$ C, the details within the band are lost (curves D, E, F and G in Fig. 1). With the samples heated to  $1100^{\circ}$ C, however, a different pattern with the  $\nu_3$ ,  $SO_4$  band appears. The shape of this band becomes quite distinct and remains the same in the specimen heated to 1200 and  $1300^{\circ}$ C. The values of the two frequencies are  $1130~{\rm cm}^{-1}$  and  $1158~{\rm cm}^{-1}$ . A lack of band structure in the sample heated to  $1400^{\circ}$  is indicative of decomposition of the calcium sulphate having been fully effected:  ${\rm CaSO}_4 \rightarrow {\rm CaO} + {\rm SO}_3$ . A slight decomposition was also possible in the samples heated to  $1300^{\circ}$ C and to a much lesser degree in those at  $1200^{\circ}$ C.

The above spectral features can be explained on the basis of slight modifications occurring in the molecular structure of  $SO_4^{2\Theta}$  ions within the calcium sulphate lattice with temperature rise from  $400^{\circ}$  to  $1300^{\circ}$ C. One type of modification remains dominant between  $400^{\circ}$  and  $600^{\circ}$ C (referred to as  $\beta'$ -CaSO<sub>4</sub>), whilst the other starts forming at  $700^{\circ}$  and the formation is complete above  $1000^{\circ}$ C,  $(\beta$ -CaSO<sub>4</sub>) depending upon the time of heating; the longer this is, the lower the temperature at which the spectral features of the high temperature form become clear. There are no specific temperatures corresponding to a rapid interconversion of the two forms. Around  $700^{\circ} - 1000^{\circ}$ C, mixtures of these two forms can arise.

Such detection of two modifications of insoluble anhydrite by infrared spectroscopy seems to confirm the postulation by Gaubert <sup>13</sup> and Dubuisson <sup>14</sup> of two forms of this anhydrite. The modification  $\beta'$ -CaSO<sub>4</sub> appears to be metastable, since it slowly converts to the  $\beta$ -form with time. Also, the conversion has been observed under pressure whilst preparing the KBr discs for infrared measurements. This latter modification ( $\beta$ -CaSO<sub>4</sub>) is stable and the same variety exists as the naturally occurring anhydrite, which is a well known mineral <sup>15</sup>.

The infrared spectral data of  $\beta$ - and  $\beta'$ -CaSO<sub>4</sub> are given in Table I along with those of  $\gamma$ -CaSO<sub>4</sub>, hemihydrate and gypsum for comparison purposes.

X-ray diffraction studies showed that there is a net increase in the sharpness of the d-lines with the samples heated from  $400^{\circ}$  to  $1300^{\circ}$ C, although

<sup>&</sup>lt;sup>15</sup> P. RAMDOHR and H. STRUNZ, "Klockmanns Lehrbuch der Mineralogie", 15. Aufl., Ferdinand Enke-Verlag, Stuttgart 1967.

|                   | te Insoluble Anhydrite<br>(Low Temperature<br>Form) | Soluble<br>Anhydrite                              | Hemihydrate                                        | Gypsum                                                   | Tentative<br>Assignments                                                                              |
|-------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 675 s             | 673 s<br>1012 vw                                    | 665 s<br>1008 vw\<br>1012 vw{                     | 660 s<br>1008 m                                    | 667 s<br>1004 vw                                         | $v_4$ , $SO_4$<br>$v_1$ , $SO_4$                                                                      |
| 1130 s<br>1158 vs | 1095 s<br>1158 vs                                   | 1092 s<br>1115 s<br>1135 sh<br>1155 vs<br>1168 sh | 1094  s $1115  s$ $1135  sh$ $1155  vs$ $1168  sh$ | $1120 \text{ vs} \\ 1145 \text{ vs} \\ 1155 \text{ sh} $ | $v_3$ , SO <sub>4</sub>                                                                               |
|                   |                                                     | 1100 Sil /                                        | 1623 s<br>2030 vw<br>2090 vw)                      | 1623 s<br>1688 m                                         | $egin{aligned} v_2, \mathrm{H}_2\mathrm{O} \ &2	imes v_1, \mathrm{SO}_4 \end{aligned}$                |
| 2130 vw           | 2130  vw                                            | 2150  vw                                          | 2130  vw                                           | 2130 w                                                   | $v_1 + v_3$ , SO <sub>4</sub>                                                                         |
| 2230 vw           | $2230~\mathrm{vw}$                                  | 2230  vw                                          | $2220~\mathrm{vw}$                                 | $2230 \text{ vw} \ 3245 \text{ vw} \ 3410 \text{ s}$     | $2	imes  u_3,  { m SO}_4 \ 2	imes  u_2,  { m H}_2{ m O},   u_3{ m H}_2{ m V} \  u_1,  { m H}_2{ m O}$ |
|                   |                                                     |                                                   | $3560 \mathrm{\ m}$ $3615 \mathrm{\ s}$            | 3500 w<br>3555 m                                         | $v_1, H_2O  v_3, H_2O$                                                                                |

Table I. Infrared spectral data for the various forms of calcium sulphate. vw = very weak, w = weak, m = medium, vs = very strong, s = strong, sh = shoulder.

the values of the d-spacings were found to be similar in all cases. This was interpreted as indicating that the differences betwee the two types of insoluble anhydrite,  $\beta'$ - and  $\beta\text{-CaSO}_4$ , are a second order effect i. e., the basic orthorhombic lattice is present in both forms and the differences appear to be due to different stacking arrangements within the crystal lattice. Such changes could account for the differences observed in the infrared spectral data. The conversion might be instigated by slight decomposition ( $\sim 1\%$  or less) of some anhydrite into calcium oxide. With the conversion of  $\beta' \to \beta\text{-CaSO}_4$  the specimen becomes progressively more crystalline with rise in temperature.

Optical microscopic measurements also supported the above view. A typical sample heated in the range 400° to 600°C consisted of long laths and had moderate birefringence and shadowy extinction, the refractive index lying between 1.54 and 1.56. The sample looked like a dehydrated gypsum. Another specimen heated to 1200°C was shown to consist of irregular globular birefringent crystals. The refractive index in this case lay between 1.57 and 1.61, similar to natural anhydrite <sup>15</sup>. These crystals resembled those of natural anhydrite.

DTA studies were performed on a Stanton's Standata 6-25 differential thermoanalyser, and revealed a continuously increasing slope of the base line up to  $1200\,^{\circ}\text{C}$  after the formation of the exotherm at  $350\,^{\circ}\text{C}$  due to the conversion of soluble anhydrite

 $(\gamma\text{-CaSO}_4)$  into insoluble anhydrite. A sharp endotherm was obtained at 1222 °C, owing to the formation of high temperature anhydrite ( $\alpha\text{-CaSO}_4$ ). A broad endotherm above 1400 °C represented the melting point of CaSO<sub>4</sub>. Upon cooling, exotherms

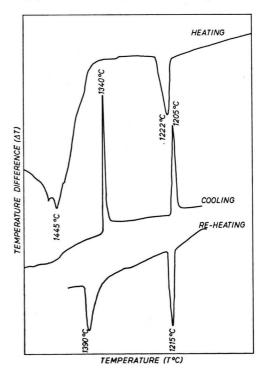



Fig. 2. DTA curves of calcium sulphate at high temperature obtained upon heating, cooling and re-heating, respectively.

were obtained at about 1340 °C and 1205 °C, corresponding to the formation, with some hysteresis, of  $\alpha$ -CaSO<sub>4</sub> from its constituent oxides and the inversion of  $\alpha$ - to  $\beta$ -CaSO<sub>4</sub>, respectively. Upon reheating the sample, endotherms at 1215 °C and 1390 °C were obtained, corresponding, respectively, to the  $\beta$ - to  $\alpha$ -CaSO<sub>4</sub> inversion and the decomposition of  $\alpha$ -CaSO<sub>4</sub>:

$$CaSO_4 \gtrsim CaO + SO_3$$
.

The above DTA curves are shown in Fig. 2.

In order to ascertain that the endotherm just above 1200 °C was due to  $\alpha\text{-CaSO}_4$  and not to the formation of a high temperature modification of insoluble anhydrite stable at room temperature, some anhydrite, which had been heated to 1300 °C and quenched was examined by DTA. A similar endotherm was again obtained, suggesting that  $\alpha\text{-CaSO}_4$  is stable only at high temperatures greater than about 1215 °C and converts to  $\beta\text{-CaSO}_4$  upon cooling. These studies thus confirm that  $\alpha\text{-CaSO}_4$  (high temperature anhydrite) could not be stabilized below 1200 °C by quenching and that this modification should not be confused with  $\beta\text{-}$  and  $\beta'\text{-CaSO}_4$ .

The following scheme summarizes the reactions that take place upon heating  $\gamma$ -CaSO<sub>4</sub> (soluble anhydrite) from 400° to 1300 °C.

$$\begin{array}{c} \gamma\text{-} \bigvee \begin{array}{c} \text{CaSO}_4 \\ 400^{\circ}-600 \ ^{\circ}\text{C} \end{array} \\ \beta'\text{-} \bigvee \begin{array}{c} \text{CaSO}_4 \ \text{(metastable state)} \\ 700^{\circ}-1200 \ ^{\circ}\text{C} \end{array}$$

$$\beta - \bigvee_{1215} \text{CaSO}_4 \text{ (natural anhydrite)}$$

$$\alpha - \bigvee_{1400} \text{CaSO}_4 *$$

$$- \bigvee_{1400} \text{on cooling}$$

$$\alpha - \bigvee_{1400} \text{CaSO}_4 *$$

$$- \bigvee_{1400} \text{CaSO}_4 *$$

$$- \bigvee_{1400} \text{CaSO}_4 *$$

$$- \bigvee_{1400} \text{CaSO}_4 *$$

## Conclusion

Infrared spectral studies of calcium sulphate after heating from 400° to 1400°C show that there appear to be two types of insoluble anhydrite. The low temperature variety ( $\beta'\text{-CaSO}_4$ ) formed between 400° and 600°C is a metastable form which converts into the high temperature variety ( $\beta\text{-CaSO}_4$ ) either by heating between 700° and 1300°C depending on the time of heating, or upon standing for several months.  $\beta\text{-CaSO}_4$  is more crystalline and is stable, it is the same type as natural anhydrite. The two forms  $\beta'\text{-}$  and  $\beta\text{-CaSO}_4$  differ considerably from monoclinic  $\alpha\text{-CaSO}_4$ , which is stable only above 1200°C.

We are obliged to Mr. H. W. W. POLLITT, Dr. R. J. MURRAY and Mr. A. W. Brown of the Associated Portland Cement Manufacturers Limited for their keen interest in this work and also for permission to publish this paper.

<sup>\*</sup> Only stable at high temperatures.