1262 NOTIZEN

Über Hochdruckphasen des CuInSe₂ und AgInSe₂ mit dichter Zinkblendestruktur

K.-J. RANGE, J. ENGELS und ARMIN WEISS
Institut für Anorganische Chemie der Universität München
(Z. Naturforschg. 23 b, 1262—1263 [1968]; eingegangen am 9. April 1968)

CuInTe₂ und AgInTe₂ gehen bei Drucken über 30 bzw. 10 kbar aus der Chalkopyritstruktur mit tetraedrischer Koordination in die NaCl-Struktur mit oktaedrischer Koordination über ¹. Ähnliche Phasenumwandlungen haben wir auch für die gleichfalls im Chalkopyritgitter kristallisierenden Verbindungen CuInSe₂ und AgInSe₂ erwartet ².

Bei etwa 40 kbar bilden sich tatsächlich neue Hochdruckphasen mit einfachen Röntgendiagrammen, die sich kubisch flächenzentriert indizieren lassen. Der Gang der Intensitäten stimmt jedoch nicht mit dem NaCl-Typ überein und deutet auf eine Zinkblende-ähnliche Struktur (Tabn. 1 und 2).

Die Stabilität dieser Phasen bei Normaldruck und Zimmertemperatur ist sehr gering. CuInSe₂·II wandelt sich schon nach wenigen Stdn., AgInSe₂·II nach wenigen Tagen in eine andere, neue Modifikation mit Zinkblendestruktur um. Die Dichten dieser Zinkblendephasen sind denen der Ausgangsverbindungen mit Chalkopyritstruktur sehr ähnlich und um etwa 10% niedriger als die der Hochdruckformen (Tab. 3). Aus diesem Grunde wird die Struktur der Hochdruckformen als "dichte Zinkblendestruktur" bezeichnet.

Diese Bezeichnung "dichte Zinkblendestruktur" ist problematisch. Sie soll nur ausdrücken, daß sich die beobachteten Intensitäten am besten mit der gleichen Atomanordnung deuten lassen, wie sie in der normalen Zinkblendestruktur vorliegt. Da im vorliegenden Fall aus der Hochdruckphase die weniger dicht gepackte normale Zinkblendestruktur entsteht, erhebt sich die Frage, warum bei hohen Drucken die gleiche Struktur mit dichterer Packung (um etwa 2-3% verkürzte Bindungslängen Me-Se) auftritt. Man könnte vermuten, daß

hkl	CuInSe ₂ —II				CuInSe,—III				
	$\sin^2 artheta_{ ext{beob.}}$	$\sin^2 artheta_{ ext{ber.}}$	$\mid ilde{F} \mid_{ ext{beob}}.$	F für NaCl- Typ	ber. für Zink- blende- Typ	$\sin^2 artheta_{ m beob}$.	$\sin^2 artheta_{ m ber}$.	F _{beob} .	$ F _{ m ber.}$ für Zink- blende- Typ
111	0,0574	0,0573	168	10	182	0,0519	0,0519	168	186
200	_	0,0763	<15	250	10	_	0,0692	<16	10
220	0,1522	0,1527	237	220	220	0,1381	0,1384	241	227
311	0,2101	0,2099	158	10	147	0,1910	0,1904	166	150
222	-	0,2290	< 25	200	10	_	0,2077	$<\!24$	10
400	0,3060	0,3054	159	178	178	0,2783	0,2769	178	194
331	0,3635	0,3626	124	8	122	0,3281	0,3288	132	125
420	_	0,3817	< 20	180	9	_	0,2461	< 20	9
422	0,4570	0,4581	186	173	173	0,4161	0,4153	200	177
$\begin{bmatrix} 511 \\ 333 \end{bmatrix}$	0,5152	0,5153	208	16	238	0,4685	0,4673	215	242

Tab. 1. Röntgenographische Daten der neuen Phasen von CuInSe,

hkl	$\sin^2 artheta_{ m beob}.$	$^{ m Agl}_{ m sin^2} artheta_{ m ber}.$	$\frac{\text{InSe}_2 - \text{II}}{ F _{\text{beob.}}}$	F für NaCl- Typ	ber. für Zink- blende-	$\sin^2 artheta_{ m beob}$.	$rac{ ext{AgInSe}_2 ext{-}}{\sin^2artheta_{ ext{ber.}}}$	$-III$ $ F _{\text{beob.}}$	F _{ber.} für Zink- blende-
				170	Тур				Тур
111	0,0525	0,0526	212	42	209	0,0485	0,0485	217	213
200	_	0,0702	<31	284	42	-	0,0647	<35	42
220	0,1400	0,1404	268	255	255	0,1301	0,1295	272	260
311	0,1935	0,1930	192	38	171	0,1787	0,1780	203	175
222	_	0,2105	< 50	231	37	_	0,1942	< 50	39
400	0,2808	0,2807	202	218	218	0,2599	0,2589	205	224
331	0,3339	0,3334	158	33	143	0,3069	0,3075	160	145
420	_	0,3509	<30	198	33	—	0,3237	<30	33
422	0,4218	0,4211	222	199	200	0.3887	0,3884	228	204
$\left. \begin{array}{c} 511 \\ 333 \end{array} \right\}$	0,4752	0,4737	295	65	280	0,4355	0,4369	310	290

Tab. 2. Röntgenographische Daten der neuen Phasen von AgInSe,

¹ K.-J. Range, G. Engert, J. Engels u. A. Weiss, Z. Naturforschg. 23 b, 1008 [1968].

² H. Hahn, G. Frank, W. Klingler, A. Meyer u. G. Störger, Z. anorg. allg. Chem. 271, 153 [1953].

NOTIZEN 1263

		CuInSe ₂	AgInSe ₂
Chalkopyrit- struktur (I)	Gitterkonstanten [Å] Dichte ϱ_x $[g \cdot cm^{-3}]$	a = 5,79 $c = 11,57$ $5,79$	a = 6,10 $c = 11,69$ $5,82$
"dichte Zinkblende- struktur" (II)	Gitterkonstanten [Å] Dichte ϱ_x $[g \cdot cm^{-3}]$	a = 5,58 $6,42$	a = 5,82 $6,43$
normale Zinkblende- struktur (III)	Gitterkonstanten [Å] Dichte ϱ_x $[g \cdot cm^{-3}]$	a = 5,86 5,55	a = 6,06 5,68

Tab. 3. Röntgenographische Daten der verschiedenen Phasen von $CuInSe_2$ und $AgInSe_2$.

ein Teil der Kationen in Oktaederlücken eintritt. Bei der teilweisen Besetzung der oktaedrischen Lücken müßten die Interferenzen 200, 222 und 420 intensiver werden. Da diese Interferenzen aber nicht beobachtet wurden, läßt sich eine Besetzung von mehr als ca. 8% mit Sicherheit ausschließen. Für eine endgültige Klärung versuchen wir, größere Kristalle der neuen Phase zu erhalten.

Die ursprünglichen Chalkopyritphasen werden erst nach einer Temperung bei 350° zurückerhalten. Die Umwandlungen laufen also nach folgendem Schema ab:

Chalkopyritstruktur $\stackrel{40-45 \text{ kbar}}{_{400 \text{ °C}}}$, dichte Zinkblendestruktur"

In den Phasen II und III sind die Kationen statistisch auf die Tetraederplätze verteilt. Ob diese Verteilung in der Phase III bei Raumtemperatur thermodynamisch stabil ist, oder ob die Einstellung der geordneten Verteilung nur kinetisch gehemmt ist, läßt sich noch nicht entscheiden.

Eine Phase mit normaler Zinkblendestruktur entsteht nach Storm et al. 3 auch nach der Druckbehandlung von ZnGeAs₂, das bei Atmosphärendruck ebenfalls im Chalkopyritgitter kristallisiert. Die Autoren führen den Übergang Ordnung—Unordnung auf das intermediäre Auftreten einer Schmelze zurück. Unsere Ergebnisse legen die Vermutung nahe, daß auch hier als Zwischenstufe eine Hochdruckphase mit statistischer Kationenverteilung entsteht. Während bei ZnGeAs₂ die Zinkblende- und die Chalkokyritphase praktisch gleiche Dichte haben, ist beim CuInSe₂ und AgInSe₂ die Chalkopyritphase jeweils etwas dichter als die Phase mit normaler Zinkblendestruktur.

Der Deutschen Forschungsgemeinschaft danken wir für die Gewährung einer Sachbeihilfe, dem Leibniz-Rechenzentrum der Bayr. Akademie der Wissenschaften für die Bereitstellung von Rechenzeit.

³ A. R. Storm, A. Javaraman u. J. H. Wernick, J. Phys. Chem. Solids 29, 623 [1968].