Über Pentafluorphenyl-Verbindungen der V. Hauptgruppe V 1

Infrarotspektroskopische Untersuchungen an Pentaflourphenylphosphor-Verbindungen

M. FILD, I. HOLLENBERG und O. GLEMSER

Anorganisch-Chemisches Institut der Universität Göttingen

(Z. Naturforschg. 22 b, 248-253 [1967]; eingegangen am 16. September 1966)

Die IR-Spektren der Verbindungen $C_6F_5PX_2$ (X = H, CH_3 , Cl, Br), Tris (pentafluorphenyl)-phosphin und Tris (pentafluorphenyl) phosphinoxyd im Bereich $4000 > \nu \, (\mathrm{cm}^{-1}) > 300$ werden mitgeteilt und nach Gruppenfrequenzen zugeordnet.

Der Frequenzgang der PO-Valenzschwingung in der Reihe $R_n(C_6F_5)_{3-n}PO$ (R = CH_3 , C_2H_5 , C_6H_5) wird eingehend diskutiert.

Während über Ultrarot- und Raman-Spektren von Phenylderivaten des Phosphors eine große Anzahl von Publikationen vorliegen, sind von Pentafluorphenyl-Verbindungen der V. Hauptgruppe bisher keine Untersuchungen bekannt.

Die Schwingungsspektren von Hexafluorbenzol und einige seiner Derivate wie C_6F_5H , C_6F_5D , C_6F_5Cl , C_6F_5Br und C_6F_5J sind erst kürzlich vermessen und interpretiert worden $^{2-6}$. Mit der Annahme, daß die Verbindungen C_6F_5-X planar gebaut und ihnen die Symmetrie C_{2v} zukommt, berechneten Long und Steele ⁴ die Lage der "in-plane"-Schwingungen nach einem Valenzkraftsystem unter Benutzung der Kraftkonstanten des C_6F_6 und entsprechender Berücksichtigung der Massen der Substituenten.

Die Übereinstimmung der berechneten mit den beobachteten Werten war zufriedenstellend.

Diese Zuordnung wurde durch Hyams und Mitarbb. 6 bestätigt und durch die Angabe der "out-ofplane"-Schwingungen für C₆F₅Cl, C₆F₅Br und C₆F₅J vervollständigt.

Die hier betrachteten Moleküle des Typs C₆F₅PX₂ (X=H, Cl, CH₃ und Br) haben C_s-Symmetrie. Zur Vereinfachung und vergleichenden Diskussion mit Pentafluorphenylhalogeniden sollen die Schwingungen der C₆F₅-P-Gruppierung, welcher C_{2v}-Symmetrie zukommt, gesondert betrachtet werden (unter der Annahme geringer Kopplungen zwischen den

Teilsystemen). Die Grundschwingungen der Gruppe C_6F_5-P klassifizieren sich dann wie folgt nach den Symmetrierassen von $C_{2\nu}$

$$C_{2v} = 11 A_1(IR, R) + 3 A_2(R) + 10 B_1(IR, R) + 6 B_2(IR, R)$$

Die restlichen Schwingungen der Moleküle C₆F₅PX₂ lassen sich dann der Gruppierung CPX₂ mit C_s-Symmetrie zuordnen. Diese klassifizieren sich nach

$$C_8 = 4 A + 2 A'$$

Hierbei ist die P-C-Valenzschwingung, die bei C_6F_5-P in A_1 und bei CPX_2 in A' fällt, doppelt gezählt. Die fehlende Schwingung ist eine Torsionsschwingung um die P-C-Achse. Im Falle der Methylverbindung treten zusätzlich die inneren Schwingungen der CH_3 -Gruppen auf.

Die Frequenzen und Intensitäten sind in der Tab. 1 zusammengestellt und den Gruppenfrequenzen zugeordnet. Für Aussagen über Bindungsverhältnisse im Molekül ist die Lage der P-C- und der P-X-Absorptionen entscheidend. Zur Diskussion wurden Vergleiche mit den Bandenlagen von Derivaten des Typs $C_6H_5PX_2$ durchgeführt, die von Goubeau und Langhard und untersucht worden sind.

In den Halogen-Derivaten C_6F_5X liegen die fünf höchsten Schwingungen der Rasse A_1 bei 1640, 1520, 1430, 1300 und 1100 cm^{-1} . Sie zeigen nur geringen Masseneffekt. In den Phosphorverbindungen erhalten wir die erste Absorption zwischen 1648

¹ IV. Mitt.: M. Fild, O. Glemser u. I. Hollenberg, Z. Naturforschg. 21 b, 920 [1966].

² D. Steele u. D. H. Whiffen, Trans. Faraday Soc. 55, 369 [1959].

³ D. Stelle u. D. H Whiffen, Spectrochim. Acta [London] 16, 368 [1960].

⁴ D. A. Long u. D. Steele, Spectrochim. Acta [London] 19, 1947 [1963].

⁵ D. A. Long u. D. Steele, Spectrochim. Acta [London] 19, 1955 [1963].

⁶ I. J. Hyams, E. R. Lippincott u. R. T. Bailey, Spectrochim. Acta [London] 22, 695 [1966].

⁷ J. Goubeau u. D. Langhardt, Z. anorg. allg. Chem. 338, 163 [1965].

$C_6F_5PH_2$	$C_6F_5P(CH_3)_2$	$\mathrm{C_6F_5PCl_2}$	$C_6F_5PBr_2$	Zuordnung
	2975 m			1)
	2900 m			ν CH ₃
	2820 m			J
2350 sch				$v PH_2$
2325 m				J 1112
1988 ss	1976 s, b	1991 ss	1992 ss	
1799 ss	1800 ss	1802 ss	1800 ss	Kombinations-
1730 ss	1720 s	1740 s	1740 s	schwingungen
1675 s	1660 sch	1675 s	1680 s	(0.0)
1648 sst	1642 sst	1645 sst	1644 sst	$\omega(C-C)$
1630 m	1630 m	1600 m	1591 m	Trl.
1590 s	1585 m	1585 m	1580 s	Kombinations-
1565 ss	15401	1550	$\frac{1565 \text{ ss}}{1550 \text{ sch}}$	schwingungen
1545 sch 1515 sst	1548 sch 1512 sst	$1550 ext{ sch}$ $1515 ext{ sst}$	1516 sst	$\omega(C-C)$
1493 sch	1312 SSU	1495)		$\omega(C-C)$
1495 sch 1485 sst	1475 agt h	$\frac{1495}{1485}$ sst $\}$	1495	$\omega(C-C)$
1469 SSU	1475 sst, b	1473	$1485 \}$ sst $1472 \}$	$\omega(C-C)$
	1430	1475	1472)	& (CH-)
	1450	1425 ss	1415 ss	$\delta_{\mathrm{as}}(\mathrm{CH_3})$
1400 m	1382 st	1390 sst	1390 sst	v(CF)
1370 m	1352 st	1990 880	1360 sst	V(OF)
1325 m	1552 8	1312 ss	1317 s	
1295 st	1301 st	1300 sst	1300 sst	v(CF)
1230 St	1287 st	1000 880	1000 880	$\delta_{\rm s}({ m CH_3})$
1265 ss	1207 50	1265 m	1261 s	$\omega(C-C)$
1200 88	1258 m	1200 III	1201 5	$\delta_{\rm s}({ m CH_3})$
1240 s	1225 ss	1203 ss	1205 ss	08(0113)
1180 s	1170 s	1180 ss	1200 55	
1142 m	1135 m	1150 m	1150 m	v(CF)
	1115 sch	1120 sch	1120 m	, (02)
1093 sst	1090 sst	1098 sst	1098 sst	v(CF)
1068 sch	1050 s	1050 s	1080 m	(3-)
1028 sch				
1008 sst	1015 st	1020 st	1020 m	
988 sst	985 sst	985 sst	984 sst	$\nu(CF)$
	945 m			$\varrho(CH_3)$
			942 s	
			918 s	
	904 st			$\varrho\left(\mathrm{CH_{3}}\right)$
	875 st			$\varrho\left(\mathrm{CH_{3}}\right)$
$865 \mathrm{\ sch}$				
855 sst	826 sst	840 m	850 m	$\nu(PC)$
835 s			840 s	
735 ss		758 m	758 s	No. of the second
722 st, b	726 m	722 st	718 m	$\delta(\mathrm{CF})$
	708 sst			$v_{\rm as}({ m CH_3})$
	668 sst	0.5.5		$v_s(CH_3)$
666 ss	025	662 ss	658 ss	(077)
640 m	628 m	628 m	626 m	$\gamma(CF)$
609 s				10 0
587 m	587 m	586 s	585 m	$\omega(C-C)$
		575 ss	7.10	
555 ss, b		553 s	548 m	
$515 \mathrm{sch}$	700	FOF . 7	504	(OD) (DOI:
$506 \mathrm{\ st}$	503 m	505 sst, b	504 m	$\omega_{\rm x}({\rm CP}), \nu_{\rm s}({\rm PCl})$
440 1	445	449	478 s	S.D.:
440 s, b	445 ss	443 s	445 s	δ -Ring(,,in-plane,,
			416 st	$\nu_{\rm as}({ m PBr})$
		90=	$403 \mathrm{s}$	(DOI)
		387 m	900	$v_{\rm as}({\rm PCl})$
$377 \mathrm{\ st}$		380 m	380 m	$\gamma(CF), \omega_{x}(CP)$?
000		920	351 m	$\nu_{\rm s}({ m PBr})$
$329 \mathrm{\ s}$		328 s	327 s	$\gamma(CF)$
			317 s	
315 m		$309 \mathrm{\ s}$	308 m	$\delta(CF)$

Tab. 1. Schwingungsspektren der Reihe $C_6F_5PX_2$. (ss = sehr schwach, s = schwach, m = mittel, st = stark, sst = sehr stark, sch = Schulter, b = breit.)

und 1642 cm⁻¹, die nächste bei 1485 cm⁻¹. Hierbei handelt es sich um zwei Ringschwingungen.

Die symmetrische CF-Valenzschwingung bei $1426~\rm cm^{-1}$ im C_6F_5Br wird zu $1400~\rm bis~1390~\rm cm^{-1}$ in den Phosphor-Derivaten verschoben. Zwei weitere CF-Absorptionen erscheinen bei $1300~\rm und~1095~\rm cm^{-1}$.

Die Berechnungen von Long und Steele ⁴ ergeben zwei Schwingungen im Bereich von $500-600 \, \mathrm{cm^{-1}}$, eine Ringvalenz- (aus einer A_{1g} im C_6F_6) und eine Ringdeformations-Schwingung (aus einer B_{1u} im C_6F_6). In den hier betrachteten Verbindungen liegt die erste bei 505, die zweite bei 586 cm⁻¹.

Die in dieser Rasse auftretenden CF-Deformations-Schwingungen (zwei) liegen nach den Berechnungen unter 300 cm⁻¹, der unteren Grenze unseres Meßbereichs.

Die verbleibenden Linien, beide Substituenten-abhängig liegen bei 800 und um 380 cm⁻¹. Die höhere ist eindeutig die P-C-Valenzschwingung zwischen 855 und 826 cm⁻¹. Diese Phenyl-Elementschwingung erscheint im $(C_6F_5)_3P$ bei 849 cm⁻¹ und sinkt auf 800 cm⁻¹ im $(C_6F_5)_3As$ bzw. auf 780 cm⁻¹ im $(C_6F_5)_3Sb$ ab, was durch die Zunahme der Masse des Zentralatomes verständlich wird.

Die zweite Bande ist eine Ringdeformation, kann aber nicht eindeutig festgelegt werden. In dieser Gegend liegt noch eine CF-Schwingung ("out-ofplane").

Von den zu erwartenden fünf CF-Valenzabsorptionen treten in der Rasse B_1 beim C_6F_5Br zwei auf. In den $C_6F_5PX_2$ -Derivaten liegt die eine mit Sicherheit bei $1150~\rm cm^{-1}$, während die andere um $1000~\rm cm^{-1}$ erscheint. Im Pentafluorbrombenzol werden zwei Absorptionen an dieser Stelle gefunden. Die Berechnungen ⁴ lassen aber in dieser Region im C_6F_5Br nur eine Grundschwingung zu. Die andere Linie entsteht durch Fermi-Resonanz zwischen dieser Grund- und einer B_1 -Kombinationsschwingung ⁶. Auf Grund von Intensitäts-Betrachtungen geben wir der tieferen in den Phosphorderivaten den Vorzug. Eine Ringschwingung bei $1650~\rm cm^{-1}$ fällt, wie im C_6F_5Br , mit einer A_1 -Grundschwingung zusammen.

Im Hexafluorbenzol haben wir bei 1530 cm⁻¹ eine Ringvalenzabsorption vorliegen. Nach Long und Steele spaltet sie im C₆F₅Br in eine A₁ bei 1520 und eine B₁ bei 1530 cm⁻¹ auf. In der Praxis erhält man meistens nur eine Linie. In den Phosphorverbindungen hingegen beträgt die Aufspaltung

etwa 30 cm⁻¹, so daß wir der höheren bei 1515 cm⁻¹ für die B₁-Komponente den Vorrang geben.

Wie im C_6F_5Br ist die Linie bei $1265~cm^{-1}$ einer Ringschwingung zuzuordnen. Eine Absorption bei $443~cm^{-1}$ im C_6F_6 (E_{2g}) gehört zu einer Ringdeformation. Die B_1 -Komponente zeigt in Derivaten C_6F_5-X die gleiche Lage, so daß wir sie in $C_6F_5PX_2$ ebenfalls dort erwarten.

Die restlichen vier Banden der Rasse B₁ sind Deformations-Schwingungen. Mit Sicherheit lassen sich nur zwei auffinden, und zwar bei 725 und bei 310 cm⁻¹. Die beiden anderen liegen wahrscheinlich unter 300 cm⁻¹.

Von Schwingungen der Rassen B_2 und A_2 wurden zwei Absorptionen bei 630 und 330 cm⁻¹ gefunden, es sind C-F-Deformationsbanden. Die Berechnungen zeigen, daß die verbleibenden Schwingungen unter $300 \, \mathrm{cm}^{-1}$, der unteren Meßgrenze, liegen.

Neben Schwingungen des monosubstituierten Benzolringes sind in der Tab. 1 die Frequenzen der Gruppe PX_2 angegeben. Bei der Zuordnung von ν_s und ν_{as} wurden die Intensitäten mitberücksichtigt und die jeweils stärkste IR-Bande den antisymmetrischen Schwingungen zugeordnet. Beim Pentafluorphenyldimethylphosphin treten dann noch die Schwingungen der CH_3 -Gruppe auf.

Wie Goubeau und Langhardt ⁷ für Verbindungen des Typs C₆H₅PX₂ feststellten, sind die Frequenzwerte der PX-Valenzschwingungen denen von PX₃ ähnlich, die Erwartung für die Lage der Deformationsbanden ist hingegen unsicher.

In der Tab. 2 sind die Mittelwerte der PX-Valenzschwingungen für die Moleküle PX_3 , $C_6H_5PX_2$ und $C_6F_5PX_2$ gegenübergestellt.

	PH	P(CH ₃)	PCl	PBr
PX ₃	2326	681	495	390
$C_6H_5PX_2$	2280	680	475	389
$C_6F_5PX_2$	2337	688	446	384

Tab. 2. Mittelwerte der Valenzschwingungen von PX_3 , $C_6H_5PX_2$ und $C_6F_5PX_2$.

Bei Einführung einer C_6F_5 -Gruppe wird eine Bindungsverstärkung der PX-Bindung erhalten. Sie erreicht bei Substitution mit einer zweiten C_6F_5 -Gruppe den höchsten Wert, wie sich aus den Spektren von $(C_6F_5)_2$ PH und $(C_6F_5)_2$ PCH $_3$ entnehmen läßt. Eine einfache Kraftkonstantenrechnung zeigt, daß sich folgende Sequenz, aufgeführt nach abnehmender Bindungsstärke, aufstellen läßt.

 $\begin{array}{l} {{C_6}{F_5}PH} > {P{H_3}} > {C_6}{H_5}P{H_2}\,,\\ {{C_6}{F_5}P\left({{C{H_3}}} \right)_2} > P\left({{C{H_3}}} \right)_3} > {C_6}{H_5}P\left({{C{H_3}}} \right)_2\,. \end{array}$

Obwohl der C_6F_5 -Rest elektronegativer als die C_6H_5 -Gruppe ist, kann er das Elektronendefizit am Phosphor durch einen größeren $d\pi - p\pi$ -Bindungsanteil mehr ausgleichen und dadurch eine Verstärkung der PX-Bindung erreichen.

Ersetzt man X durch Halogen, einen Elektronenacceptor, so bewirkt bei Pentafluorphenyl-substituierten Verbindungen die größere Elektronendichte am Phosphor eine Abstoßung der Liganden X und eine daraus resultierende Bindungsschwächung. Die Verhältnisse hierbei sind mit gewissem Vorbehalt zu

$(C_6F_5)_3P$	$(C_6F_5)_3PO$	Zuordnung
1738 s	1740 ss	
	1720 ss	Kombinations-
	1700 ss	schwingungen
	1686 ss	
1650 st	1655 st	$\omega(C-C)$
1600 ss	1607 ss	w(c c)
1555 s	1561 ss	
1522 sst	1522 sst	$\omega(C-C)$
1485 sst	1495 sst	$\omega(C-C)$
1400 880	1465 ss	$\omega(C-C)$
1445 ss	1405 ss 1445 ss	
1392 st	1398 st	(CIE)
		$\nu(CF)$
1296 st	1308 st	$\nu(CF)$
1268 s	1270 s	$\omega(C-C)$
	1242 sst	ν (PO)
1145 m	1152 m	ν (CF)
1098 sst	1110 sst	$\nu(\mathrm{CF})$
1070 sch		
1030 m	1030 m, b	
980 sst	995 sst	$\nu(\mathrm{CF})$
849 m	840 s	$\nu(PC)$
822 ss		
	770 m	
765 ss	762 ss	
755 m	756 s	
726 m	735 m	$\delta(\mathrm{CF})$
662 ss		,
653 ss		
637 m	647 m, b	$\gamma(CF)$
624 m	635 s	7(01)
586 m	594 m	$\omega(C-C)$
516 st	538 st	$\omega_{\mathbf{x}}(\mathrm{CP})$
310 St	466 st	$v_{\rm as}({\rm PC}_3)$
145 m	Contract Marie	A Ping (in plane)
445 m 425 st	446 m	δ -Ring(,,in-plane")
	494 %	
414 m	424 s	
200	405 s	(CD)
386 s	385 s	$\omega_{\mathbf{x}}(\mathrm{CP})$
377 ss	376 ss	$\gamma(\mathrm{CF})$?
370 ss	370 ss	(DC)
1	345 st	$v_{\mathrm{s}}(\mathrm{PC}_3)$
	341 m	
$329 \mathrm{\ st}$		
315 m	317 s, b	$\delta(CF)$

Tab. 3. Schwingungsspektren von $(C_6F_5)_3P$ und $(C_6F_5)_3PO$ (ss = sehr schwach, s = schwach, m = mittel, st = stark, sst = sehr stark, sch = Schulter, b = breit).

behandeln, da Kopplungen der Phosphor-Halogen-Schwingung mit Ringschwingungen nicht auszuschließen sind.

Beim Übergang von den C₆F₅PX₂-Derivaten zum (C₆F₅)₃P sollten die Schwingungen des monosubstituierten Benzolringes im wesentlichen erhalten bleiben, und zusätzlich die noch verbleibenden Linien den Schwingungen der Gruppe PC₃ im Phosphin zugeordnet werden.

Die Tab. 3 enthält die Bandenlagen und Intensitäten von Tris (pentafluorphenyl) phosphin und -Phosphinoxyd sowie ihre Zuordnung.

Weiterhin wurden zum Vergleich die Spektren der Derivate der Phosphorhomologen $(C_6F_5)_3$ As und $(C_6F_5)_3$ Sb hinzugezogen. Wie man der Tab. 3 entnimmt, erscheinen alle Schwingungen im Phosphin etwa an den gleichen Stellen, während im Oxyd einige Banden nach höheren Wellenzahlen verschoben sind, was z. T. auf einer Bindungsverstärkung in der P-C-Bindung durch die Substitution mit Sauerstoff zurückzuführen ist.

Zuerst fällt die Absorption bei 1242 cm⁻¹ auf, welche eindeutig einer P-O-Valenzschwingung zugeordnet werden kann, und die weiter unten eingehend diskutiert wird.

Als nächstes treten zwei Linien auf, für die nach Lage und Intensität auf P-C-Schwingungen geschlossen wird. Die Bande bei 425 cm⁻¹ wird im Oxyd zu 466 cm⁻¹, eine weitere Absorption bei 329 cm⁻¹ zu 345 cm⁻¹ verschoben. Hierbei ist mit großer Wahrscheinlichkeit anzunehmen, daß es sich um die Valenzfrequenzen der Gruppe PC₃ handelt, wobei die höhere der antisymmetrischen zugeordnet wird. Um diese Aussage zu verdeutlichen, sind in der Tab. 4 diese Banden mit denen entsprechender im Triphenylphosphin und Triphenylphosphinoxyd verglichen.

	$(\mathrm{C_6H_5})_3\mathrm{P}$	$(\mathrm{C_6H_5})_3\mathrm{PO}$	$(\mathrm{C_6F_5})_3\mathrm{P}$	$(\mathrm{C}_6\mathrm{F}_5)_3\mathrm{PO}$
$v_{ m as} \ v_{ m S}$	500	540	425	466
	422	455	329	345

Tab. 4. Valenzschwingungen von R₃P und R₃PO.

Durch Substitution mit einem elektronegativen Liganden, in diesem Falle Sauerstoff, wird eine Verschiebung der P-C-Frequenzen erreicht, die für das $(C_6H_5)_3P$ von Halman und Pinchas diskutiert wor-

⁸ H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer Verlag, Berlin 1966.

den ist ⁹ und von Jensen et al. ¹⁰ aus der Tatsache gefordert wird, daß ein linearer Zusammenhang zwischen P-C-Frequenz und der Elektronegativität von O, S und Se besteht.

IR- und Ramanspektroskopische Untersuchungen an Phosphoryl-Verbindungen haben gezeigt, daß sich die Lage der P-O-Valenzschwingung in charakteristischer Weise mit den Substituenten ändert.

Wie Bell und Mitarbb. 11 fanden, besteht zwischen der Summe der Elektronegativitäten der Liganden und der Lage der PO-Absorption ein linearer Zusammenhang. Auch Gruppen komplexerer Natur wie Methyl, Aryl, Alkoxy etc. beeinflussen die PO-Schwingung, und man kann nun aus den gemessenen Bandenlagen der PO-Frequenz diesen Substituenten numerische Werte zuordnen, welche den Paulingschen Elektronegativitäts-Daten vergleichbar sind.

Auch für die Pentafluorphenylgruppe kann eine entsprechende Elektronegativität bestimmt werden.

Der lineare Zusammenhang

$$\lambda(\mu) = \frac{3,995}{39,96 - \sum x_i}$$

wird an Hand der Abb. 1 gezeigt. Aufgetragen sind die PO-Valenzschwingungen verschiedener Phosphoryl-Verbindungen R_3PO in Abhängigkeit von der Gruppen-Elektronegativität. Beim $(C_6F_5)_3PO$ läßt sich für die C_6F_5 -Gruppe aus der Abbildung eine Elektronegativität von 2,6 entnehmen.

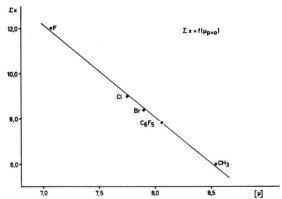


Abb. 1. PO-Valenzschwingungen verschiedener Phosphoryl-Verbindungen.

Dieser Wert stimmt gut überein mit dem aus Messungen des Mößbauer-Effektes an Penta-fluorphenylzinn-Verbindungen zu 2,68 gefundenen 12.

Der Wechsel in der Wellenlänge der PO-Schwingung entspricht einer Änderung der PO-Kraftkonstanten und damit des Bindungsgrades.

Während im (CH₃)₃PO die Phosphor-Sauerstoff-Bindung den Charakter einer Einfanchbindung annimmt, kann beim POF₃ der Bindungsgrad bis auf 3 ansteigen, was auch von Wagner ¹³ nach Berechnungen auf der Basis einer MO-Methode gefordert wird.

Die Ergebnisse zeigen, daß mechanische Kopplungen der PO-Valenzschwingungen mit den PR-Schwingungen in Phosphoryl-Verbindungen nur eine geringe Rolle spielen. Dies berechtigt uns für die tertiären Phosphinoxyde PO-Valenzkraftkonstanten nach dem Zweimassenmodell näherungsweise zu berechnen. In der Tab. 5 sind die PO-Absorptionen und die daraus berechneten Kraftkonstanten angegeben. Nach dem Siebertschen Verfahren 14 wurden daraus die Bindungsgrade bestimmt.

	[cm ⁻¹]	$f_{PO} [mdyn/Å]$	N_{PO}
$(C_6F_5)_3PO$	1242	9,60	2,4
$(C_6F_5)_2C_6H_5PO$	1222	9,28	2,32
$(C_6F_5)_2CH_3PO$	1223	9,29	2,32
$(C_6F_5)_2C_2H_5PO$	1221	9,26	2,32
$C_6F_5(C_6H_5)_2PO$	1201	8,96	2,24
$C_6F_5(CH_3)_2PO$	1193	8,84	2,21
$(C_6F_5(C_2H_5)PO$	1205	9,02	2,25

Tab. 5. Kraftkonstanten und Bindungsgrade von tertiären Phosphinoxyden (C_6F_5) ${}_nR_{3-n}PO$.

Hierbei sind die Bindungsgrade nach der unkorrigierten Formel

$$N = \frac{f_{\rm N}}{f_{\star}}$$

berechnet, da sich für POF₃ ein Bindungsgrad von 3 ergibt und damit in Übereinstimmung mit den Berechnungen von Wagner ¹³ steht. Untersuchungen an Phosphoryl- und Thiophosphoryl-Verbindungen von Müller, Horn und Glemser ¹⁵ ergänzen diese Ergebnisse.

⁹ M. Halmann u. S. J. Pinchas, J. chem. Soc. [London] **1958**, 3264.

¹⁰ K. A. Jensen u. P. H. Nielsen, Acta chem. scand. 17, 1875 [1963].

¹¹ J. V. Bell, J. Heisler, H. Tannenbaum u. J. Goldenson, J. Amer. chem. Soc. 76, 5185 [1954].

¹² M. Cordey-Hayes, J. inorg. nuclear Chem. 26, 2306 [1964].

¹³ E. L. Wagner, J. Amer. chem. Soc. 85, 161 [1963].

¹⁴ H. Siebert, Z. anorg. allg. Chem. 273, 170 [1953].

¹⁵ A. Müller, H. G. Horn u. O. Glemser, Z. Naturforschg. 20 b, 1150 [1965].

Experimentelles

Die Darstellung der Verbindungen wurde an anderer Stelle beschrieben ^{1, 16}. Die Aufnahme der Infrarotspektren erfolgte an einem Gerät der Firma Leitz Nr. 072 und Nr. 220.

Unser Dank gilt Herrn Dr. A. Müller für wertvolle Diskussionen. Der Stiftung Volkswagenwerk, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie danken wir für finanzielle Unterstützung.

¹⁶ M. Fild, O. Glemser u. I. Hollenberg, Naturwissenschaften 52, 590 [1965].

Über Pentafluorphenyl-Verbindungen der V. Hauptgruppe, VI 1

³¹P-Kernresonanzspektren von Pentafluorphenyl-Derivaten des Phosphors ²

Manfred Fild, Inge Hollenberg und Oskar Glemser Anorganisch-Chemisches Institut der Univerität Göttingen

(Z. Naturforschg. 22 b, 253-256 [1967]; eingegangen am 14. Oktober 1966)

Die chemischen Verschiebungen δ_P der Pentafluorphenyl-substituierten Phosphine und Phosphinoxyde des Typs $(C_6F_5)_nR_{3-n}P$ und $(C_6F_5)_nR_{3-n}PO$ (für $R\!=\!CH_3$, C_2H_5 , C_6H_5) werden mitgeteilt und diskutiert.

Eine große Anzahl von Publikationen über die kernmagnetischen Absorptionsspektren anorganischer und organischer Phosphor-Derivate beschäftigt sich mit den Zusammenhängen zwischen gemessenen Daten und Bindungseigenschaften. Es hat sich gezeigt, daß mehrere Faktoren wie z. B. der Hybridisierungszustand, der ionische Charakter und die damit verbundene Änderung der Asymmetrie in der Besetzung der p-Funktionen oder die Ausbildung von Mehrfachbindungen Einfluß haben ³⁻⁸. Diese Effekte können gleich oder entgegen gesetzt gerichtet sein und dadurch die Korrelationen komplizieren.

Substanz	$\delta_{ m P}$ [ppm]	Substanz	$\delta_{ m P}$ [ppm]
$\begin{array}{c} C_6F_5(CH_3)_2P \\ C_6F_5(C_2H_5)_2P \\ C_6F_5(C_6H_5)_2P \\ (C_6F_5)_2CH_3P \\ (C_6F_5)_2C_2H_5P \\ (C_6F_5)_2C_6H_5P \\ (C_6F_5)_3P \end{array}$	$egin{array}{c} +47,8 \\ +23,4 \\ +26,3 \\ +52,2 \\ +44,0 \\ +48,7 \\ +75,5 \\ \hline \end{array}$	$\begin{array}{c} C_6F_5(CH_3)_2PO \\ C_6F_5(C_2H_5)_2PO \\ C_6F_5(C_6H_5)_2PO \\ (C_6F_5)_2CH_3PO \\ (C_6F_5)_2C_2H_5PO \\ (C_6F_5)_2C_6H_5PO \\ (C_6F_5)_3PO \end{array}$	$ \begin{array}{r} -29,7 \\ -41,8 \\ -18,7 \\ -18,7 \\ -19,3 \\ -0,7 \\ +7,8 \end{array} $

Tab. 1. δ_P -Werte von Phosphinen und Phosphinoxyden.

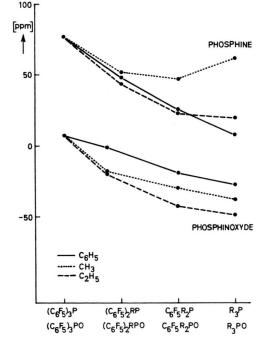


Abb. 1. Phosphine und Phosphinoxyde.

- ¹ M. Fild, I. Hollenberg u. O. Glemser, Z. Naturforschg., im Druck.
- ² M. Fild, Teil eines Vortrages, Westdeutsche Chemiedozenten-Tagung in Würzburg, April 1966.
- ³ H. S. Gutowsky u. D. W. McCall, J. chem. Physics 22, 162 [1954].
- ⁴ N. Muller, P. C. Lauterbur u. J. Goldenson, J. Amer. chem. Soc. 78, 3557 [1956].
- J. R. VAN WAZER, C. F. CALLIS, J. N. SHOOLERY U. R. C. JONES, J. Amer. chem. Soc. 78, 5715 [1956].
- ⁶ C. F. Callis, J. R. van Wazer, J. N. Shoolery u. W. A. Anderson, J. Amer. chem. Soc. 79, 2719 [1957].
- ⁷ J. R. Parks, J. Amer. chem. Soc. 79, 757 [1957].
- ⁸ L. C. D. Groenweghe, L. Maier u. K. Moedritzer, J. physic. Chem. **66**, 901 [1962].