NOTIZEN 899

Zur Reaktionsweise des Cyclopropenon-Systems

3. Mitt.: Methylencyclopropene aus 1.3-Dicarbonyl-Verbindungen

Theophil Eicher und Anna Löschner Institut für Organische Chemie der Universität Würzburg (Z. Naturforschg. 21 b, 899—900 [1966]; eingegangen am 5. Juli 1966)

Derivate des 1.2-Diphenyl-methylencyclopropens (2), die am exocyclischen C-Atom elektronenanziehende Substituenten (X resp. Y) tragen, werden aus dem 1.2-Diphenyl-3-äthoxy-cyclopropenylium-tetrafluoroborat (1) durch Umsetzung mit den entsprechenden C-H-aciden Verbindungen $X-CH_2-Y$ in Gegenwart einer Hilfsbase erhalten 1.

$$C_6H_5$$
 C_6H_5
 C_6H_5

Versuche, nach dieser Methodik auch 1.3-Diketone umzusetzen, ergaben jedoch nur geringe Mengen (ca. 10%) der Methylencyclopropen-Derivate (3); bei Umsetzung der Na-Enolate mit (1) blieb die Bildung von Methylencyclopropenen völlig aus ².

Brachte man nun die Cu- oder Zn-Chelate von 1.3-Dicarbonyl-Verbindungen — β -Diketonen, β -Ketoaldehyden, β -Ketoestern oder β -Ketoamiden — mit (1) in $\mathrm{CH_2Cl_2}$ zur Reaktion, so erhielt man entweder direkt oder nach Abziehen des Solvens Cu- resp. Zn-Komplexe, deren Spaltung mit wäßrig-alkoholischer HCl zu den gewünschten Verbindungen (3) führte. Analyse und Spektren der Cu-(resp. Zn-)-Intermediate sind mit einer dikationischen Struktur (4) in Einklang.

Da bekannt ist, daß Übergangsmetall-Chelate von 1.3-Dicarbonyl-Verbindungen leicht elektrophilen Substitutions-Reaktionen zugänglich sind ³, dürfte das unten aufgeführte Schema den Reaktionsablauf wiedergeben.

Sehr wahrscheinlich wird bei der Spaltung der Komplexe (4) die protonierte Form (5) der Methylencyclopropene (3) durchlaufen, da bei der Behandlung von [(3), R=R'=COCH₃] mit wasserfreier HBF₄ im schwach basischen Solvens (Äthanol, Eisessig) das Kation (5) isoliert wird, in Gegenwart von Zinkionen jedoch der Komplex (4) (mit Zn als Zentralatom); erst die Zugabe von wäßriger Säure bewirkt Rückspaltung zu (3).

Die so erhaltenen Methylencyclopropen-Derivate (3), für die jedoch die Nomenklatur als "2-(Diphenyl-cyclopropenyliden) -1.3-dicarbonyl-Verbindungen" zweckmäßiger erscheint, stellen wohlkristallisierte gelbe Verbindungen dar, deren Struktur aus den Spektren eindeutig hervorgeht. Die IR-Spektren enthalten neben der Absorption der Cyclopropen-Doppelbindung (1810 bis 1850 cm⁻¹) intensive Banden der C=O-Valenzschwingung (1615-1690 cm⁻¹), für die eine stark bathochrome Versetzung gegenüber den zugrunde liegenden 1.3-Dicarbonyl-Verbindungen charakteristisch ist. Dieser Effekt dürfte durch den Einbau in ein Resonanzhybrid $(3 a) \longleftrightarrow (3) \longleftrightarrow (3 b)$ mit erheblicher "Cyclopropenylium-Enolat"-Anteiligkeit bedingt sein. Außerdem finden sich intensive Banden zwischen 1400 und 1500 cm⁻¹, für die möglicherweise Schwingungskopplungen innerhalb des obigen Resonanzsystems verantwortlich sind 4; die Untersuchung dieser Frage ist jedoch noch nicht abgeschlossen.

Auch die NMR-Spektren weisen auf eine starke Beteiligung der polaren Grenzstrukturen (3 a) resp. (3 b) am Grundzustand von (3) hin, da die o-Protonen der Phenylkerne am Cyclopropenring von den (m-+p)-Protonen um 0.4-1.0 τ -Einheiten nach niedrigeren Feldstärken abgesetzt sind; diese durch Positivierung des Dreirings bedingte Separation ist auch für andere Methylencyclopropene 5 , Cyclopropenylium-Kationen 6 und Chinocyclopropene 7 bekannt.

¹ Th. Eicher u. A. Löschner, Z. Naturforschg. 21 b, 295 [1966].

² Diese Umsetzungen wurden mit Dimedon und Acetylaceton durchgeführt. Die Versuche zur Aufklärung der Enolat-Reaktion sind noch nicht abgeschlossen.

³ J. P. Collman u. Mitarb., J. Amer. chem. Soc. **83**, 531 [1961]; J. org. Chemistry **28**, 1449 [1963]; **29**, 3216 [1964]

⁴ Žum Problem der Schwingungskopplung im Cyclopropenon-System s. A. Krebs u. B. Schrader, Z. Naturforschg. 21 b, 194 [1966]. Dennoch dürfte auch die kurzwellige Absorption von (3) durch Schwingungskopplung innerhalb des Methylencyclopropen-Systems bedingt sein, wie auch von anderer Seite vermutet wird (E. D. Bergmann u. I. Agranat, Tetrahedron Letters [London] 1966, 2373).

⁵ S. Andreades, J. Amer. chem. Soc. **87**, 3941 [1965].

⁶ R. Breslow, H. Höver u. H. W. Chang, J. Amer. chem. Soc. 84, 3168 [1962].

⁷ A. S. Kende u. P. T. Izzo, J. Amer. chem. Soc. **86**, 3587 [1964].

900 NOTIZEN

Verbindung	Ausbeute [% d. Th]	Schmp. [°C]	IR (KBr, cm ⁻¹)		UV (CH ₂ Cl ₂)	
			$\nu_{\rm C} = 0$	$v_{ m Cyclopropen}$	Max.[m,u]	$\varepsilon \cdot 10^{-4}$
$(3) (R = R' = COCH_3)$	80 a	137-138	$\frac{1660}{1620}$	1830	308 263	$2,14 \\ 2,43$
(3) $(R = COCH_3, R' = COC_6H_5)$	63	180-181	$\frac{1640}{1620}$	1830	323 270 246	2,19 (Schulter) 2,74
(3) $(R = COOC_2H_5, R' = COC_6H_5)$	62	104-105	1685 1635	1840	317 265 248	2,28 (Schulter) 3,09
(3) (R=COCH ₃ , R'=CONHC ₆ H ₅)	78	202 - 203	1655	1830	306 258	3,44 2,80
(3) ($R = COC_6H_5$, $R' = CONHC_6H_5$)	79	186-188	1655	1830	315 270 248	2,30 3,16 3,04
(3) (R=CHO, $R'=COC_6H_5$)	74	128-129	1660 1615	1830	333 255 245	2,54 2,65 2,48
(3) $(R = R' = COOC_2H_5)$	10 в	95— 96	1670	1830	350 294 270 241	0,86 2,62 (Schulter) 1,94

Tab. 1. Verbindungen vom Typ (3). ^a Bei Darstellung über Zn-Chelat 58 Prozent. ^b Darstellung nach der Diisopropyläthylamin-Methode.

Verbindung	Ausbeute [% d. Th.]	Schmp. [°C]	IR (K	Br, cm ⁻¹)	UV (CH ₂ Cl ₂)	
			$\nu_{\rm C} = 0$	$v_{ m Cyclopropen}$	Max. [m,u]	$\varepsilon \cdot 10^{-4}$
(6)	22 a	198-199	1660 1615	1825	327 270 253 244	1,34 (Schulter) 1,28 1,34
(7)	43	234-235	1685	1840	335 315 265	1,25 3,14 1,35
(8)	40	340 – 344 (Zers.)	1720 1650	1845	319 260 225	4,25 1,47 3,94

Tab. 2. Verbindungen (6) — (8). a Mit BF_3 -Ätherat als Katalysator.

Tab. 1 enthält einige Vertreter von (3) nebst ihren wichtigsten physikalischen Daten, die — wenn nicht anders vermerkt — nach der Cu-Chelat-Methode dargestellt wurden.

Auch cyclische 1.3-Dicarbonyl-Verbindungen wie Dimedon, Meldrum-Säure und Diphenyl-barbitursäure konnten mit dem Kation (I) in Gegenwart einer Hilfsbase ⁸ zur Reaktion gebracht werden. Die resultierenden Methylencyclopropen-Derivate (6) — (8) sind jedoch im Gegensatz zu den ringoffenen Typen (3) nur noch schwach gelb gefärbt (6) resp. farblos [(7), (8)]. Charakteristisch ist ihre schon bei Tageslicht wahrnehmbare, grünliche bis hellblaue Fluores-

$$C_6H_5$$
 C_6H_5 C

zenz, die bei Verbindungen (3) erst bei UV-Einstrahlung in Erscheinung tritt. Ihre IR-, UV- und besonders NMR-spektroskopischen Eigenschaften sind denen von (3) ähnlich; Tab. 2 faßt die wichtigsten Kriterien zusammen.

Wir danken Herrn Dipl.-Chem. H.-F. Klein, Institut für Anorganische Chemie der Universität Würzburg, für die Aufnahme der Kernresonanzspektren.

⁸ Diisopropyläthylamin, S. Hünig u. M. Kiessel, Chem. Ber. 91, 380 [1958].