
86 NOTIZEN

Reaktionen von Cadmium(II)-chlorid-1-chinolin und Cadmium(II)-chlorid-2-chinolin mit Chlorwasserstoff

Von H. Buss, H. W. Kohlschütter und D. Maulbecker Eduard Zintl-Institut für anorganische und physikalische Chemie der Technischen Hochschule Darmstadt (Z. Naturforschg. 18 b, 86—87 [1963]; eingeg. am 2. November 1962)

Es wurde bereits gezeigt, daß beim Umsatz der Verbindung $\mathrm{CdCl}_2 \cdot 2$ py mit Chlorwasserstoff zwei verschiedene Verbindungen erhalten werden, je nachdem der Chlorwasserstoff wasserfrei oder als wäßrige Lösung angewendet wird ¹. Da Cadmium (II)-chlorid mit Chinolin nicht nur einen, sondern zwei Komplexe bildet, erweitert sich das Schema für die Umsetzungen mit Chlorwasserstoff bzw. Salzsäure:

Cadmiumchlorid-1-chinolin [A] entsteht beim Zusatz von reinem Chinolin zu einer wäßrigen oder alkoholischen Lösung von Cadmiumchlorid als kristallisierter Niederschlag ^{2, 3}.

Nach Dubsky und Dostal ⁴ sollte Cadmiumchlorid-2chinolin entstehen, wenn eine wäßrige Lösung von Cadmiumchlorid mit der äquivalenten Menge Chinolin versetzt wird. In Wirklichkeit bildet sich aber in Übereinstimmung mit Schiff ² und Borsbach ³ unter diesen Bedingungen stets Cadmiumchlorid-1-chinolin. Wir haben Cadmiumchlorid-2-chinolin [B] hergestellt durch Umsetzung von festem Cadmiumchlorid-1-chinolin oder festem Cadmiumchlorid mit reinem Chinolin.

Aus [A] entsteht mit wasserfreiem Chlorwasserstoff Chinolinium-trichlorocadmat [C].

Chinolinium-trichlorocadmat entsteht ebenfalls bei der Reaktion von [A] mit wäßriger Salzsäure. Nach Angaben der Literatur sollte auf diesem Wege Chinolinium-trichlorocadmat-1-wasser.

$$CdCl_2 \cdot 1 chin \cdot 1 HCl \cdot 1 H_2O$$
,

entstehen ^{3, 4}; unser Präparat ist jedoch röntgenographisch und analytisch identisch mit dem Präparat, das aus CdCl₂·1 chin mit wasserfreiem Chlorwasserstoff im Hochvakuum entstand.

Aus [B] entsteht mit wäßriger Salzsäure ebenfalls Chinolinium-trichlorocadmat [C] (Nachweis durch Analysen und Debye-Scherrer-Diagramme).

Im Gegensatz dazu bildet sich bei der Umsetzung von [B] mit wasserfreiem Chlorwasserstoff Chinolinium-tetrachlorocadmat [D]. Diese Verbindung wird auch erhalten, wenn nach Dehn eine konzentrierte, wäßrige Chinoliniumchlorid-Lösung mit festem Cadmiumchlorid umgesetzt wird ⁵; aus verdünnteren,

wäßrigen Lösungen entsteht sie nicht.

In Übereinstimmung damit und in Analogie zum Pyridinium-tetrachlorocadmat setzt sich [D] mit Wasser oder verdünnter Salzsäure zu [C] um (Nachweis durch Analysen und Debye-Scherrer-Diagramme). Im Gegensatz zu der Verbindung Chinolinium-tetrachlorocadmat [D] sind die analogen Bromid- und Jodid-Komplexe in wäßriger Lösung stabil. Dieser Unterschied zwischen den Chlorid-Komplexen einerseits und den Bromid- und Jodid-Komplexen andererseits wurde auch schon bei den entsprechenden Pyridiniumsalzen gefunden 1.

CdCl₂·1 chin. Hergestellt aus wäßriger oder alkoholischer Lösung von Cadmiumchlorid durch Fällung mit Chinolin ², ³. Weiß.

> Gef. C 34,60 H 2,16 N 4,53 Cl 22,61 Cd 35,63. Ber. C 34,59 H 2,26 N 4,48 Cl 22,69 Cd 35,97.

CdCl₂·2 chin. In reines Chinolin wird festes Cadmium[B] chlorid-1-chinolin eingetragen. Die entstehende
Suspension wird gerührt und langsam auf ca.
150°C erhitzt. Anschließend wird sehr rasch auf
etwa +5°C abgekühlt. Der Bodenkörper wird
abfiltriert, zuerst mit reinem Chinolin, dann mit
Alkohol gewaschen. Trocknung: 24 Stdn. über
konz. H₂SO₄ bei 17 Torr, zuletzt im Hochvakuum.
Das Präparat ist rein weiß und kristallisiert.

Gef. C 48,38 H 2,94 N 6,34 Cl 16,75 Cd 25,20. Ber. C 48,95 H 3,20 N 6,34 Cl 16,05 Cd 25,45.

(chin H)CdCl₃. Hergestellt durch Umsetzung von [A]
[C] mit flüssigem, wasserfreiem Chlorwasserstoff.
Weiß.

 $\nu_{\rm NH} = 2800 \ {\rm cm}^{-1}$.

Gef. C 30,51 H 2,31 N 4,15 Cl 30,19 Cd 31,94. Ber. C 30,97 H 2,31 N 4,01 Cl 30,49 Cd 32,21.

Diese Verbindung entsteht auch durch die Reaktionen

$$[A] \rightarrow [C] (HCl/H_2O), [B] \rightarrow [C]$$
und $[D] \rightarrow [C].$

 $(chin\ H)_2CdCl_4$. Hergestellt durch Umsetzung von [B] [D] mit flüssigem, wasserfreiem Chlorwasserstoff. Weiß.

 $v_{\rm NH}\!=\!2800~{\rm cm}^{-1}.$

¹ H. Buss, H. W. Komlschütter u. D. Maulbecker, Z. Naturforschg. 17 b, 485 [1962].

² H. Schiff, Liebigs Ann. Chem. **131**, 112 [1864].

³ E. Borsbach, Ber. dtsch. chem. Ges. 23, 436 [1890].

⁴ J. V. Dubsky u. V. Dostal, Publ. Fac. Sci. Univ. Masaryk, Nr. 196, 17 [1934]; C. 1935, II, 1123.

⁵ W. M. Dehn, J. Amer. chem. Soc. 48, 276 [1926].

NOTIZEN 87

Gef. C 41,75 H 3,21 N 5,76 Cl 28,02 Cd 21,79. Ber. C 42,01 H 3.13 N 5,44 Cl 27,56 Cd 21.84.

Diese Verbindung entsteht außerdem durch Umsetzung von Cadmiumchlorid mit Chinoliniumchlorid. Die hier beschriebenen Reaktionen der Chinolin-Komplexe des Cadmiumchlorids und die früher beschriebenen Reaktionen 1 der analogen Pyridin-Komplexe sind Voraussetzungen für die Herstellung von Komplexverbindungen, die im anionischen Teil zwei verschiedene Halogene enthalten (Heterohalogenocadmate). Vergleiche dazu die nachstehende Mitteilung.

Heterohalogenocadmate

Von H. Buss, H. W. Kohlschütter und D. Maulbecker

Eduard Zintl-Institut für anorganische und physikalische Chemie der Technischen Hochschule Darmstadt

(Z. Naturforschg. 18 b, 87-88 [1963]; eingeg. am 2. November 1962)

1. Chinolinium-dichlorodijodocadmat und Chinoliniumdichlorodibromocadmat

Metallhalogenid-Amin-Komplexe reagieren mit Halogenwasserstoff unter Bildung definierter Halogenometallate. Ein typisches Beispiel ist:

$$CdCl_2 \cdot 2 chin + 2 HCl \rightarrow (chin H)_2 CdCl_4$$
.

Bei der Untersuchung solcher Reaktionen hat sich gezeigt, daß die Reaktionsprodukte verschieden sein können, je nachdem der Halogenwasserstoff wasserfrei oder als wäßrige Lösung angewendet wird ^{1, 2}.

Von besonderem Interesse sind Reaktionen, bei denen das Ausgangsprodukt (Beispiel: CdCl₂·2 chin) ein anderes Halogenid als der mit ihm reagierende Halogenwasserstoff enthält. Dabei entstehen Heterohalogenocadmate, die als einheitliche Verbindungen zwei verschiedene Halogene enthalten.

Chinolinium-dichlorodijodocadmat, (chin H)₂CdCl₂J₂, entsteht, wenn festes Cadmiumjodid-2-chinolin mit wasserfreiem, flüssigem Chlorwasserstoff umgesetzt wird:

$$CdJ_2 \cdot 2 chin + 2 HCl \rightarrow (chin H)_2 CdCl_2 J_2$$
.

Die chemische Analyse des Reaktionsproduktes liefert zunächst nur die Bruttozusammensetzung. Bei gleichen Analysenwerten könnte aber auch ein Gemisch von Chinolinium-tetrachlorocadmat und Chinolinium-tetra-jodocadmat im Molverhältnis 1:1 vorliegen:

2 CdJ₂·2 chin + 4 HCl→ (chin H) 2 CdCl₄ + (chin H) 2 CdJ₄. Die Entscheidung zwischen beiden Möglichkeiten gelingt röntgenographisch. Abb. 1 enthält die Debye-Scherrer-Diagramme von Chinolinium-tetrachlorocadmat, Chinolinium-tetrajodocadmat und Chinolinium-dichlorodijodocadmat. Es sind die geschätzten Intensitäten der Reflexe über den zugehörigen d-Werten eingezeichnet. Der Vergleich dieser Diagramme untereinander zeigt, daß das Reaktionsprodukt kein Gemisch von (chin H)2 CdCl₄ und (chin H)2 CdJ₄ ist; es bildet eine selbständige, kristallisierte Phase.

Unter analogen Bedingungen entsteht aus Cadmiumbromid-2-chinolin und wasserfreiem Chlorwasserstoff Chinolinium-dichlorodibromocadmat, (chin H) ₂CdCl₂Br₂.

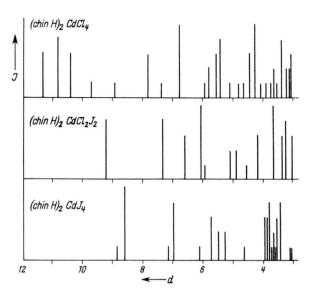


Abb. 1. Vergleich der Debye-Scherrer-Diagramme von $(chin\ H)_2CdCl_4$, $(chin\ H)_2CdJ_4$ und $(chin\ H)_2CdCl_2J_2$.

Es wurde ebenso nachgewiesen, daß kein Gemisch von Chinolinium-tetrachlorocadmat und Chinolinium-tetrabromocadmat entstanden ist.

Die Verbindung Chinolinium-dibromodijodocadmat, (chin $H)_2CdBr_2J_2$, konnte bisher in reiner Form nicht erhalten werden.

 $(chin\,H)_2Cl_2Br_2$. Hergestellt aus Cadmiumbromid-2-chinolin 4 und wasserfreiem, flüssigem Chlorwasserstoff. Schwach gelblich.

 $\nu_{\rm NH}\!=\!2900~{\rm cm}^{-1}$.

Ber.

C 31,00 H 2,31 N 4,01 Cl 10,17 J 36,39 Cd 16,12. Gef.

C 31,65 H 2,23 N 4,25 Cl 10,13 J 36,34 Cd 16,15. \rightarrow J : Cl=2,00 : 2,00.

⁴ F. Reitzenstein, Z. anorg. Chem. 18, 253 [1898].

¹ H. Buss, H. W. Kohlschütter u. D. Maulbecker, Z. Naturforschg. 17 b, 485 [1962].

² H. Buss, H. W. Kohlschütter u. D. Maulbecker, Z. Naturforschg. 18 b, 86 [1963].

³ E. Borsbach, Ber. dtsch. chem. Ges. 23, 431 [1890].