Neuartige "Sandwich"-Verbindungen des Nickel (0). Zur Kenntnis von Durochinon-Nickel (0)-Komplexen mit cyclischen Dienen 1,2

Von G. N. Schrauzer und H. Thyret

Aus dem Institut für Anorganische Chemie der Universität München (Z. Naturforschg. 17 b, 73-76 [1962]; eingegangen am 26. September 1961)

Bei der Reaktion von Nickelcarbonyl und Durochinon mit Cyclooctadien-1.5, Bicyclo (2.2.1)-heptadien und Dicyclopentadien entstehen π -Komplexe des Nickel(0) vom Typ Olefin-Ni(0)-Durochinon. Die diamagnetischen Komplexe zeigen die Eigenschaften semi-ionischer Verbindungen. Sie weisen in Benzol Dipolmomente in der Größenordnung von 4 Debye auf und sind wasserlöslich. Die olefinischen Liganden lassen sich austauschen. Die Komplexe werden durch Acrylnitril unter Polymerisation des Acrylnitrils zersetzt. Analoge Komplexe mit p-Benzochinon und Toluchinon konnten nicht erhalten werden, jedoch gelang es, durch die Reaktion von p-Xylochinon und Cyclooctadien-1.5 mit Nickelcarbonyl, auch das Cyclooctadien-Ni(0)-xylochinon darzustellen.

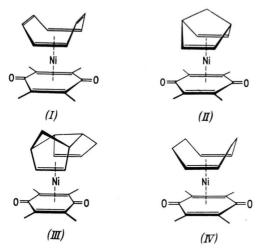
Die ersten Elementkomplexe des Nickels mit einfachen cycloolefinischen Liganden wurden kürzlich von Wilke 3 erhalten. Diese Verbindungen sind alle luftempfindlich und sehr reaktionsfähig, da die Nickel-Olefin-Bindung wegen der relativ hohen Lage der tiefsten unbesetzten Molekülzustände der Olefine nur einen geringen Doppelbindungsanteil besitzt. Verwendet man als Liganden jedoch Verbindungen, die tiefliegende unbesetzte Molekülzustände besitzen, so ist eine Stabilisierung der Nickel-Ligand-Bindung zu erwarten, da die durch die koordinative σ-Bindung auf das Nickelatom übertragene negative Ladung wieder abgeführt werden kann. In der vorliegenden Arbeit werden einige weitere Ni (0)-Komplexe beschrieben, die wir unter Anwendung dieses stabilisierenden Prinzips darstellten.

Bei der Reaktion von Bis-durochinon-nickel (0) mit Cyclooctatetraen entsteht unter Abspaltung eines Durochinon-Moleküls eine Komplexverbindung der Zusammensetzung Cyclooctatetraen-Ni (0)-Durochinon ², in der das in der Wannenform gebundene Cyclooctatetraen als Donator, das Durochinon-Molekül als Acceptor fungiert. Im Komplexmolekül tritt daher eine permanente Ladungstrennung auf: die Verbindung zeigt in benzolischer Lösung ein Dipolmoment von 3,47 Debye und ist wasserlöslich. Die bemerkenswert hohe Stabilität dieser Komplexverbindung legte nahe, auch andere cyclische Olefine als Liganden heranzuziehen. Insbesondere schienen "chelatisierende" Diene wie

Eigenschaften und Struktur

Die Nickel (0)-Durochinon-Komplexe des Cyclooctatetraens, Bicycloheptadiens, Dicyclopentadiens und Cyclooctadiens besitzen die in den Formeln I-IV dargestellten Strukturen. Es sind rote, kristalline, diamagnetische Verbindungen, die sich in Benzol und halogenierten Kohlenwasserstoffen,

z. B. Cyclooctadien-1.5, Bicyclo-(2.2.1) heptadien und Dicyclopentadien geeignet. In diesen Dienen sind die Doppelbindungen jeweils parallel oder zumindest angenähert parallel im Abstand von etwa 2,5 Å angeordnet 4. Der Abstand zweier gegenüberliegender Doppelbindungen im Cyclooctatetraen in der Wannenform beträgt demgegenüber etwa 2,8 Å 4. Es war daher zu erwarten, daß die erwähnten Diene sogar eine bessere Durchdringung der Olefin- mit den Metallzuständen gewährleisten könnten. In der Tat konnte bei der Reaktion von Bis-durochinon-nickel (0) mit Cyclooctatadien-1.5 das gesuchte Cyclooctadien-1.5-Ni(0) Durochinon in mäßiger Ausbeute erhalten werden. Wie bei der Darstellung des analogen Cyclooctatetraen-Komplexes erwies sich aber die einstufige Umsetzung von Nickelcarbonyl mit Durochinon und dem Dien in einem geeigneten Lösungsmittel präparativ der vorher erwähnten Methode als überlegen und ermöglichte die Darstellung der gesuchten Komplexe im "Eintopfverfahren" in bis zu 85-proz. Ausbeute.


^{1 3.} Mitteilung über Komplexe vom Typ des Bis-durochinon-nickel (0).

² 2. Mitt.: G. N. Schrauzer u. H. Thyret, Z. Naturforschg. 16 b, 353 [1961].

³ G. Wilke, Angew. Chem. 72, 581 [1960].

⁴ Nach orientierenden Messungen an maßgetreuen Modellen.

Äthern und Alkoholen im allgemeinen gut, in Petroläther und Wasser mäßig lösen. An der Luft längere Zeit unverändert haltbar sind die Komplexe des Cyclooctadiens, Dicyclopentadiens und Cyclooctatetraens. Der Komplex des Bicycloheptadiens

spaltet bei Raumtemperatur langsam das Olefin ab (Geruch!); mit einer Zersetzungstemperatur von 130° ist er auch thermisch am wenigsten beständig. Die in Benzol gemessenen Dipolmomente stehen nicht in Zusammenhang mit den Chinon-C=O-Frequenzen (vgl. Tab. 1). Der aufgefundene Gang der Dipolmomente dürfte daher in erster Linie von der Polarität der Nickel-Olefin-Bindung abhängen und damit im wesentlichen proportional der Donatorstärke der Olefine sein. Cyclooctatetraen wäre demnach in dieser Reihe der schwächste Donator, Cyclooctadien-(1.5) der stärkste, wofür wohl in erster Linie die verschieden großen Doppelbindungsabstände verantwortlich gemacht werden müssen.

Als Folge der permanenten Ladungstrennung in den Komplexmolekülen sind die Verbindungen ähnlich wie die Sydnone wasserlöslich, die roten Lösungen leiten den elektrischen Strom nicht. Die Komplexe lassen sich daraus durch Ausschütteln mit Methylenchlorid zurückgewinnen. Sowohl in saurem, als auch in alkalischem Medium tritt Zersetzung ein. Während jedoch die Cyclopentadienyl-Kobalt-Cyclopentadienon-Komplexe stabile Hydrohalogenide bilden ⁶, führt die Reaktion der Chinonkomplexe mit

Komplex	Zers. P.	C=0 [cm ⁻¹]	Dipolmo- ment [Debye]
Bis-durochinon- nickel(0) ⁵	205	1577	
Cyclooctatetraen- Ni(0)-Durochinon	165	1553	3,47
Bicycloheptadien- Ni(0)-Durochinon	130	1546	4,07
Dicyclopentadien- Ni(0)-Durochinon	137	1553	4,23
Cyclooctadien- Ni(0)-Durochinon	205	1553	4,30

Tab. 1. Zersetzungspunkte, IR-Carbonylfrequenzen und Dipolmomente (in Benzol) der Nickelkomplexe.

Säuren auch in nichtwäßrigem Medium ohne faßbare Zwischenstufen zum Nickelsalz, dem entsprechenden Olefin und Durohydrochinon.

Bei der thermischen Zersetzung im Vakuum zwischen 130 und 170° wird zunächst hauptsächlich die Olefinkomponente abgespalten. Als Rückstand verbleibt ein tiefvioletter, luftempfindlicher und nicht einheitlicher Körper der Zusammensetzung Ni(Durochinon) ca.1, aus dem durch Extraktion mit Methylenchlorid unter Luftausschluß neben nickelhaltigen Zersetzungsprodukten Bis-durochinonnickel(0) isoliert wird. Die thermische Zersetzung verläuft demnach nach der Gleichung:

2 Olefin-Ni-Durochinon

$$\frac{130-170^{\circ}}{-2 \text{ Oleftin}}$$
 2 "Ni (Durochinon)" $\frac{\text{CH}_{2}\text{Cl}_{2}}{\text{Ni}}$ (Durochinon) $_{2}$ + Ni

Es muß dabei zwischendurch ein koordinativ ungesättigtes Komplexfragment "Ni(0) (Durochinon)" auftreten, das sehr leicht in Bis-durochinon-nickel(0) und Nickel disproportioniert. Der gleiche violette, luftempfindliche Körper entsteht im übrigen auch beim Kochen benzolischer Suspensionen von Bis-durochinon-nickel unter Abspaltung von Durochinon.

Ligandenaustausch- und Polymerisationsreaktionen

Das Verhalten der Komplexe bei der thermischen Zersetzung zeigt die relative Labilität der Nickel-Olefin-Bindung in diesen Verbindungen an. Es lag

⁵ Die C=O-Frequenz des Durochinons liegt bei 1629 cm⁻¹ und nicht, wie in l. c.² irrtümlich angegeben wurde, bei bei 1687 cm⁻¹ (s. Z. Naturforschg. 16 b [1961], S. 354 linke Spalte, 9. Zeile von unten).

⁶ H. W. Sternberg, R. Markby u. I. Wender, Chem. and Ind. 1959, 1381,

daher nahe, an diesen Komplexen Liganden-Austauschversuche durchzuführen. Derartige Reaktionen laufen ja sogar bei den recht beständigen Aromatenkomplexen des Tricarbonvlchroms und -molvbdäns mit hinreichender Geschwindigkeit ab 7, 8. Setzt man zu einer Lösung von Cyclooctatetraen-Ni(0)-Durochinon Cyclooctadien 1.5 zu, so findet bei 80 bis 100° eine quantitative Umwandlung in den Cyclooctadien-Komplex statt. Die Reaktion läuft mit erheblich schlechteren Ausbeuten auch in umgekehrter Richtung. In analoger Weise ließen sich auch die übrigen Komplexe ineinander überführen. Es wurde jedoch allgemein festgestellt, daß die Reaktionen nur dann glatt und mit guten Ausbeuten verliefen, wenn durch Ligandenaustausch ein im Vergleich zum Ausgangskomplex stabilerer Komplex entstehen konnte. Aus diesen Versuchen ergab sich eine empirische Reihenfolge der Komplexstabilität: Cyclooctatetraen-Ni(0)-Dch < Bicycloheptadien-Ni(0)-Dch < Dicyclopentadien-Ni(0)-Dch < Cyclooctadien-Ni(0)-Dch (Dch = Durochinon).

Es ist erwähnenswert, daß die auf diese Weise ermittelte "Stabilitätsreihenfolge" mit der Zunahme der gemessenen Dipolmomente symbat verläuft. Es darf daraus der Schluß gezogen werden, daß die angegebene Reihenfolge die Zunahme der Stabilität der Nickel-Olefin-Bindungen wiedergibt.

Als versucht wurde, die Olefinmoleküle in den Komplexen durch einfache vinyloge Verbindungen auszutauschen, wurde eine überraschende Beobachtung gemacht. Setzte man zu einer Lösung der Komplexe in Methylenchlorid Acrylnitril zu, so entfärbte sich diese innerhalb von wenigen Minuten und es begannen sich Flocken von Polyacrylnitril abzuscheiden. Bis-durochinon-nickel (0) zeigt die gleiche Wirkung in noch stärkerem Maße. Andere Vinyloge reagierten dagegen nicht. Die Polymerisation des Acrylnitrils ließ sich durch Zusatz von Hydrochinon nicht inhibieren, was einen radikalischen Mechanismus unwahrscheinlich macht 9.

Es liegt nahe anzunehmen, daß es sich hier um eine polare Polymerisation des Acrylnitrils handelt, die durch ein elektrophiles Komplexfragment (möglicherweise dem "Ni(0)-Durochinon") ausgelöst wird. Die Komplexe reagieren auch mit Alkinen. Weitere Versuche sind hierüber noch im Gange.

⁸ W. Strohmeier u. H. Mittnacht, Chem. Ber. **93**, 2085 [1960].

Versuche zur Darstellung analoger Komplexverbindungen

Als Liganden in den Komplexen vom Typ Olefin-Ni(0)-Durochinon eignen sich Diene mit weniger günstiger Anordnung der Doppelbindungen nicht. So konnten z. B. keine Komplexe mit Vinylcyclohexen, Cyclooctadien 1.3, Cyclohexadien 1.3, Cyclopentadien, Butadien oder Divinylbenzol erhalten werden. Die Bevorzugung von Dienen mit parallelen Doppelbindungen bei der Komplexbildung mit Ni(0)-Durochinon führen wir darauf zurück, daß die Bindung des Chinonmoleküls an das Nickelatom jeweils eine Komponente von 3 d ± 4 p und 4 s ± 4 p-Mischfunktionen beansprucht. Damit ist die Symmetrie der noch ungebundenen Komponente dieser Funktionen jedoch festgelegt, so daß die Anlagerung ähnlich konfigurierter Doppelbindungssysteme an das Komplexfragment "Ni(0)-Durochinon" begünstigt wird.

Die Chinon-Komponente in den Olefin-Ni(0)-Durochinon-Komplexen konnte bisher nur in einem Fall variiert werden. Bei der Reaktion von Cyclooctadien 1.5 mit Nickelcarbonyl und p-Xylochinon entstand das rote, kristalline Cyclooctadien-Ni(0)-Xylochinon (Zers.P. 150°). Bei der gleichen Reaktion mit p-Chinon oder Toluchinon trat jeweils Oxydation des Nickels ein.

Experimenteller Teil

Mitbearbeitet von Frl. U. MERKEL

Allgemeine Vorschrift zur Darstellung der Olefin-Ni(0)-Durochinon-Komplexe

Eine Lösung von 2.6 g Durochinon in 10 ccm trockenem Methylenchlorid wird mit 20 bis 25 ccm des Olefins (Cyclooctadien, Bicycloheptadien oder Dicyclopentadien) versetzt und mit 3 bis 4 ccm Nickelcarbonyl in einer Stickstoffatmosphäre unter Rückfluß gekocht (als Rückflußkühler verwende man zweckmäßig Intensivkühler und als Kühlmittel Eis). Bei einer Ölbadtemperatur von 60 bis 80° wird Kohlenoxyd entbunden und die Reaktionslösungen färben sich immer tiefer rot bis rotbraun. Nach 4-stdg. Erhitzen destilliert man die flüchtigen Anteile zusammen mit dem noch vorhandenen Nickelcarbonyl in eine mit Trockeneis gekühlte Falle ab. Der Rückstand wird unter Stickstoff

⁷ G. Natta, R. Ercoli, F. Calderazzo u. F. Santabrogia, Chim. e Ind. [Milano] 40, 1003 [1958].

⁹ Im E.R.S.-Spektrum waren ebenfalls keine Radikale nachweisbar.

76 M. TSCHAPEK

mit 20 bis 30 ccm trockenem Methylenchlorid aufgenommen. Die entstehende tiefrote Lösung wird jetzt noch etwas eingeengt und schließlich mit 100 bis 150 ccm Petroläther (Siedebereich $60-80^{\circ}$) versetzt. Die Komplexe scheiden sich kristallin ab und werden abfiltriert. Die Ausbeuten betragen bis 85% der Th. bez. auf eingesetztes Durochinon.

Ni(0)-Durochinonkomplex mit

a) Cyclooctadien-(1.5):

$$m NiC_{18}H_{24}O_2$$
 Ber. Ni 17,73 C 65,30 H 7,31. Gef. Ni 17,87 C 65,45 H 7,25. Mol.-Gew. Ber. 331. Gef. (kyroskopisch in Benzol) 331.

b) Bicyclo (2.2.1) heptadien:

$$NiC_{17}H_{20}O_2$$
 Ber. Ni 18,61 C 64,81 H 6,40.
Gef. Ni 18.52 C 64.24 H 6.50.

c) Dicyclopentadien:

Der Ni(0)-xylochinonkomplex mit Cyclooctadien 1.5 wurde nach der gleichen Vorschrift erhalten. Zers.P.

 150° . Ber. Ni 19,38. Gef. Ni 19,20. Mol.-Gew. Ber. 303. Gef. (kryoskopisch in Benzol) 308.

Magnetische Messung: Cyclooctadien-Ni (0) - Durochinon ist diamagnetisch

$$[\chi_{\rm M} = (-148 \pm 66) \cdot 10^{-6} \, {\rm cm}^3 \, {\rm g}^{-1}]^{-10}$$
.

Einen einfachen und eindeutigen Beweis für die angenommene "Sandwich"-Struktur des Cyclooctadien-Ni(0)-Durochinons ergibt das kernmagnetische Resonanz-Spektrum. Es treten bei 40 mHz auf der lowfield-Seite von Tetramethylsilan drei Signale bei 3,70, 2,37 und 2,17 ppm auf (in DCCl₃), deren Intensitätsverhältnis 4:8:12 beträgt. Die ersten beiden Signale sind dabei den Protonen des symmetrisch an das Nikkelatom gebundenen Cyclooctadiens zuzuordnen. Das Signal bei 2,17 ppm entspricht den 12 Protonen des metallgebundenen Durochinons ^{11, 12}.

Herrn Prof. Dr. Dr. h.c. E. Wiberg danken wir für das dieser Arbeit entgegengebrachte Interesse und deren großzügige Förderung. Der Badischen Anilin-u. Sodafabrik A.G. sind wir für eine wertvolle Chemikalienspende zu großem Dank verpflichtet.

methylsilan. Die Durochinonmoleküle sind somit gleichartig an das Nickelatom gebunden.

Selective permeability of the rocks with respect to ions

By M. TSCHAPEK

From Instituto de Suelos y Agrotecnia, Cerviño 3101, Buenos Aires (Z. Naturforschg. 17 b, 76—78 [1962]; eingegangen am 12. August 1961)

- 1. The Dialysepotential (or "Membrane concentration potential") was investigated and the transference numbers of an ion was calculated for the diaphragm of different rocks.
 - 2. Most of the rocks have a selective permeability with respect to the ions.
 - 3. Alumstone and shale showed greatest selective permeability.

It is a well known fact most of the rocks are porous, that is to say contain free pores (and interstices) full of air and water. While the porosity varies from 0 to 50% the size of the pores varies much more: from Å up to cm. The fine pores

 $(<10^{-5}\,\mathrm{cm})$ due to their low permeability offer a greater interest coupled with a much greater difficulty for their determination.

The permeability of a porous body with reference to the ions depends in addition on the size of the pores as well as on the charges upon their surface. It is a fact, that charged pores of a size of $<10\,\text{Å}$ are impermeable to one kind of ion (anion or cation) whereas if the size is $>10^{-6}\,\text{cm}$ they are permeable to both kinds of ions. The selective permeability of a porous body with respect to the ions is determined by the Dialysepotential (or "Membrane concentration potential").

The method of measuring the Dialysepotential developed by Michaelis¹, Meyer², Manegold³,

¹⁰ Nach Messungen von Herrn A. Sepp, Technische Hochschule München.

Eine gesättigte Lösung von Bis-durochinon-nickel(0) in DCCl₃ zeigt das Signal der Protonen des Durochinons bei 1,80 ppm (40 mHz) auf der low-field-Seite von Tetra-

Für die Durchführung der kernmagnetischen Untersuchungen sind wir Herrn Dr. W. Brügel (BASF, Ludwigshafen) zu großem Dank verpflichtet.

¹ L. Michaelis, A. Fujita, Biochem. Z. 142, 398 [1923].

² K. Meyer, J. Sievers, Helv. chim. Acta 19, 649, 665 [1936].

³ E. Manegold, Kapillarsysteme Bd. 1, Straßenbau, Chemie und Technik Verlagsgesellschaft, Heidelberg 1955.