wobei das freiwerdende Stickoxyd mit Triphenylphosphin sekundär unter Bildung von Distickstoffoxyd und Triphenylphosphinoxyd reagiert:

2 Fe(NO)₃X+3 P(C_6H_5)₃

 $\rightarrow 2\; Fe\,({\rm NO})\,_2P\,({\rm C_6H_5})\,_3X + {\rm N_2O} + P\,({\rm C_6H_5})\,_3{\rm O}\;.$

In einer Nebenreaktion entsteht in geringem Umfang Bis-[triphenylphosphin]-dinitrosyleisen, das IR-spektroskopisch nachgewiesen wurde.

Die Untersuchungen, über die an anderer Stelle eingehend berichtet wird, werden in jeder Hinsicht weiter

ausgebaut.

Über Komplexverbindungen der Nickelnitrosylhalogenide mit Organylen des Phosphors (III) und seiner Homologen

Von W. Hieber und I. Bauer

Anorganisch-Chemisches Laboratorium der TH München (Z. Naturforschg. 16 b, 556 [1961]; eingeg. am 20. Juni 1961)

Nickelnitrosylhalogenide, [NiNOX]_x (x vermutlich 4), reagieren gleichfalls mit Organylen des Phosphors (III) und seiner Homologen. Nickelnitrosyljodid und *Triphenylphosphin* geben so in abs. Alkohol tiefblaues, kristallines Bis-[jodo-nitrosyl-triphenylphosphin-nickel], [Ni (NO) P (C₆H₅)₃J]₂. Die an der Luft relativ beständige Substanz ist gut in Benzol, nur wenig in Petroläther, Äthanol und Äther löslich. Das IR-Spektrum weist auf Jodobrücken hin und zeigt die charakteristische NO-Absorptionsbande bei 1747 cm⁻¹ (fest in KBr). Es liegt eine diamagnetische (R. Kramalowsky), somit kryptonkonfigurierte Verbindung mit tetraedrischer Umgebung für jedes Nickelatom vor.

 $[Ni(NO)P(C_6H_5)_3J]_2$ (955,77)

Ber. Ni 12,28 C 45,27 N 2,93 P 6,48 J 26,56 . Gef. Ni 12,21 C 45,76 N 2,93 P 6,29 J 26,29 . Mol.-Gew. 896 (in C_6H_6).

Während die entsprechenden Dinitrosyl-Verbindun-

gen des Mangans¹, Eisens und Kobalts² monomer sind, ist die hier beschriebene Verbindung mit 1 NO/Ni dimer

Verbindungen desselben Typs entstehen auch bei den Umsetzungen von Nickelnitrosyljodid mit Triphenylphosphit und Tricyclohexylphosphin. Mit letzterem wurden eine tiefblaue und eine blaugrüne Verbindung erhalten, die an Hand des IR-Spektrums als cisbzw. trans-Isomeres identifiziert wurden (nach W. Beck u. K. Lottes).

Mit Triphenylarsin und Triphenylstibin als Reaktionspartner werden jeweils 2 Mole an Nickelnitrosyljodid unter Bildung der Komplexe Ni (NO) (AsR₃) ₂J und Ni (NO) (SbR₃) ₂J (R = C_6H_5) addiert.

 $Ni(NO) [As(C_6H_5)_3]_2J$ (828,03)

Die wohl tetraedrisch gebauten Verbindungen sind monomer und diamagnetisch. Sie entstehen auch aus $NiBr_2[P(C_6H_5)_3]_2$ und $NaNO_2$ in Tetrahydrofuran ³.

Die Arbeiten werden fortgesetzt.

W. HIEBER, W. BECK U. H. TENGLER, Z. Naturforschg. 16 b, 68 [1961].

² W. Hieber, K. Heinicke u. R. Kramolowsky, s. voranstehende Mitteilungen.

³ R. D. Feltham, Inorg. and Nucl. Chem. 14, 307 [1960].

Über Aromatenkomplexe von Metallen LII ¹ Cyclopentadienyl-kobalt(III)-benzol-Kation

Von Ernst Otto Fischer und Rainer Dieter Fischer Institut für Anorganische Chemie der Universität München (Z. Naturforschg. 16 b, 556—557 [1961]; eingeg. am 31. Mai 1961)

Das Cyclopentadienyl-kobalt(III)-benzol-Kation $[C_5H_5Co(III)C_6H_6]^{\frac{1}{2}}\oplus$, ein neuer Fünfring-Sechsring-Sandwichkomplex, wird beschrieben. Seine Darstellung gelingt durch Ablösen zweier Hydridienen von Cyclopentadienyl-kobalt(I)-cyclohexadien-(1.3) mittels Triphenylmethyl-tetrafluoborat.

Dauben und Honnen führten 1958 bei der Darstellung des $[C_7H_7Mo(CO)_3]^{\odot}$ -Kations 2 aus $C_7H_8Mo(CO)_3$ die erste Hydridabspaltung an einem π -gebundenen

¹ LI, Mitt.: E. O. Fischer u. J. Seeholzer, Z. anorg. allg. Chem., im Erscheinen.

² H. J. Dauben jr. u. L. R. Honnen, J. Amer. chem. Soc. 80, 5570 [1958].

² a) H. J. Dauben jr., L. R. Honnen u. D. J. Bertelli, 15th Southwest Regional Meeting, Amer. chem. Soc.. Baton

Kohlenwasserstoff mit Triphenylmethyl-tetrafluoborat (TPM) durch. Inzwischen erwies sich dieselbe Methode nicht nur auf weitere Siebenring-Komplexe ³ als anwendbar, sondern auch auf π-gebundenes 1.3-Cyclohexadien ^{4, 3c}, das gleichfalls reaktive CH₂-Gruppen enthält. Während in allen bisherigen Fällen stets nur ein Hydridion pro Molekül abgelöst wurde, fanden wir nun bei der Umsetzung von Cyclopentadienyl-kobalt (I)-cyclohexadien ⁵ mit TPM in CH₂Cl₂ eine in einem Zuge verlaufende, doppelte H^Θ-Abspaltung gemäß dem folgenden Schema:

$$C_5H_5CoC_6H_8 \xrightarrow{TPM\ (I)} \{ [C_5H_5CoC_6H_7] \overset{\odot}{\circ} \}$$

$$\xrightarrow{TPM\ (II)} [C_5H_5CoC_6H_6]^2 \overset{\odot}{\circ}.$$

Rouge 1959, S. 89; b) J. D. Munro u. P. L. Pauson, Proc. chem. Soc. 1959, 267; c) H. J. Dauben jr. u. D. J. Bertelli, J. Amer. chem. Soc. 83, 498 [1961].

⁴ E. O. FISCHER u. R. D. FISCHER, Angew. Chem. 72, 919 [1960].

⁵ W. Fröhlich, Dissert., Univ. München 1960, S. 109.