fen ermöglicht eine beträchtliche Einsparung an Lösungsmitteln sowie die kontinuierliche Gestaltung des Reinigungsprozesses.

3. Die Ausfällung der B<sub>12</sub>-Vitamine aus der wäßrigen Lösung durch Phenole in Gegenwart von Kieselgur gestattet eine bequeme Gewinnung eines Vitamin B<sub>12</sub>-Kieselgur-Präparates, das für die weitere Reinigung durch Verteilungschromatographie besondere Vorteile bietet.

Wir konnten leider nur an einer sehr beschränkten Anzahl von Phenolen unsere Versuche durchführen. Auf Grund der gewonnenen Erkenntnisse müßte es aber möglich sein, phenolische Verbindungen herzustellen, die bei sehr geringer Löslichkeit in Wasser sowie einem hohen Schmelzpunkt eine noch viel größere Affinität zu den Vitaminen der B<sub>12</sub>-Gruppe besitzen als z. B. m- und p-Chlorphenol. Solche Phenole würden sich vor allem zur Extraktion (Adsorption) von B<sub>12</sub>-Vitaminen aus sehr verdünnten wäßrigen Lösungen eignen.

Die an den B<sub>12</sub>-Vitaminen gewonnenen Erkenntnisse über die Funktion der Phenole bei der Extraktion, Fällung usw. müßten wohl auch für die Reinigung anderer Stoffe mit Hilfe von Phenolen gelten und sich vorteilhaft verwerten lassen.

## Über die Aufnahme von 5.6-Dimethyl-benzimidazol und 5.6-Dichlorbenzimidazol durch *Lactobacillus leichmannii* 313

Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. 10. Mitt.

Von Friedrich Weygand\*, Helmut Simon und Hans Klebe Aus dem Chemischen Institut der Universität Heidelberg (Z. Naturforschg. 9b, 761-763 [1954]; eingegangen am 26. Oktober 1954)

Lactobacillus leichmannii 313 nimmt bei der Züchtung in Gegenwart von 5.6-Dimethylbenzimidazol-[2-14C] oder 5.6-Dichlor-benzimidazol-[2-14C] 40 000 bis 47 000 Moleküle dieser Verbindungen pro Zelle auf, gleichgültig ob Vitamin B<sub>19</sub> oder Thymidin als Wuchsstoff verwendet wird. — Die Synthese der radioaktiven Benzimidazole im 1/2-mMol-Maßstab wird beschrieben.

5.6-Dimethyl-benzimidazol und 5.6-Dichlor-benzimidazol sind bei Abwesenheit von Adenin oder natürlich vorkommenden Adenin-Verbindungen Hemmstoffe für Lactobacillus leichmanni 3131. Die Hemmung kann durch physiologische Konzentrationen Vitamin B<sub>12</sub> oder durch große Konzentrationen Thymidin aufgehoben werden.

Wir haben nun ermittelt, wie viele Moleküle Hemmstoff unter definierten Bedingungen pro Bakterienzelle aufgenommen werden. Die Züchtung erfolgte in dem früher angegebenen Medium 60 Stdn. bei 37°, wobei die Hemmstoff- bzw. Wuchsstoffkonzentrationen so abgestimmt waren, daß etwa gleiches Endwachstum erreicht wurde. So wurden einerseits 0,03 m $\gamma$ /ccm Vitamin B<sub>12</sub> und 16,6  $\gamma$ /ccm Dimethyl-benzimidazol bzw. 0,04 mγ/ccm Vitamin  $B_{12}$  und 16,6  $\gamma$ /ccm-Dichlor-benzimidazol, andererseits 7,8  $\gamma$ /ccm Thymidin und 16,6  $\gamma$ /ccm Dimethyl-

\* Neue Anschrift: Chem. Inst. d. Univers. Tübingen. Die vorliegende Arbeit wurde 1953 ausgeführt.

<sup>1</sup> F. Weygand, A. Wacker u. F. Wirth, Z. Naturforschg. **6 b**, 25 [1951].

<sup>2</sup> Vgl. hierzu: F. Weygand, A. Wacker u. H. Dellweg, Z. Naturforschg. **7 b**, 19 [1952]; H. Noll, J. Bang, E. Sorkin u. H. Erlenmeyer, Helv. chim. Acta 34, 340 [1951].

benzimidazol bzw. 11,6 y/ccm Thymidin und 16,6 v/ccm Dichlorbenzimidazol vorgegeben.

Die Bakterien wurden nach der Züchtung mit Wasser, 95-proz. Alkohol, 5-proz. wäßriger Trichloressigsäurelösung, Äthanol, Äthanol-Äther und Äther gewaschen und im Exsikkator getrocknet. Die Messung der Radioaktivität erfolgte auf Schälchen von 0,78 cm Durchmesser und einem dünnfenstrigen Zählrohr. Zur Bestimmung der im mg getrockneter Bakterien vorhandenen Zellen wurde das Verfahren des Vergleichs mit dem Erythrocytengehalt des menschlichen Blutes verwendet, wobei die Zählung an der ausgewachsenen Kultur vorgenommen und die Bakteriendichte (photoelektrisch bestimmt) mit dem Trockengewicht in Relation gesetzt wurde. So ergab sich, daß auf 1 mg getrockneter Bakterien 4,4·109 Zellen kommen 2,3. Die Radioaktivität der

<sup>3</sup> Aus der Menge des vorgegebenen Vitamins B<sub>12</sub> berechnet sich, daß zum Wachstum einer Bakterienzelle bei einer Endpopulation von 2,7·109 Bakterien/ccm etwa 12 Moleküle Vitamin B<sub>12</sub> benötigt werden. Dies stimmt gut überein mit Messungen, die mit Hilfe von 60Co-markiertem Vitamin B12 von R. L. Davis, Proc. Soc. exp. Biol. Med. 79, 273 [1952], vorgenommen wurden. Danach werden 8 Moleküle  $B_{12}$  pro gebildete Bakterienzelle aufgenommen.

|                  | Wuchsstoff                 |                            | Hemmstoff                 |                          |                              |                      |
|------------------|----------------------------|----------------------------|---------------------------|--------------------------|------------------------------|----------------------|
|                  |                            | Konz                       |                           |                          |                              |                      |
| Ver-<br>such     | Vitamin<br>B <sub>12</sub> | Thymidin                   | Dimethyl-<br>benzimidazol | Dichlor-<br>benzimidazol | mg<br>Bakterien              | Impulse/Min.         |
| a<br>b<br>c<br>d | 0,03 mγ<br>0,03 mγ         | 7,8 $\gamma$ 11,6 $\gamma$ | 16,6 γ<br>16,6 γ          | 16,6 γ<br>16,6 γ         | 41,2<br>44,4<br>45,2<br>43,2 | 77<br>78<br>80<br>83 |

Tab. 1. Aufnahme von 5.6-Dimethyl-benzimidazol-[2-14C] und 5.6-Dichlor-benzimidazol-[2-14C] durch Lb. leichmannii 313.

Bakterien wurde in "unendlich dicker" Schicht gemessen (s. Tab. 1).

Auf Grund des Zerfallsgesetzes kann man von den in der Zeiteinheit zerfallenden radioaktiven Molekülen bei bekannter Halbwertzeit alle radioaktiven Moleküle der Substanz, die zur Messung gebracht wurden, berechnen. Kennt man nun das Mischungsverhältnis von radioaktiven zu nicht-radioaktiven Molekülen in einem Präparat, so kann auf Grund der Zerfälle die Anzahl aller Moleküle bestimmt werden. Ist nun die Absolutaktivität einer Substanz bekannt, so ist es möglich, durch Vergleich die Absolutaktivität anderer Substanzen unter Benutzung derselben Meßtechnik zu ermitteln.

Aus der gemessenen Anzahl Impulse/Min. der Bakterien in unendlich dicker Schicht läßt sich die Anzahl der Zerfälle/Min. in 1 mg Bakterien durch Vergleich bestimmen: Durch Verdünnen eines Präparates bekannter Aktivität mit dem chemisch gleichen, nicht-radioaktiven Material werden in unendlich dicker Schicht A Impulse gemessen. Die Aktivität von 1 mg des verdünnten Präparates berechnet sich zu B Impulsen/Min. Die gemessene Aktivität der Bakterien in unendlich dicker Schicht sei C Imp./Min. Daher ist die Aktivität X von 1 mg Bakterien  $X = \frac{B \cdot C}{A}$ . Bei einer 6580-fachen Verdünnung des hoch-radioaktiven Dimethylbenzimidazols mit nicht-radioaktivem Dimethyl-benzimidazol wurden in der gleichen Meßanordnung wie bei den Bakterien 250 Imp./Min. gemessen.  $X = \frac{B \cdot 80}{250}$ 

4 1 mMol einer Verbindung der Aktivität y = dN/dt mC/mMol enthält  $N_o = \frac{t_{\rm H} \cdot dN/dt}{\ln 2}$  markierte Moleküle. Somit ergeben sich im vorliegenden Fall mit  $t_{\rm H} = 5.4 \cdot 3.65 \cdot 2.4 \cdot 3.6 \cdot 10^9$  sec und  $y = dN/dt = 0.83 \cdot 3.7 \cdot 10^7$  Zerfälle/sec  $N_o = \frac{5.4 \cdot 3.65 \cdot 2.4 \cdot 3.6 \cdot 10^9 \cdot 0.83 \cdot 3.7 \cdot 10^7}{0.002} = 7.5 \cdot 10^{18}$ 

markierte Moleküle in 1 mMol. Da 1 mMol insgesamt 6,02·10<sup>20</sup> Moleküle enthält, sind 80-mal so viel *nicht-markierte* wie markierte Moleküle im mMol enthalten.

B, die Aktivität von 1 mg des verdünnten Präparates, ergibt sich aus der ursprünglichen Aktivität von 0,83 mC/mMol und dem Molgewicht und der Verdünnung zu

$$B = \frac{0.83 \cdot 3.7 \cdot 10^7 \cdot 60}{146 \cdot 6580} = 1920 \text{ Zerf\"{a}lle/Min.}$$
 
$$X = \frac{1920 \cdot 80}{250} = 614 \text{ Zerf./Min.}$$

Das Zerfallsgesetz, in der Form  $N_{\rm o}=\frac{t_{\rm H}\cdot {\rm d}N}{\ln 2\cdot {\rm d}t}$  angesetzt, wobei  $N_{\rm 0}$  die Anzahl aller radioaktiven Moleküle,  $t_{\rm H}$  die Halbwertzeit in Min. und  ${\rm d}N/{\rm d}t=X$  ist, ergibt mit der Halbwertzeit von 5400 Jahren für  $^{14}{\rm C}$   $N_{\rm o}=\frac{5400\cdot 365\cdot 24\cdot 60\cdot 614}{0.693}=2,5\cdot 10^{12}$ 

Da nun bei einer Aktivität von 0,83 mC/mMol auf ein radioaktives Molekül 80 nicht-radioaktive kommen 4, ergeben sich  $\frac{2,5\cdot 10^{12}\cdot 80}{4,4\cdot 10^9}=45\,000$  Moleküle radioaktives + nicht-radioaktives Dimethyl-benzimidazol auf eine Bakterienzelle.

Die Ergebnisse aller Versuche sind in Tab. 2 zusammengestellt. Man erkennt, daß unabhängig davon, ob die Hemmung der beiden Benzimidazole nicht-kompetitiv mit physiologischen Konzentrationen Vitamin  $B_{12}$  oder mit großen Konzentrationen Thymidin vorgenommen wird, etwa die gleiche Anzahl Hemmstoffmoleküle pro Bakterienzelle vorhanden ist. Dies zeigt, daß die Enthemmung mit Thymidin nicht nach dem kompetitiven (konkurrierenden) Mechanismus vor sich geht, denn sonst müßte die Zahl der Moleküle Hemmstoff pro Bakterienzelle wesentlich kleiner sein als bei der nicht-kompetitiven Enthemmung mit Vitamin  $B_{12}^{\ 5}$ .

<sup>5</sup> Vgl. hierzu die Abb. 6 der Arbeit F. Weygand, A. Wacker u. H. Dellweg, Z. Naturforschg. 7b, 19 [1952], aus der hervorgeht, daß bei der nicht-kompetitiven Enthemmung von 5-Brom-uracil mit Folsäure sich in den Bakterien (Sc. faecalis R) mehr Hemmstoff befindet als bei der kompetitiven Enthemmung mit Thymin.

| Ver-             | Moleki<br>Bakterier            | üle pro<br>nzelle an          | Im Nährmedium an-<br>gebotene Moleküle<br>Wuchsstoff pro<br>Bakterienzelle |                                     |  |
|------------------|--------------------------------|-------------------------------|----------------------------------------------------------------------------|-------------------------------------|--|
| such             | Dimethyl-<br>benzimi-<br>dazol | Dichlor-<br>benzimi-<br>dazol | Vitamin<br>B <sub>12</sub>                                                 | Thymidin                            |  |
| a<br>b<br>c<br>d | 40 000<br>45 000               | 45 000<br>47 000              | 8<br>12                                                                    | $1 \cdot 10^{7}$ $1,5 \cdot 10^{7}$ |  |

Tab. 2. Gehalt einer Bakterienzelle an Molekülen Dimethylbenzimidazol oder Dichlorbenzimidazol und pro Zelle benötigte Zahl Wuchsstoffmoleküle.

Synthese von 5.6-Dimethyl-benzimidazol-[2-14C] und 5.6-Dichlor-benzimidazol-[2-14C]

Die Darstellung erfolgte durch Kondensation von 1.2-Dimethyl-4.5-diamino-benzol-dihydrochlorid bzw. der entsprechenden Dichlor-Verbindung mit Natriumformiat in Glykol.

Für die Reduktion kleiner Mengen von 1.2-Dichlor-4.5dinitrobenzol zum Diamin erwies sich folgende Arbeitsweise als günstig.

1.2-Dichlor-4.5-diaminobenzol-dihydrochlorid: 2,4 g 1.2-Dichlor-4.5-dinitrobenzol wurden unter Rühren und Erwärmen auf 70° in 60 ccm Äthanol und 30 ccm Wasser gelöst. Dazu lief unter Turbinieren in rascher Tropfenfolge eine Lösung von 23 g Natriumdithionit in 70 ccm Wasser ein. Die am Ende der Reduktion fast farblose Lösung wurde im Vakuum zur Trockne gebracht. Nach Zerkleinerung des Rückstandes wurde mit Soda angeteigt und mit heißem Benzol das Diamin wiederholt schen Lösungen wurde mit ätherischer Salzsäure das Diamin ausgefällt. Das Hydrochlorid kann durch Sublimation unter 0,1 Torr gereinigt werden. Die freie Base ist aus Wasser umkristallisierbar.

5.6-Dimethyl-benzimidazol-[2-14C]: 28 mg Natriumformiat-14C (0,41 mMol, Aktivität 0,83 mC/mMol) wurden in einem kleinen Schliffkölbchen mit 110 mg 1.2 Dimethyl-4.5-diaminobenzoldihydrochlorid und 1,2 ccm getrocknetem Glykol versetzt. Unter einem leichten Stickstoffstrom wurde im offenen Kölbchen im Paraffinbad langsam auf 60° erhitzt, wobei sich alles löste. Die wieder abgekühlte Lösung wurde mit einem Tropfen ätherischer Salzsäure auf etwa  $p_{\mathrm{H}}\,4$  gebracht und nun innerhalb 30 Min. auf 80° erhitzt, 20 Min. bei dieser Temperatur belassen und dann innerhalb 30 Min. auf 180° erhitzt und 2 Stdn. bei dieser Temperatur gehalten. Sodann wurde das Glykol im Vakuum abdestilliert und der Rückstand in 6 ccm heißem Wasser aufgenommen. Die mit Ammoniak in der Siedehitze versetzte Lösung zeigte beim Abkühlen zunächst nur die Abscheidung geringer Mengen eines Öles. Durch abermaliges Erhitzen zum Sieden und Zugabe von weiteren 3 ccm Wasser und langsames Abkühlen gelang es, schöne, lange Kristallnadeln zu erhalten, Schmp. 196-198°, Ausb. 32 mg (60% d. Th., ber. auf eingesetztes Ba14CO<sub>3</sub>).

5.6-Dichlor-benzimidazol-[2-14C]: Die Darstellung erfolgte aus 28 mg Natriumformiat-14C (0,83 mC/mMol) und 125 mg reinem 1.2-Dichlor-4.5-diaminobenzol-dihydrochlorid in 1 ccm trockenem Glykol. Jedoch wurde nur auf 150° 2 Stdn. lang erhitzt. Es hatte sich bei Vorversuchen mit nicht-radioaktivem Material herausgestellt, daß bei höherer Temperatur weitgehende Zersetzung eintritt. Die Lösung färbte sich beim Erhitzen kirschrot. Der nach dem Abdampfen des Glykols im Vakuum hinterbleibende Rückstand wurde mit 8 ccm Wasser unter Rückfluß erhitzt. Aus der filtrierten, heißen Lösung schied sich nach Zusatz von Ammoniak ein bräunliches, feinkristallines Rohprodukt ab. Nach Umkristallisieren aus Wasser und Aceton unter Zugabe von etwas Kohle, was einmal wiederholt wurde, lagen 29 mg 1.2-Dichlorbenzimidazol-[2-14C] vom Schmp. 203—205° (Ausb. 45%, ber. auf Ba14CO<sub>9</sub>) vor.

Der Deutschen Forschungsgemeinschaft danken wir bestens für die Unterstützung dieser Arbeit durch eine Sachbeihilfe.