Home Effect of Combined Kappa–Cairns distributed electrons on ion-acoustic solitary structures in electron–ion dusty plasma
Article
Licensed
Unlicensed Requires Authentication

Effect of Combined Kappa–Cairns distributed electrons on ion-acoustic solitary structures in electron–ion dusty plasma

  • Rittika Pain , Anup Bandyopadhyay , Sandip Dalui ORCID logo EMAIL logo and Sankirtan Sardar ORCID logo
Published/Copyright: June 16, 2025

Abstract

We have studied the formation of arbitrary amplitude ion-acoustic solitary structures using the Sagdeev pseudo-potential approach in an unmagnetized dusty plasma system in the absence of collision whose constituents are Combined Kappa–Cairns distributed electrons, negative-charged stationary dust particulates, and adiabatic warm ions. This system supports both positive and negative potential conventional solitons along with the coexistence of these two solitons, double layers, and supersolitons of negative polarity. Different types of solitary structures along with the impacts of the plasma parameters, viz., Mach number, superthermal parameter, and nonthermal parameter, of this system on the amplitudes of these structures have been investigated by plotting the pseudo-potential with respect to the electrostatic potential. The formation of supersoliton after the formation of soliton has been illustrated using the mechanical analogy of phase portraits. The transitions of soliton to supersoliton and soliton to double layer have been illustrated.


Corresponding author: Sandip Dalui, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, India, E-mail: 

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All the authors contributed equally to this work.

  4. Use of Large Language Models, AI and Machine Learning Tools: The authors declare they have not used AI tools in the creation of this article.

  5. Conflict of interest: The authors declare that they have no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: All relevant data are included in the manuscript.

References

[1] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, US, CRC Press, 2015.10.1201/9781420034103Search in Google Scholar

[2] U. De Angelis, V. Formisano, and M. Giordano, “Ion plasma waves in dusty plasmas: Halley’s comet,” J. Plasma Phys., vol. 40, no. 3, p. 399, 1988. https://doi.org/10.1017/s0022377800013386.Search in Google Scholar

[3] C. K. Goertz, “Dusty plasmas in the solar system,” Rev. Geophys., vol. 27, no. 2, p. 271, 1989. https://doi.org/10.1029/rg027i002p00271.Search in Google Scholar

[4] F. Verheest, “Waves and instabilities in dusty space plasmas,” Space Sci. Rev., vol. 77, nos. 3–4, p. 267, 1996. https://doi.org/10.1007/bf00226225.Search in Google Scholar

[5] R. L. Merlino, Dusty Plasmas and Applications in Space and Industry, vol. 81, Kerala, India, Transworld Research Network, 2006.Search in Google Scholar

[6] F. Verheest, Waves in Dusty Space Plasmas, Germany, Springer Science & Business Media, 2000.10.1007/978-94-010-9945-5Search in Google Scholar

[7] P. K. Shukla, “A survey of dusty plasma physics,” Phys. Plasmas, vol. 8, no. 5, p. 1791, 2001. https://doi.org/10.1063/1.1343087.Search in Google Scholar

[8] O. Havnes, F. Melandsø, C. La Hoz, T. Aslaksen, and T. Hartquist, “Charged dust in the Earth’s mesopause; effects on radar backscatter,” Phys. Scr., vol. 45, no. 5, p. 535, 1992.10.1088/0031-8949/45/5/022Search in Google Scholar

[9] P. K. Shukla and V. P. Silin, “Dust ion-acoustic wave,” Phys. Scr., vol. 45, no. 5, p. 508, 1992. https://doi.org/10.1088/0031-8949/45/5/015.Search in Google Scholar

[10] A. Barkan, N. D’angelo, and R. L. Merlino, “Experiments on ion-acoustic waves in dusty plasmas,” Planet. Space Sci., vol. 44, no. 3, p. 239, 1996. https://doi.org/10.1016/0032-0633(95)00109-3.Search in Google Scholar

[11] R. L. Merlino, A. Barkan, C. Thompson, and N. Dangelo, “Laboratory studies of waves and instabilities in dusty plasmas,” Phys. Plasmas, vol. 5, no. 5, p. 1607, 1998. https://doi.org/10.1063/1.872828.Search in Google Scholar

[12] Y. Nakamura and A. Sarma, “Observation of ion-acoustic solitary waves in a dusty plasma,” Phys. Plasmas, vol. 8, no. 9, p. 3921, 2001. https://doi.org/10.1063/1.1387472.Search in Google Scholar

[13] P. K. Shukla and M. Rosenberg, “Boundary effects on dust-ion-acoustic and dust-acoustic waves in collisional dusty plasmas,” Phys. Plasmas, vol. 6, no. 3, p. 1038, 1999. https://doi.org/10.1063/1.873345.Search in Google Scholar

[14] R. Bharuthram and P. K. Shukla, “Large amplitude ion-acoustic solitons in a dusty plasma,” Planet. Space Sci., vol. 40, no. 7, p. 973, 1992. https://doi.org/10.1016/0032-0633(92)90137-d.Search in Google Scholar

[15] A. Das, A. Bandyopadhyay, and K. P. Das, “Dust ion-acoustic solitary structures in non-thermal dusty plasma,” J. Plasma Phys., vol. 78, no. 2, p. 149, 2012. https://doi.org/10.1017/s002237781100050x.Search in Google Scholar

[16] A. Paul, A. Bandyopadhyay, and K. P. Das, “Dust ion acoustic solitary structures in presence of nonthermally distributed electrons and positrons,” Phys. Plasmas, vol. 24, no. 1, p. 013707, 2017. https://doi.org/10.1063/1.4975089.Search in Google Scholar

[17] D. Debnath and A. Bandyopadhyay, “Combined effect of Kappa and Cairns distributed electrons on ion acoustic solitary structures in a collisionless magnetized dusty plasma,” Astrophys. Space Sci., vol. 365, no. 4, p. 72, 2020. https://doi.org/10.1007/s10509-020-03786-6.Search in Google Scholar

[18] R. Z. Sagdeev and M. A. Leontovich, Cooperative Phenomena and Shock Waves in Collisionless Plasmas, vol. 4, New York, Reviews of Plasma Physics, Consultants Bureau, 1966.Search in Google Scholar

[19] H. Ikezi, R. Taylor, and D. Baker, “Formation and interaction of ion-acoustic solitions,” Phys. Rev. Lett., vol. 25, no. 1, p. 11, 1970. https://doi.org/10.1103/physrevlett.25.11.Search in Google Scholar

[20] R. Bostrom, “Observations of weak double layers on auroral field lines,” IEEE Trans. Plasma Sci., vol. 20, no. 6, p. 756, 1992. https://doi.org/10.1109/27.199524.Search in Google Scholar

[21] R. Boström, G. Gustafsson, B. Holback, G. Holmgren, H. Koskinen, and P. Kintner, “Characteristics of solitary waves and weak double layers in the magnetospheric plasma,” Phys. Rev. Lett., vol. 61, no. 1, p. 82, 1988. https://doi.org/10.1103/physrevlett.61.82.Search in Google Scholar

[22] P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, “Freja multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, no. 17, p. 1827, 1994.10.1029/94GL00886Search in Google Scholar

[23] H. Alfvén, Cosmic Plasma, vol. 82, Heidelberg, Springer Science & Business Media, 2012.Search in Google Scholar

[24] A. E. Dubinov and D. Y. Kolotkov, “Above the weak nonlinearity: super-nonlinear waves in astrophysical and laboratory plasmas,” Rev. Mod. Plasma Phys., vol. 2, no. 1, p. 1, 2018.10.1007/s41614-018-0014-9Search in Google Scholar

[25] M. Temerin, K. Cerny, W. Lotko, and F. S. Mozer, “Observations of double layers and solitary waves in the auroral plasma,” Phys. Rev. Lett., vol. 48, no. 17, p. 1175, 1982. https://doi.org/10.1103/physrevlett.48.1175.Search in Google Scholar

[26] F. S. Mozer, R. Ergun, M. Temerin, C. Cattell, J. Dombeck, and J. Wygant, “New features of time domain electric-field structures in the auroral acceleration region,” Phys. Rev. Lett., vol. 79, no. 7, p. 1281, 1997. https://doi.org/10.1103/physrevlett.79.1281.Search in Google Scholar

[27] R. E. Ergun, et al.., “Debye-scale plasma structures associated with magnetic-field-aligned electric fields,” Phys. Rev. Lett., vol. 81, no. 4, p. 826, 1998. https://doi.org/10.1103/physrevlett.81.826.Search in Google Scholar

[28] A. Rees, A. Balogh, and T. Horbury, “Small-scale solitary wave pulses observed by the Ulysses magnetic field experiment,” J. Geophys. Res.: Space Phys., vol. 111, no. A10, 2006. https://doi.org/10.1029/2005ja011555.Search in Google Scholar

[29] Y. Yang, et al.., arXiv preprint arXiv:2412.16824, 2024.Search in Google Scholar

[30] R. Tiwari, S. Jain, and M. Mishra, “Large amplitude ion-acoustic solitons in dusty plasmas,” Phys. Plasmas, vol. 18, no. 8, p. 083702, 2011. https://doi.org/10.1063/1.3609832.Search in Google Scholar

[31] G. Livadiotis, Kappa Distributions: Theory and Applications in Plasmas, Munich, Elsevier, 2017.10.1016/B978-0-12-804638-8.00004-8Search in Google Scholar

[32] H. Alfvén, Cosmic Plasma, vol. 82, Holland, D. Reidel Publishing Company, 1981.10.1007/978-94-009-8374-8Search in Google Scholar

[33] R. A. Cairns, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, no. 20, p. 2709, 1995. https://doi.org/10.1029/95gl02781.Search in Google Scholar

[34] V. M. Vasyliunas, “A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3,” J. Geophys. Res., vol. 73, no. 9, p. 2839, 1968. https://doi.org/10.1029/ja073i009p02839.Search in Google Scholar

[35] S. Christon, D. Mitchell, D. Williams, L. Frank, C. Huang, and T. Eastman, “Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions,” J. Geophys. Res.: Space Phys., vol. 93, no. A4, p. 2562, 1988. https://doi.org/10.1029/ja093ia04p02562.Search in Google Scholar

[36] A. Shrauner and W. Feldman, “Electromagnetic ion-cyclotron wave growth rates and their variation with velocity distribution function shape,” J. Plasma Phys., vol. 17, no. 1, p. 123, 1977. https://doi.org/10.1017/s002237780002047x.Search in Google Scholar

[37] M. Leubner, “On Jupiter’s whistler emission,” J. Geophys. Res.: Space Phys., vol. 87, no. A8, p. 6335, 1982. https://doi.org/10.1029/ja087ia08p06335.Search in Google Scholar

[38] T. Baluku, M. Hellberg, I. Kourakis, and N. Saini, “Dust ion acoustic solitons in a plasma with kappa-distributed electrons,” Phys. Plasmas, vol. 17, no. 5, p. 053702, 2010. https://doi.org/10.1063/1.3400229.Search in Google Scholar

[39] R. Gogoi, R. Roychoudhury, and M. Khan, “Arbitrary amplitude dust ion acoustic solitary waves and double layers in a kappa distributed electron plasmas,” Indian J. Pure Appl. Phys., vol. 50, no. 12, p. 110, 2011.Search in Google Scholar

[40] M. Shahmansouri and H. Alinejad, “Arbitrary amplitude dust ion acoustic solitary waves in a magnetized suprathermal dusty plasma,” Phys. Plasmas, vol. 19, no. 12, p. 123701, 2012. https://doi.org/10.1063/1.4769850.Search in Google Scholar

[41] S. N. Naeem, A. Qamar, A.-U. Rahman, and W. Albalawi, “The effect of dust streaming on arbitrary amplitude solitary waves in superthermal polarized space dusty plasma,” Z. Naturforsch. A, vol. 78, no. 12, p. 1081, 2023. https://doi.org/10.1515/zna-2023-0104.Search in Google Scholar

[42] P. Chatterjee and K. Roy, “Large amplitude solitary waves in a four-component dusty plasma with nonthermal ions,” Z. Naturforsch. A, vol. 63, nos. 7–8, p. 393, 2008. https://doi.org/10.1515/zna-2008-7-802.Search in Google Scholar

[43] E. Eslami and R. Baraz, “Rarefactive and compressive soliton waves in unmagnetized dusty plasma with non-thermal electron and ion distribution,” AIP Adv., vol. 4, no. 2, p. 027108, 2014. https://doi.org/10.1063/1.4865810.Search in Google Scholar

[44] D. Debnath, A. Bandyopadhyay, and K. Das, “Ion acoustic solitary structures in a magnetized nonthermal dusty plasma,” Phys. Plasmas, vol. 25, no. 3, p. 033704, 2018. https://doi.org/10.1063/1.5021127.Search in Google Scholar

[45] D. Debnath and A. Bandyopadhyay, “Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma,” Z. Naturforsch. A, vol. 76, no. 11, p. 985, 2021. https://doi.org/10.1515/zna-2021-0120.Search in Google Scholar

[46] S. Dalui, S. Sardar, and A. Bandyopadhyay, “Arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of non-thermal and isothermal electrons,” Z. Naturforsch. A, vol. 76, no. 5, p. 455, 2021. https://doi.org/10.1515/zna-2020-0296.Search in Google Scholar

[47] X. Mushinzimana, F. Nsengiyumva, L. Yadav, and T. Baluku, “Dust ion acoustic solitons and double layers in a dusty plasma with adiabatic positive dust, adiabatic positive ion species, and Cairns-distributed electrons,” AIP Adv., vol. 12, no. 1, p. 015208, 2022. https://doi.org/10.1063/5.0076894.Search in Google Scholar

[48] P. Halder, A. Bandyopadhyay, and S. Sardar, “Arbitrary amplitude dust-ion acoustic solitary structures in five components unmagnetized plasma,” Plasma Phys. Rep., vol. 49, no. 4, p. 467, 2023. https://doi.org/10.1134/s1063780x22601225.Search in Google Scholar

[49] N. Alam, A. Mannan, and A. Mamun, “Large amplitude dust-acoustic solitary waves and double layers in nonthermal warm complex plasmas,” AIP Adv., vol. 13, no. 10, p. 105104, 2023. https://doi.org/10.1063/5.0171200.Search in Google Scholar

[50] A. A. Abid, S. Ali, J. Du, and A. A. Mamun, “Vasyliunas–Cairns distribution function for space plasma species,” Phys. Plasmas, vol. 22, no. 8, p. 084507, 2015. https://doi.org/10.1063/1.4928886.Search in Google Scholar

[51] A. Roy, S. Raut, and R. Barman, “Studies on the effect of dust-ion collision on dust-ion acoustic solitary waves in a magnetized dusty plasma in the framework of damped KP equation and modified damped KP equation,” Plasma Phys. Rep., vol. 48, no. 4, p. 367, 2022. https://doi.org/10.1134/s1063780x22040018.Search in Google Scholar

[52] S. Olbert, Physics of the Magnetosphere: Based upon the Proceedings of the Conference Held at Boston College June 19–28, 1967, Springer, 1968, pp. 641–659.Search in Google Scholar

[53] V. Pierrard, M. Lazar, S. Poedts, Š. Štverák, M. Maksimovic, and P. Trávníček, “The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations,” Sol. Phys., vol. 291, no. 7, p. 2165, 2016. https://doi.org/10.1007/s11207-016-0961-7.Search in Google Scholar

[54] K. Aoutou, M. Tribeche, and T. H. Zerguini, “Electrostatic solitary structures in dusty plasmas with nonthermal and superthermal electrons,” Phys. Plasmas, vol. 15, no. 1, p. 013702, 2008. https://doi.org/10.1063/1.2828073.Search in Google Scholar

[55] N. S. Saini, M. Kaur, and S. Singla, “Ion-acoustic nonlinear structures in a non-Maxwellian plasma in the presence of an electron beam,” J. Astrophys. Astron., vol. 43, no. 2, p. 65, 2022. https://doi.org/10.1007/s12036-022-09851-6.Search in Google Scholar

[56] M. A. Shahzad, et al.., “Kinetic study of ion-acoustic waves in non-thermal vasyliunas–cairns distributed plasmas,” Eur. Phys. J. Plus, vol. 137, no. 2, p. 236, 2022.10.1140/epjp/s13360-022-02463-7Search in Google Scholar

[57] M. Kaur, S. Singla, R. Kaur, and N. S. Saini, “Nonlinear excitations of dust ion acoustic waves in multispecies plasma,” Plasma Phys. Rep., vol. 49, no. 1, p. 142, 2023. https://doi.org/10.1134/s1063780x22600980.Search in Google Scholar

[58] M. Mehdipoor, “Characteristics of nonlinear ion-acoustic waves in collisional plasmas with ionization effects,” Waves Random Complex Media, vol. 32, no. 6, pp. 2693–2717, 2022.10.1080/17455030.2020.1859165Search in Google Scholar

[59] M. Mehdipoor and M. Asri, “Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems,” Phys. Scr., vol. 97, no. 3, p. 035602, 2022. https://doi.org/10.1088/1402-4896/ac5487.Search in Google Scholar

[60] S. Sarkar, S. Paul, and S. Parvin, “Collective effect of nonthermal and suprathermal particles on electrostatic waves and instabilities in Vasyliunas-Cairns distributed plasmas,” Phys. Scr., vol. 98, no. 4, p. 045617, 2023. https://doi.org/10.1088/1402-4896/acc433.Search in Google Scholar

[61] R. Pain, S. Dalui, S. Sardar, and A. Bandyopadhyay, “Small amplitude ion-acoustic waves in electron-ion dusty plasma: Landau damping effects of combined Kappa–Cairns distributed electrons,” Eur. Phys. J. D, vol. 78, no. 12, p. 151, 2024.10.1140/epjd/s10053-024-00941-4Search in Google Scholar

[62] R. Pain, S. Dalui, S. Sardar, and A. Bandyopadhyay, “Effect of combined Kappa-Cairns distributed electrons on modulational instability and envelope soliton of ion-acoustic waves in electron-ion dusty plasma,” Phys. Scr., vol. 100, no. 2, p. 025612, 2025. https://doi.org/10.1088/1402-4896/ada9ae.Search in Google Scholar

[63] M. Shahzad, M. Sarfraz, M. Bilal, S. Mahmood, and M. Hamza, “Numerical exploration of electromagnetic electron whistler-cyclotron instability in vasyliunas– cairns distributed non-thermal plasmas: a kinetic theory approach,” Eur. Phys. J. Plus, vol. 139, no. 5, p. 402, 2024.10.1140/epjp/s13360-024-05159-2Search in Google Scholar

[64] W. Feldman, et al.., “Electron heating within the earth’s bow shock,” Phys. Rev. Lett., vol. 49, no. 3, p. 199, 1982. https://doi.org/10.1103/physrevlett.49.199.Search in Google Scholar

[65] M. A. Shahzad, A.-U.-R. Aman-ur Rehman, M. Bilal, M. Sarfraz, S. Ramzan, and S. Mahmood, “Kinetic numerical scaling of Alfven cyclotron instability in non-thermal solar wind plasmas,” Phys. Plasmas, vol. 31, no. 8, 2024. https://doi.org/10.1063/5.0204224.Search in Google Scholar

[66] P. Halder, S. Dalui, S. Sardar, and A. Bandyopadhyay, “Arbitrary amplitude dust–ion acoustic nonlinear and supernonlinear wave structures in a magnetized five components plasma,” Eur. Phys. J. Plus, vol. 138, no. 8, p. 734, 2023.10.1140/epjp/s13360-023-04359-6Search in Google Scholar

[67] F. F. Chen, et al.., Introduction to Plasma Physics and Controlled Fusion, vol. 1, Heidelberg, Springer, 1984.10.1007/978-1-4757-5595-4_1Search in Google Scholar

[68] B. Ghosh, Basic Plasma Physics, Delhi, Narosa, 2014.Search in Google Scholar

[69] J. A. Bittencourt, Fundamentals of Plasma Physics, Heidelberg, Springer Science & Business Media, 2013.Search in Google Scholar

[70] A. Paul, A. Das, and A. Bandyopadhyay, “Dust ion acoustic solitary structures in the presence of isothermal positrons,” Plasma Phys. Rep., vol. 43, no. 2, p. 218, 2017. https://doi.org/10.1134/s1063780x1702012x.Search in Google Scholar

[71] S. Dalui, A. Bandyopadhyay, and K. Das, “Modulational instability of ion acoustic waves in a multi-species collisionless magnetized plasma consisting of nonthermal and isothermal electrons,” Phys. Plasmas, vol. 24, no. 4, p. 042305, 2017. https://doi.org/10.1063/1.4991806.Search in Google Scholar

[72] A. Paul, A. Bandyopadhyay, and K. Das, “Dust ion acoustic solitary structures at the acoustic speed in the presence of nonthermal electrons and isothermal positrons,” Plasma Phys. Rep., vol. 45, no. 5, p. 466, 2019. https://doi.org/10.1134/s1063780x19050088.Search in Google Scholar

[73] R. Fitzpatrick, Plasma Physics: An Introduction, Boca Raton, FL, CRC Press, 2022.Search in Google Scholar

[74] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic supersolitons in plasma,” Plasma Phys. Rep., vol. 38, no. 11, p. 909, 2012. https://doi.org/10.1134/s1063780x12100054.Search in Google Scholar

Received: 2024-11-15
Accepted: 2025-05-28
Published Online: 2025-06-16
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2024-0275/html
Scroll to top button