Home Head-on collision phenomena and coherent structures of ion-acoustic waves in dusty plasmas: adiabatic pair ions and combined kappa-Cairns distributed electrons
Article
Licensed
Unlicensed Requires Authentication

Head-on collision phenomena and coherent structures of ion-acoustic waves in dusty plasmas: adiabatic pair ions and combined kappa-Cairns distributed electrons

  • Umma Imon ORCID logo EMAIL logo and Mohammad Shah Alam
Published/Copyright: February 18, 2025

Abstract

To investigate the effects of head-on collision (such as collision processes, phase shifts due to head-on collisions of ion-acoustic waves) and the formation of ion-acoustic (IA) KdV solitons, rogue waves (RWs), AB and KM solitons structures, an unmagnetized collisionless dusty plasma system comprising immobile (negatively charged) dust, positive and negative ions (adiabatic), and the combined Kappa–Cairns (CKC) distributed electrons in the space environment (such as H + , O 2 and H + , H plasma that existed in the D- and F-regions of the Earth’s ionosphere) and in the laboratory experiment (such as A r + , F plasma), is considered. The extended Poincaré–Lighthill–Kuo (ePLK) method is employed to derive the two-sided Korteweg de Vries (KdV) equations and corresponding phase shifts. The nonlinear Schrödinger equation (NLSE) is derived employing the derivative expansion method from the modified KdV (mKdV) equation. It is found that the concerned plasma parameters play a crucial role in forming the soliton structures, phase shifts, and the interaction processes of KdV solitons. The outcomes of this study will be useful to understand the collisional procedure, phase shifts, and the configurations of ion-acoustic KdV solitons, RWs, AB soliton, and KM soliton in the aforementioned environments where the relevant plasma species are identified.


Corresponding author: Umma Imon, Department of Mathematics, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh, E-mail: 

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] M. Horanyi and D. A. Mendis, “Trajectories of charged dust grains in the cometary environment,” Astrophys. J., vol. 294, pp. 357–368, 1985. https://doi.org/10.1086/163303.Search in Google Scholar

[2] U. de Angelis, V. Formisano, and M. Giordano, “Ion plasma waves in dusty plasmas: Halley’s comet,” J. Plasma Phys., vol. 40, no. 3, pp. 399–460, 1988. https://doi.org/10.1017/s0022377800013386.Search in Google Scholar

[3] N. N. Rao, P. K. Shukla, and M. Y. Yu, “Dust-acoustic waves in dusty plasmas,” Planet. Space Sci., vol. 38, no. 4, pp. 543–546, 1990. https://doi.org/10.1016/0032-0633(90)90147-i.Search in Google Scholar

[4] S. Q. Liu, H. B. Qiu, and X. Q. Li, “Landau damping of dust acoustic waves in the plasma with nonextensive distribution,” Phys. A, vol. 391, no. 23, pp. 5795–5801, 2012. https://doi.org/10.1016/j.physa.2012.04.032.Search in Google Scholar

[5] D. A. Gurnett, E. Grun, D. Gallagher, W. S. Kurth, and F. L. Scarf, “Micron-sized particles detected near Saturn by the Voyager plasma wave instrument,” Icarus, vol. 53, no. 2, pp. 236–254, 1983. https://doi.org/10.1016/0019-1035(83)90145-8.Search in Google Scholar

[6] O. Havnes, et al.., “Meter-scale variations of the charge carried by mesospheric dust,” Planet. Space Sci., vol. 44, no. 10, pp. 1191–1194, 1996. https://doi.org/10.1016/s0032-0633(96)00041-4.Search in Google Scholar

[7] M. Lazar, I. Kourakis, S. Poedts, and H. Fichtner, “Dust, atmosphere, and plasma environment of the moon and small bodies,” Planet. Space Sci., vol. 156, pp. 130–146, 2018.10.1016/j.pss.2017.11.011Search in Google Scholar

[8] M. Rosenberg, “Ion- and dust-acoustic instabilities in dusty plasmas,” Planet. Space Sci., vol. 41, no. 3, pp. 229–233, 1993. https://doi.org/10.1016/0032-0633(93)90062-7.Search in Google Scholar

[9] S. Q. Liu and J. Li, “Dust acoustic instability with Lorentzian kappa distribution,” Phys. Scr., vol. 84, no. 3, 2011, Art. no. 035504, https://doi.org/10.1088/0031-8949/84/03/035504.Search in Google Scholar

[10] V. N. Tsytovich and U. de Angelis, “Kinetic theory of dusty plasmas. I. General approach,” Phys. Plasmas, vol. 6, no. 4, pp. 1093–1106, 1999. https://doi.org/10.1063/1.873356.Search in Google Scholar

[11] D. A. Gurnett and A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications, Cambridge, Cambridge University Press, 2005.10.1017/CBO9780511809125Search in Google Scholar

[12] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd ed. Switzerland, Springer, 2016.10.1007/978-3-319-22309-4Search in Google Scholar

[13] A. Rehman and M. Ahmad, “Comment on “kinetic study of dust ion acoustic waves in a nonthermal plasma”,” J. Phys. Soc. Jpn., vol. 89, 2020, Art. no. 096001, https://doi.org/10.7566/jpsj.89.096001.Search in Google Scholar

[14] A. Rehman, M. Ahmad, and M. A. Shahzad, “Revisiting some analytical and numerical interpretations of Cairns and Kappa–Cairns distribution functions,” Phys. Plasmas, vol. 27, 2020, Art. no. 100901, https://doi.org/10.1063/5.0018906.Search in Google Scholar

[15] A. Rehman, M. A. Shahzad, S. Mahmood, and M. Bilal, “Numerical and analytical study of electron plasma waves in nonthermal Vasyliunas-Cairns distributed plasmas,” J. Geophys. Res.: Space Phys., vol. 126, 2021, Art. no. e2021JA029626, https://doi.org/10.1029/2021ja029626.Search in Google Scholar

[16] M. A. Shahzad, Aman-ur-Rehman, S. Mahmood, M. Bilal, and M. Sarfraz, “Kinetic study of ion-acoustic waves in non-thermal Vasyliunas–Cairns distributed plasmas,” Eur. Phys. J. Plus, vol. 137, 2022, Art. no. 236, https://doi.org/10.1140/epjp/s13360-022-02463-7.Search in Google Scholar

[17] C. Vocks and G. Mann, “Generation of suprathermal electrons by resonant wave-particle interaction in the solar corona and wind,” Astrophys. J., vol. 593, pp. 1134–1145, 2003. https://doi.org/10.1086/376682.Search in Google Scholar

[18] G. Gloeckler and L. A. Fisk, “Anisotropic beams of energetic particles upstream from the termination shock of the solar wind,” Astrophys. J., vol. 648, pp. L63–L66, 2006. https://doi.org/10.1086/507841.Search in Google Scholar

[19] Y. Yagi, et al.., “Measurement of superthermal electron flow and temperature in a reversed-field pinch experiment by an electrostatic electron energy analyser,” Plasma Phys. Controlled Fusion, vol. 39, no. 11, pp. 1915–1927, 1997. https://doi.org/10.1088/0741-3335/39/11/010.Search in Google Scholar

[20] S. Preische, P. C. Efthimion, and S. M. Kaye, “Radially localized measurements of superthermal electrons using oblique electron cyclotron emission,” Phys. Plasmas, vol. 3, pp. 4065–4073, 1996. https://doi.org/10.1063/1.871564.Search in Google Scholar

[21] C. C. Chaston, Y. D. Hu, and B. J. Fraser, “Non-Maxwellian particle distributions and electromagnetic ion cyclotron instabilities in the near-Earth magnetotail,” Geophys. Res. Lett., vol. 24, no. 22, pp. 2913–2916, 1997. https://doi.org/10.1029/97gl02972.Search in Google Scholar

[22] M. Maksimovic, V. Pierrard, and J. F. Lemaire, “A kinetic model of the solar wind with Kappa distribution functions in the corona,” Astron. Astrophys., vol. 324, pp. 725–734, 1997.Search in Google Scholar

[23] S. Olbert, “Summary of experimental results from M.I.T. Detector on IMP-1,” in Physics of the Magnetosphere. Astrophysics and Space Science Library, vol. 10, R. L. Carovillano, J. F. McClay, and H. R. Radoski, Eds., Dordrecht, Springer, 1968, pp. 641–659.10.1007/978-94-010-3467-8_23Search in Google Scholar

[24] V. M. Vasyliunas, “Survey of low-energy electrons in the evening sector of the magnetosphere with ogo 1 and ogo 3,” J. Geophys. Res., vol. 73, no. 9, pp. 2839–2884, 1968. https://doi.org/10.1029/ja073i009p02839.Search in Google Scholar

[25] R. A. Cairns, R. Bingham, R. O. Dendy, C. M. C. Nairn, P. K. Shukla, and A. A. Mamun, “Ion sound solitary waves with density depressions,” J. Phys., vol. 5, pp. C6-43–C6-48, 1995.10.1051/jp4:1995608Search in Google Scholar

[26] S. J. Bame, J. R. Asbridge, H. E. Felthauser, E. W. Jr Hones, and I. B. Strong, “Characteristics of the plasma sheet in the Earth’s magnetotail,” J. Geophys. Res., vol. 72, no. 1, pp. 113–129, 1967. https://doi.org/10.1029/jz072i001p00113.Search in Google Scholar

[27] J. R. Asbridge, S. J. Bame, and I. B. Strong, “Outward flow of protons from the Earth’s bow shock,” J. Geophys. Res., vol. 73, no. 17, pp. 5777–5782, 1968. https://doi.org/10.1029/ja073i017p05777.Search in Google Scholar

[28] A. Achterberg and C. A. Norman, “Particle acceleration by shock waves in solar flares,” Astron. Astrophys., vol. 89, no. 3, pp. 353–362, 1980.Search in Google Scholar

[29] W. C. Feldman, et al.., “Electron velocity distributions near the Earth’s bow shock,” J. Geophys. Res., vol. 88, no. A1, pp. 96–110, 1983. https://doi.org/10.1029/ja088ia01p00096.Search in Google Scholar

[30] A. Hasegawa, K. Mima, and M. Duong-van, “Plasma distribution function in a superthermal radiation field,” Phys. Rev. Lett., vol. 54, no. 24, pp. 2608–2610, 1985. https://doi.org/10.1103/physrevlett.54.2608.Search in Google Scholar

[31] E. T. Hansen and A. G. Emslie, The Physics of Solar Flares, Cambridge, Cambridge University Press, 1988.Search in Google Scholar

[32] R. Lundin, et al.., “First measurements of the ionospheric plasma escape from Mars,” Nature, vol. 341, pp. 609–612, 1989. https://doi.org/10.1038/341609a0.Search in Google Scholar

[33] M. D. Montgomery, S. J. Bame, and A. J. Hundhause, “Solar wind electrons: vela 4 measurements,” J. Geophys. Res., vol. 73, pp. 4999–5003, 1968. https://doi.org/10.1029/ja073i015p04999.Search in Google Scholar

[34] W. C. Feldman, J. R. Asbridge, S. J. Bame, M. D. Montgomery, and S. P. Gary, “Solar wind electrons,” J. Geophys. Res., vol. 80, no. 31, pp. 4181–4190, 1975. https://doi.org/10.1029/ja080i031p04181.Search in Google Scholar

[35] W. G. Pilipp, H. Miggenrieder, M. D. Montgomery, K.-H. Mühihäuser, H. Rosenbauer, and R. Schwenn, “Characteristics of electron velocity distribution functions in the solar wind derived from the Helios Plasma Experiment,” J. Geophys. Res., vol. 92, no. A2, pp. 1075–1092, 1987. https://doi.org/10.1029/ja092ia02p01075.Search in Google Scholar

[36] M. Maksimovic, V. Pierrard, and P. Riley, “Ulysses electron distributions fitted with Kappa functions,” Geophys. Res. Lett., vol. 24, no. 9, pp. 1151–1154, 1997. https://doi.org/10.1029/97gl00992.Search in Google Scholar

[37] I. Zouganelis, “Measuring suprathermal electron parameters in space plasmas: implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind,” J. Geophys. Res., vol. 113, 2008, Art. no. A08111, https://doi.org/10.1029/2007ja012979.Search in Google Scholar

[38] V. Pierrard and M. Lazar, “Kappa distributions: theory and applications in space plasmas,” Sol. Phys., vol. 267, pp. 153–174, 2010. https://doi.org/10.1007/s11207-010-9640-2.Search in Google Scholar

[39] D. Summersa and R. M. Thorne, “The modified plasma dispersion function,” Phys. Fluids B, vol. 3, no. 8, pp. 1835–1847, 1991.10.1063/1.859653Search in Google Scholar

[40] R. Bostrom, “Observations of weak double layers on auroral field lines,” IEEE Trans. Plasma Sci., vol. 20, no. 6, pp. 756–763, 1992. https://doi.org/10.1109/27.199524.Search in Google Scholar

[41] P. O. Dovner, A. I. Eriksson, R. Bostrom, and B. Holback, “Freja multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, no. 17, pp. 1827–1830, 1994. https://doi.org/10.1029/94gl00886.Search in Google Scholar

[42] Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, and H. Hayakawa, “Moon-related nonthermal ions observed by Nozomi: species, sources, and generation mechanisms,” J. Geophys. Res., vol. 108, no. A1, p. 1025, 2003. https://doi.org/10.1029/2002ja009366.Search in Google Scholar

[43] G. Sarri, M. E. Dieckmann, I. Kourakis, and M. Borghesi, “Shock creation and particle acceleration driven by plasma expansion into a rarefied medium,” Phys. Plasmas, vol. 17, 2010, Art. no. 082305, https://doi.org/10.1063/1.3469762.Search in Google Scholar

[44] S. Guo and L. Mei, “Modulation instability and dissipative rogue waves in ion-beam plasma: roles of ionization, recombination and electron attachment,” Phys. Plasmas, vol. 21, 2014, Art. no. 082303, https://doi.org/10.1063/1.4901037.Search in Google Scholar

[45] D. Darian, S. Marholm, M. Mortensen, and W. J. Miloch, “Theory and simulations of spherical and cylindrical Langmuir probes in non-Maxwellian plasmas,” Plasma Phys. Controlled Fusion, vol. 61, 2019, Art. no. 085025, https://doi.org/10.1088/1361-6587/ab27ff.Search in Google Scholar

[46] T. I. Rajib, N. K. Tamanna, N. A. Chowdhury, A. Mannan, S. Sultana, and A. A. Mamun, “Dust-ion-acoustic rogue waves in presence of non-extensive non-thermal electrons,” Phys. Plasmas, vol. 26, no. 12, 2019, https://doi.org/10.1063/1.5127256.Search in Google Scholar

[47] J. Ou and Z. Men, “Formation of the radio frequency sheath of plasma with Cairns–Tsallis electron velocity distribution,” Phys. Plasmas, vol. 27, 2020, Art. no. 083517, https://doi.org/10.1063/5.0015346.Search in Google Scholar

[48] F. Nsengiyumva, M. A. Hellberg, and R. L. Mace, “Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species,” Phys. Plasmas, vol. 22, 2015, Art. no. 092304, https://doi.org/10.1063/1.4929919.Search in Google Scholar

[49] G. Nicolaou, G. Livadiotis, and R. T. Wicks, “On the calculation of the effective polytropic index in space plasmas,” Entropy, vol. 21, no. 10, p. 997, 2019, https://doi.org/10.3390/e21100997.Search in Google Scholar

[50] M. Masum Haider, S. Yasmin Swarna, N. Khan, and O. Rahman, “A study of Chandrasekhar limits in adiabatic degenerate plasmas with superthermal ions,” Plasma Res. Express, vol. 2, 2020, Art. no. 025001, https://doi.org/10.1088/2516-1067/ab805a.Search in Google Scholar

[51] A. A. Mamun, S. Tasnim, and P. K. Shukla, “Effects of adiabaticity of electrons and negative ions on solitary waves and double layers in an electronegative plasma,” IEEE Trans. Plasma Sci., vol. 38, no. 11, pp. 3098–3104, 2010. https://doi.org/10.1109/tps.2010.2068566.Search in Google Scholar

[52] M. Akbari-Moghanjoughi, “Generalized model screening potentials for Fermi-Dirac plasmas,” Phys. Plasmas, vol. 23, 2016, Art. no. 042706, https://doi.org/10.1063/1.4947207.Search in Google Scholar

[53] K. Takahashi, C. Charles, R. Boswell, and A. Akira, “Adiabatic expansion of electron gas in a magnetic nozzle,” Phys. Rev. Lett., vol. 120, 2018, Art. no. 045001, https://doi.org/10.1103/physrevlett.120.045001.Search in Google Scholar

[54] A. A. Mamun, “Effects of adiabaticity of electrons and ions on dust-ion-acoustic solitary waves,” Phys. Lett. A, vol. 372, no. 9, pp. 1490–1493, 2008. https://doi.org/10.1016/j.physleta.2007.10.003.Search in Google Scholar

[55] A. A. Mamun and N. Jahan, “Roles of adiabaticity and dynamics of electrons and ions on dust-ion-acoustic K-dV solitons,” Europhys. Lett., vol. 84, pp. 35001-p1–35001-p5, 2008. https://doi.org/10.1209/0295-5075/84/35001.Search in Google Scholar

[56] S. Mahmood and N. Akhtar, “Ion acoustic solitary waves with adiabatic ions in magnetized electron-positron-ion plasmas,” Eur. Phys. J. D, vol. 49, pp. 217–222, 2008. https://doi.org/10.1140/epjd/e2008-00165-4.Search in Google Scholar

[57] F. Tanjia and A. A. Mamun, “Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma,” J. Plasma Phys., vol. 75, no. 1, pp. 99–110, 2009. https://doi.org/10.1017/s0022377808007381.Search in Google Scholar

[58] A. Rahman, F. Sayed, and A. A. Mamun, “Dust ion-acoustic shock waves in an adiabatic dusty plasma,” Phys. Plasmas, vol. 14, 2007, Art. no. 034503, https://doi.org/10.1063/1.2712191.Search in Google Scholar

[59] F. Tanjia and A. A. Mamun, “Arbitrary amplitude electro-acoustic solitary waves in an adiabatic dusty plasma,” Phys. Scr., vol. 78, 2008, Art. no. 065502, https://doi.org/10.1088/0031-8949/78/06/065502.Search in Google Scholar

[60] P. Halder, A. Bandyopadhyay, S. Dalui, and S. S. Sardar, “Dust–ion acousticsolitary waves in a collisionless magnetized five components plasma,” Z. Naturforsch. A, vol. 77, no. 7, pp. 659–673, 2022. https://doi.org/10.1515/zna-2021-0287.Search in Google Scholar

[61] N. Paul, K. K. Mondal, R. Ali, and P. Chatterjee, “Analytical solitary wave solution of dust ion acoustic waves in nonextensive plasma in the framework of damped forced Korteweg–de Vries–Burgers equation,” Indian J. Phys., vol. 95, no. 12, pp. 2855–1863, 2021. https://doi.org/10.1007/s12648-020-01929-7.Search in Google Scholar

[62] M. Kaur, S. Singla, N. S. Saini, and F. S. Gill, “Ion acoustic Breathers in electron-beam plasma,” Plasma, vol. 6, no. 3, pp. 503–517, 2023. https://doi.org/10.3390/plasma6030035.Search in Google Scholar

[63] N. S. Saini, M. Kaur, and S. Singla, “Ion-acoustic nonlinear structures in a non-Maxwellian plasma in the presence of an electron beam,” J. Astrophys. Astron., vol. 43, no. 65, 2022, https://doi.org/10.1007/s12036-022-09851-6.Search in Google Scholar

[64] M. Kaur and N. S. Saini, “KP, MKP, and CKP dust ion acoustic solitons in a multispecies non-Maxwellian plasma,” Phys. Plasmas, vol. 29, 2022, Art. no. 033701, https://doi.org/10.1063/5.0083182.Search in Google Scholar

[65] R. Kaur, K. Singh, and N. S. Saini, “Electron acoustic rogue waves in Earth’s magnetosphere,” J. Astrophys. Astron., vol. 43, no. 62, 2022, https://doi.org/10.1007/s12036-022-09843-6.Search in Google Scholar

[66] M. A. Shahzad, Aman-ur-Rehman, S. Mahmood, M. Bilal, and M. Sarfraz, “Kinetic study of ion-acoustic waves in non-thermal Vasyliunas-Cairns distributed plasmas,” Eur. Phys. J. Plus, vol. 137, no. 236, 2022, https://doi.org/10.1140/epjp/s13360-022-02463-7.Search in Google Scholar

[67] S. Sarkar, S. Paul, and S. Parvin, “Collective effect of nonthermal and suprathermal particles on electrostatic waves and instabilities in Vasyliunas-Cairns distributed plasmas,” Phys. Scr., vol. 98, no. 4, 2023, Art. no. 045617, https://doi.org/10.1088/1402-4896/acc433.Search in Google Scholar

[68] A. Mushtaq, M. Nasir Khattak, Z. Ahmad, and A. Qamar, “Dust ion acoustic soliton in pair-ion plasmas with non-isothermal electrons,” Phys. Plasmas, vol. 19, 2012, Art. no. 042304, https://doi.org/10.1063/1.3696061.Search in Google Scholar

[69] D. Debnath and A. Bandyopadhyay, “Combined effect of Kappa and Cairns distributed electrons on ion acoustic solitary structures in a collisionless magnetized dusty plasma,” Astrophys. Space Sci., vol. 365, no. 4, 2020, Art. no. 72, https://doi.org/10.1007/s10509-020-03786-6.Search in Google Scholar

[70] A. A. Abid, S. Ali, J. Du, and A. A. Mamun, “Vasyliunas–Cairns distribution function for space plasma species,” Phys. Plasmas, vol. 22, 2015, Art. no. 084507, https://doi.org/10.1063/1.4928886.Search in Google Scholar

[71] A. Roy, S. Raut, and R. Barman, “Studies on the effect of dust ion collision on dust IonAcoustic solitary waves in a magnetized dusty plasma in the framework of damped KP equation and modified damped KP equation,” Plasma Phys. Rep., vol. 48, no. 4, pp. 367–383, 2022. https://doi.org/10.1134/s1063780x22040018.Search in Google Scholar

[72] J. Rowlinson, “The Maxwell–Boltzmann distribution,” Mol. Phys., vol. 103, no. 21–23, pp. 2821–2828, 2005.10.1080/002068970500044749Search in Google Scholar

[73] R. A. Cairns, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, no. 20, pp. 2709–2712, 1995. https://doi.org/10.1029/95gl02781.Search in Google Scholar

[74] S. A. El-Tantaway, “Nonlinear dynamics of soliton collisions in electronegative plasmas: the phase shifts of the planar KdV- and mkdV-soliton collisions,” Chaos, Solitons Fractals, vol. 93, no. C, pp. 162–168, 2016. https://doi.org/10.1016/j.chaos.2016.10.011.Search in Google Scholar

[75] K. Shimizu and Y. H. Ichikawa, “Auto modulation of ion oscillation modes in plasma,” J. Phys. Soc. Jpn., vol. 33, no. 3, pp. 789–792, 1972. https://doi.org/10.1143/jpsj.33.789.Search in Google Scholar

[76] S. K. El-Labany, “Weakly relativistic effect on the modulation of nonlinear ion-acoustic waves in a warm plasma,” J. Plasma Phys., vol. 54, no. 3, pp. 295–308, 1995. https://doi.org/10.1017/s0022377800018523.Search in Google Scholar

[77] S. K. El-Labany, N. A. El-Bedwehy, and H. N. Abd El-Razek, “Effect of second ion temperature on modulation stability of dust-acoustic solitary waves with dust charge variation,” Phys. Plasmas, vol. 14, 2007, Art. no. 103704, https://doi.org/10.1063/1.2784765.Search in Google Scholar

[78] R. Fedele, S. De Nicola, D. Grecu, P. K. Sukla, and A. Visinescu, “Cylindrical nonlinear Schrodinger equation vesus cylindrical Kortewg-de Vries equation,” AIP Conf. Proc., vol. 1061, pp. 273–281, 2008.10.1063/1.3013778Search in Google Scholar

[79] N. Asano, T. Taniuti, and N. Yajima, “Perturbation method for a nonlinear wave modulation II,” J. Math. Phys., vol. 10, no. 11, pp. 2020–2024, 1969. https://doi.org/10.1063/1.1664797.Search in Google Scholar

[80] M. Mehdipoor, “K-dV and mK-dV equations for solitary waves in negative ions plasmas with non-Maxwellian electrons,” Astrophys. Space Sci., vol. 348, pp. 115–121, 2013. https://doi.org/10.1007/s10509-013-1550-y.Search in Google Scholar

[81] R. Perić, N. Hoffmann, and A. Chabchoub, “Initial wave breaking dynamics of peregrine-type rogue wave: a numerical and experimental study,” Eur. J. Mech. B/Fluids, vol. 49, pp. 71–76, 2015. https://doi.org/10.1016/j.euromechflu.2014.07.002.Search in Google Scholar

[82] Y. Deng, J. Yang, X. Tian, and X. Li, “Experimental investigation on rogue waves and their impacts on a vertical cylinder using the peregrine Breather model,” Ships Offshore Struct., vol. 11, no. 7, pp. 757–765, 2016. https://doi.org/10.1080/17445302.2015.1062654.Search in Google Scholar

[83] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep., vol. 528, pp. 47–89, 2013. https://doi.org/10.1016/j.physrep.2013.03.001.Search in Google Scholar

[84] S. A. El-Tantawy, “Rogue waves in electronegative space plasmas: the link between the family of the KdV equations and the nonlinear Schrödinger equation,” Astrophys. Space Sci., vol. 361, 2016, Art. no. 164, https://doi.org/10.1007/s10509-016-2754-8.Search in Google Scholar

[85] N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation,” Theor. Math. Phys., vol. 69, no. 2, pp. 1089–1093, 1986. https://doi.org/10.1007/bf01037866.Search in Google Scholar

[86] C. G. L. Tiofack, S. Coulibaly, M. Taki, S. De Biévre, and G. Dujardin, “Periodic modulations controlling Kuznetsov–Ma soliton formation in nonlinear Schrödinger equations,” Phys. Lett. A, vol. 381, no. 24, pp. 1999–2003, 2016. https://doi.org/10.1016/j.physleta.2017.04.029.Search in Google Scholar

[87] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E, vol. 80, 2009, Art. no. 026601, https://doi.org/10.1103/physreve.80.026601.Search in Google Scholar

[88] K. Jilani, Arshad, A. M. Mirza, and T. A. Khan, “Ion-acoustic solitons in pair-ion plasma with non-thermal electrons,” Astrophys. Space Sci., vol. 344, no. 1, pp. 135–143, 2013. https://doi.org/10.1007/s10509-012-1309-x.Search in Google Scholar

[89] M. M. Selim, “Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons,” Eur. Phys. J. Plus, vol. 131, 2016, Art. no. 93, https://doi.org/10.1140/epjp/i2016-16093-7.Search in Google Scholar

Received: 2024-10-23
Accepted: 2025-01-27
Published Online: 2025-02-18
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2024-0245/html
Scroll to top button