Home Invariant analysis of the multidimensional Martinez Alonso–Shabat equation
Article
Licensed
Unlicensed Requires Authentication

Invariant analysis of the multidimensional Martinez Alonso–Shabat equation

  • Naseem Abbas EMAIL logo , Akhtar Hussain , Muhammad Waseem Akram , Shah Muhammad and Mohammad Shuaib
Published/Copyright: August 19, 2024

Abstract

This present study is concerned with the group-invariant solutions of the (3 + 1)-dimensional Martinez Alonso–Shabat equation by using the Lie symmetry method. The Lie transformation technique is used to deduce the infinitesimals, Lie symmetry operators, commutation relations, and symmetry reductions. The optimal system for the obtained Lie symmetry algebra is obtained by using the concept of the adjoint map. As for now, the considered model equation is converted into nonlinear ordinary differential equations (ODEs) in two cases in the symmetry reductions. The exact closed-form solutions are obtained by applying constraint conditions on the symmetry generators. Due to the presence of arbitrary functional parameters, these group-invariant solutions are displayed based on suitable numerical simulations. The conservation laws are obtained by using the multiplier method. The conclusion is accounted for toward the end.


Corresponding author: Naseem Abbas, Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan, E-mail: 

Acknowledgments

This research is funded by “Researchers Supporting Project number (RSPD2024R733),” King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] L. Kaur and A. M. Wazwaz, “Painleve analysis and invariant solutions of generalized fifth-order nonlinear integrable equation,” Nonlinear Dynam., vol. 94, no. 4, pp. 2469–2477, 2018. https://doi.org/10.1007/s11071-018-4503-8.Search in Google Scholar

[2] L. Kaur and A. M. Wazwaz, “Einstein’s vacuum field equation: painlevé analysis and Lie symmetries,” Waves Random Complex Media, vol. 31, no. 2, pp. 199–206, 2021. https://doi.org/10.1080/17455030.2019.1574410.Search in Google Scholar

[3] L. Kaur and R. K. Gupta, “Some invariant solutions of field equations with axial symmetry for empty space containing an electrostatic field,” Appl. Math. Comput., vol. 231, pp. 560–565, 2014, https://doi.org/10.1016/j.amc.2013.12.120.Search in Google Scholar

[4] J. Kaur, R. K. Gupta, and S. Kumar, “Conservation laws and series solutions of variable coefficient time fractional Kawahara equation,” Waves Random Complex Media, vol. 34, no. 2, pp. 1–13, 2021. https://doi.org/10.1080/17455030.2021.1912850.Search in Google Scholar

[5] A. Zafar, M. Shakeel, A. Ali, L. Akinyemi, and H. Rezazadeh, “Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes,” Opt. Quant. Electron., vol. 54, pp. 1–15, 2022, https://doi.org/10.1007/s11082-021-03393-x.Search in Google Scholar

[6] M. Shakeel, A. Bibi, D. Chou, and A. Zafar, “Study of optical solitons for Kudryashov’s quintuple power-law with dual form of nonlinearity using two modified techniques,” Optik, vol. 273, p. 170364, 2023, https://doi.org/10.1016/j.ijleo.2022.170364.Search in Google Scholar

[7] S. Irshad, M. Shakeel, A. Bibi, M. Sajjad, and K. S. Nisar, “A comparative study of nonlinear fractional Schrödinger equation in optics,” Mod. Phys. Lett. B, vol. 37, no. 5, p. 2250219, 2023. https://doi.org/10.1142/s0217984922502190.Search in Google Scholar

[8] M. Alquran, “Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV–Schrodinger equations,” Opt. Quant. Electron., vol. 53, no. 10, p. 588, 2021. https://doi.org/10.1007/s11082-021-03245-8.Search in Google Scholar

[9] M. Alquran, “Physical properties for bidirectional wave solutions to a generalized fifth-order equation with third-order time-dispersion term,” Results Phys., vol. 28, p. 104577, 2021, https://doi.org/10.1016/j.rinp.2021.104577.Search in Google Scholar

[10] M. Alquran, “Solitons and periodic solutions to nonlinear partial differential equations by the Sine-Cosine method,” Appl. Math. Inf. Sci., vol. 6, no. 1, pp. 85–88, 2012.Search in Google Scholar

[11] M. Arshad, A. R. Seadawy, D. Lu, and F. Ali, “Solitary wave solutions of Kaup–Newell optical fiber model in mathematical physics and its modulation instability,” Mod. Phys. Lett. B, vol. 34, no. 26, p. 2050277, 2020. https://doi.org/10.1142/s0217984920502772.Search in Google Scholar

[12] D. J. Evans and K. R. Raslan, “The tanh function method for solving some important non-linear partial differential equations,” Int. J. Comput. Math., vol. 82, no. 7, pp. 897–905, 2005. https://doi.org/10.1080/00207160412331336026.Search in Google Scholar

[13] S. Fatima, N. Abbas, M. Munawar, and S. M. Eldin, “Ion-acoustic wave dynamics and sensitivity study in a magnetized auroral phase plasma,” Math. Open, vol. 2, p. 2350003, 2023, https://doi.org/10.1142/s2811007223500037.Search in Google Scholar

[14] A. Hussain, H. Ali, F. Zaman, and N. Abbas, “New closed form solutions of some nonlinear pseudo-parabolic models via a new extended direct algebraic method,” Int. J. Math. Comput. Eng., vol. 2, no. 1, pp. 35–58, 2023. https://doi.org/10.2478/ijmce-2024-0004.Search in Google Scholar

[15] A. Hussain, Y. Chahlaoui, M. Usman, F. D. Zaman, and C. Park, “Optimal system and dynamics of optical soliton solutions for the Schamel KdV equation,” Sci. Rep., vol. 13, no. 1, p. 15383, 2023. https://doi.org/10.1038/s41598-023-42477-4.Search in Google Scholar PubMed PubMed Central

[16] A. Hussain, Y. Chahlaoui, F. D. Zaman, T. Parveen, and A. M. Hassan, “The Jacobi elliptic function method and its application for the stochastic NNV system,” Alex. Eng. J., vol. 81, pp. 347–359, 2023, https://doi.org/10.1016/j.aej.2023.09.017.Search in Google Scholar

[17] M. Usman, A. Hussain, F. D. Zaman, I. Khan, and S. M. Eldin, “Reciprocal Backlund transformations and travelling wave structures of some nonlinear pseudo-parabolic equations,” Partial Differ. Equ. Appl. Math., vol. 7, p. 100490, 2023, https://doi.org/10.1016/j.padiff.2023.100490.Search in Google Scholar

[18] M. Usman, A. Hussain, F. D. Zaman, and S. M. Eldin, “Symmetry analysis and exact Jacobi elliptic solutions for the nonlinear couple Drinfeld Sokolov Wilson dynamical system arising in shallow water waves,” Results Phys., vol. 50, p. 106613, 2023, https://doi.org/10.1016/j.rinp.2023.106613.Search in Google Scholar

[19] A. Hussain, M. Usman, F. D. Zaman, and S. M. Eldin, “Optical solitons with DNA dynamics arising in oscillator-chain of Peyrard–Bishop model,” Results Phys., vol. 50, p. 106586, 2023, https://doi.org/10.1016/j.rinp.2023.106586.Search in Google Scholar

[20] A. Hussain, A. H. Kara, and F. D. Zaman, “An invariance analysis of the Vakhnenko–Parkes equation,” Chaos, Solit. Fractals, vol. 171, p. 113423, 2023, https://doi.org/10.1016/j.chaos.2023.113423.Search in Google Scholar

[21] A. Hussain, A. H. Kara, and F. D. Zaman, “Symmetries, associated first integrals and successive reduction of Schrödinger type and other second order difference equations,” Optik, vol. 287, p. 113423, 2023, https://doi.org/10.1016/j.ijleo.2023.171080.Search in Google Scholar

[22] M. Usman, A. Hussain, and F. D. Zaman, “Invariance analysis of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported Graphene sheets,” Phys. Scr., vol. 98, no. 9, p. 095205, 2023. https://doi.org/10.1088/1402-4896/acea46.Search in Google Scholar

[23] A. Hussain, M. Usman, F. D. Zaman, and S. M. Eldin, “Double reductions and traveling wave structures of the generalized Pochhammer–Chree equation,” Partial Differ. Equ. Appl. Math., vol. 7, p. 100521, 2023, https://doi.org/10.1016/j.padiff.2023.100521.Search in Google Scholar

[24] M. Usman, A. Hussain, F. D. Zaman, and S. M. Eldin, “Group invariant solutions of wave propagation in phononic materials based on the reduced micromorphic model via optimal system of Lie subalgebra,” Results Phys., vol. 48, p. 106413, 2023, https://doi.org/10.1016/j.rinp.2023.106413.Search in Google Scholar

[25] A. Hussain, M. Usman, B. R. Al-Sinan, W. M. Osman, and T. F. Ibrahim, “Symmetry analysis and closed-form invariant solutions of the nonlinear wave equations in elasticity using optimal system of Lie subalgebra,” Chin. J. Phys., vol. 83, pp. 1–13, 2023, https://doi.org/10.1016/j.cjph.2023.02.011.Search in Google Scholar

[26] A. Hussain, M. Usman, F. D. Zaman, and S. M. Eldin, “Symmetry analysis and invariant solutions of Riabouchinsky Proudman Johnson equation using optimal system of Lie subalgebras,” Results Phys., vol. 49, p. 106507, 2023, https://doi.org/10.1016/j.rinp.2023.106507.Search in Google Scholar

[27] A. Hussain, M. Usman, F. D. Zaman, T. F. Ibrahim, and A. A. Dawood, “Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney–Luke equation using optimal system of Lie subalgebras,” Chin. J. Phys., vol. 84, no. 1, pp. 66–88, 2023. https://doi.org/10.1016/j.cjph.2023.04.019.Search in Google Scholar

[28] S. Kumar and S. K. Dhiman, “Exploring cone-shaped solitons, breather, and lump-forms solutions using the lie symmetry method and unified approach to a coupled breaking soliton model,” Phys. Scr., vol. 99, no. 2, p. 025243, 2024. https://doi.org/10.1088/1402-4896/ad1d9e.Search in Google Scholar

[29] S. Kumar, D. Kumar, and A. Kumar, “Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation,” Chaos, Solit. Fractals, vol. 142, p. 110507, 2021, https://doi.org/10.1016/j.chaos.2020.110507.Search in Google Scholar

[30] S. Kumar, W. X. Ma, and A. Kumar, “Lie symmetries, optimal system and group-invariant solutions of the (3+ 1)-dimensional generalized KP equation,” Chin. J. Phys., vol. 69, pp. 1–23, 2021, https://doi.org/10.1016/j.cjph.2020.11.013.Search in Google Scholar

[31] S. Kumar, W. X. Ma, S. K. Dhiman, and A. Chauhan, “Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations,” Eur. Phys. J. Plus, vol. 138, no. 5, p. 434, 2023. https://doi.org/10.1140/epjp/s13360-023-04053-7.Search in Google Scholar

[32] S. Kumar, D. Kumar, and A. M. Wazwaz, “Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3 + 1)-dimensional KdV-type equation,” Eur. Phys. J. Plus, vol. 136, no. 5, p. 531, 2021. https://doi.org/10.1140/epjp/s13360-021-01528-3.Search in Google Scholar

[33] S. Kumar, D. Kumar, and A. M. Wazwaz, “Group invariant solutions of (3 + 1)-dimensional generalized B-type Kadomstsev Petviashvili equation using optimal system of Lie subalgebra,” Phys. Scr., vol. 94, no. 6, p. 065204, 2019. https://doi.org/10.1088/1402-4896/aafc13.Search in Google Scholar

[34] S. Kumar, S. Rani, and N. Mann, “Diverse analytical wave solutions and dynamical behaviors of the new (2 + 1)-dimensional Sakovich equation emerging in fluid dynamics,” Eur. Phys. J. Plus, vol. 137, no. 11, p. 1226, 2022. https://doi.org/10.1140/epjp/s13360-022-03397-w.Search in Google Scholar

[35] S. Kumar and S. Rani, “Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2 + 1)-dimensional dissipative long wave system,” Phys. Scr., vol. 96, no. 12, p. 125202, 2021. https://doi.org/10.1088/1402-4896/ac1990.Search in Google Scholar

[36] N. H. Ibragimov, A. H. Kara, and F. M. Mahomed, “Lie–Bäcklund and Noether symmetries with applications,” Nonlinear Dynam., vol. 15, pp. 115–136, 1998, https://doi.org/10.1023/a:1008240112483.10.1023/A:1008240112483Search in Google Scholar

[37] A. H. Kara and F. M. Mahomed, “Noether-type symmetries and conservation laws via partial Lagrangians,” Nonlinear Dynam., vol. 45, pp. 367–383, 2006, https://doi.org/10.1007/s11071-005-9013-9.Search in Google Scholar

[38] A. H. Kara and F. M. Mahomed, “Relationship between symmetries and conservation laws,” Int. J. Theor. Phys., vol. 39, pp. 23–40, 2000, https://doi.org/10.1023/a:1003686831523.10.1023/A:1003686831523Search in Google Scholar

[39] A. H. Kara, F. M. Mahomed, I. Naeem, and C. Wafo Soh, “Partial Noether operators and first integrals via partial Lagrangians,” Math. Methods Appl. Sci., vol. 30, no. 16, pp. 2079–2089, 2007. https://doi.org/10.1002/mma.939.Search in Google Scholar

[40] L. M. Alonso and A. B. Shabat, “Hydrodynamic reductions and solutions of a universal hierarchy,” Theor. Math. Phys., vol. 104, pp. 1073–1085, 2003.10.1023/B:TAMP.0000036538.41884.57Search in Google Scholar

[41] L. M. Alonso and A. B. Shabat, “Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type,” Phys. Lett. A, vol. 300, no. 1, pp. 58–64, 2002. https://doi.org/10.1016/s0375-9601(02)00703-x.Search in Google Scholar

[42] B. Doubrov, E. V. Ferapontov, B. Kruglikov, and V. S. Novikov, “Integrable systems in four dimensions associated with six-folds in Gr(4, 6),” Int. Math. Res. Not., vol. 2019, no. 21, pp. 6585–6613, 2019. https://doi.org/10.1093/imrn/rnx308.Search in Google Scholar

[43] P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107, New York, NY, Springer Science & Business Media, 1993.10.1007/978-1-4612-4350-2Search in Google Scholar

[44] X. Hu, Y. Li, and Y. Chen, “A direct algorithm of one-dimensional optimal system for the group invariant solutions,” J. Math. Phys., vol. 56, no. 5, 2015. https://doi.org/10.1063/1.4921229.Search in Google Scholar

[45] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, vol. 81, New York, NY, Springer Science & Business Media, 2013.Search in Google Scholar

[46] R. Naz, “Conservation laws for some systems of nonlinear partial differential equations via multiplier approach,” J. Appl. Math., vol. 2012, 2012, https://doi.org/10.1155/2012/871253.Search in Google Scholar

[47] A. F. Cheviakov, “Computation of fluxes of conservation laws,” J. Eng. Math., vol. 66, pp. 153–173, 2010, https://doi.org/10.1007/s10665-009-9307-x.Search in Google Scholar

Received: 2024-05-19
Accepted: 2024-07-30
Published Online: 2024-08-19
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2024-0115/html
Scroll to top button