Startseite Atom-bond-connectivity (ABC) indices of graphene sheets, zigzag single walled carbon nanotubes and single walled carbon nanotori
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Atom-bond-connectivity (ABC) indices of graphene sheets, zigzag single walled carbon nanotubes and single walled carbon nanotori

  • Soukat Ghosh , Uday Maji , Swapnadeep Mondal und Bholanath Mandal EMAIL logo
Veröffentlicht/Copyright: 22. Februar 2024

Abstract

Atom-bond-connectivity (ABC) indices are obtained in analytical forms for graphene sheets, zigzag single walled carbon nanotubes (SWCNTs), and single walled carbon nanotori in terms of number of rings (r) that measures the length and the number of hexagons in between two rings (h) that dictates the width of the concerned systems. The procedures followed for ABC index have been used to obtain the expressions of augmented Zagreb and Randić indices for such systems. Logarithm of ABC indices of zigzag SWCNTs are found to correlate linearly well with the bond dissociation energies per C–C bond and the Young’s moduli of said SWCNTs with fixed number of rings (r) but varying number of hexagons (h) in between two successive rings. The plot of logarithm of ABC index versus Young’s modulus of such SWCNTs in varying both r and h simultaneously is not a straight line but fits well with the sigmoidal (Boltzmann) curve. Wiener index, one of the important distance based index, has recently been found to have similar correlations with the concerned properties of such systems. Similar plots would appear for the said properties of the zigzag SWCNTs with other degree-based indices like augmented Zagreb and Randić indices, as have been indicated from their respective expressions obtained.


Corresponding author: Bholanath Mandal, Department of Chemistry, 30126 The University of Burdwan , Burdwan 713104, India, E-mail: ,

Acknowledgment

Authors thank the Reviewer for valuable suggestions.

  1. Research ethics: Maintained.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not Applicable.

References

[1] O. Ore, Graphs and Their Uses, New York, The L. W. Singer Company, 1963.Suche in Google Scholar

[2] N. Deo, Graph Theory with Applications to Engineering and Computer Science, New Delhi, Prentice-Hall of India Pvt. Ltd., 1997.Suche in Google Scholar

[3] N. Trinajstić, Chemical Graph Theory, Boca Raton, FL, CRC Press, 1992.Suche in Google Scholar

[4] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, New York, Springer-Verlag, 1986.10.1515/9783112570180Suche in Google Scholar

[5] A. T. Balaban, Ed. Topological Indices and Related Descriptors in QSAR and QSPR, The Netherlands, Gordon and Breach Science Publishers, 1999.Suche in Google Scholar

[6] H. Wiener, “Structural determination of paraffin boiling points,” J. Am. Chem. Soc., vol. 69, no. 1, p. 17, 1947, https://doi.org/10.1021/ja01193a005.Suche in Google Scholar PubMed

[7] H. Wiener, “Relation of the physical properties of the isomeric alkanes to molecular structure. Surface tension, specific dispersion, and critical solution temperature in aniline,” J. Phys. Chem., vol. 52, no. 6, p. 1082, 1948, https://doi.org/10.1021/j150462a018.Suche in Google Scholar PubMed

[8] H. Hosoya, “Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons,” Bull. Chem. Soc. Jpn., vol. 44, p. 2332, 1971, https://doi.org/10.1246/bcsj.44.2332.Suche in Google Scholar

[9] H. Hosoya, “Chemical meaning of octane number analyzed by topological indices,” Croat. Chem. Acta, vol. 75, no. 2, p. 433, 2002.Suche in Google Scholar

[10] B. Mandal, M. Banerjee, and A. K. Mukherjee, “Wiener and Hosoya indices of reciprocal graphs,” Mol. Phys., vol. 103, no. 19, p. 2665, 2005, https://doi.org/10.1080/00268970500134714.Suche in Google Scholar

[11] P. Ghosh, S. Basu, S. Karmakar, and B. Mandal, “Schematic generation of characteristic polynomials and the Hosoya indices of mono- and di-substituted polymer graphs of linear chains and cycles,” J. Indian Chem. Soc., vol. 91, no. 3, p. 503, 2014.Suche in Google Scholar

[12] T. Ghosh, S. Mondal, and B. Mandal, “Matching polynomial coefficients and the Hosoya indices of poly(p-phenylene) graphs,” Mol. Phys., vol. 116, no. 3, p. 361, 2018, https://doi.org/10.1080/00268976.2017.1396372.Suche in Google Scholar

[13] M. Randić, “In search of structural invariants,” J. Math. Chem., vol. 9, no. 2, p. 97, 1992.10.1007/BF01164840Suche in Google Scholar

[14] M. Randić, “Characterization of molecular branching,” J. Am. Chem. Soc., vol. 97, no. 23, p. 6609, 1975, https://doi.org/10.1021/ja00856a001.Suche in Google Scholar

[15] A. T. Balaban, “Highly discriminating distance-based topological index,” Chem. Phys. Lett., vol. 89, no. 5, p. 399, 1982, https://doi.org/10.1016/0009-2614(82)80009-2.Suche in Google Scholar

[16] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons,” Chem. Phys. Lett., vol. 17, no. 4, p. 535, 1972, https://doi.org/10.1016/0009-2614(72)85099-1.Suche in Google Scholar

[17] E. Estrada, “Atom–bond connectivity and the energetic of branched alkanes,” Chem. Phys. Lett., vol. 463, no. 4–6, p. 422, 2008, https://doi.org/10.1016/j.cplett.2008.08.074.Suche in Google Scholar

[18] E. Estrada, L. Torres, L. Rodríguez, and I. Gutman, “An atom-bond connectivity index: modelling the enthalpy of formation of alkanes,” Indian J. Chem., vol. 37A, p. 849, 1998.Suche in Google Scholar

[19] E. Estrada, “The ABC matrix,” J. Math. Chem., vol. 55, no. 4, p. 1021, 2017, https://doi.org/10.1007/s10910-016-0725-5.Suche in Google Scholar

[20] B. Furtula, A. Graovac, and D. Vukičević, “Augmented Zagreb index,” J. Math. Chem., vol. 48, no. 2, p. 370, 2010, https://doi.org/10.1007/s10910-010-9677-3.Suche in Google Scholar

[21] I. Gutman and J. Tošović, “Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices,” J. Serb. Chem. Soc., vol. 78, no. 6, p. 805, 2013, https://doi.org/10.2298/jsc121002134g.Suche in Google Scholar

[22] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry, New York, Wiley, 1989.Suche in Google Scholar

[23] B. Mandal, M. Banerjee, and A. K. Mukherjee, “Cardinalities of reciprocal graphs,” Int. J. Quant. Chem., vol. 99, no. 3, p. 119, 2004, https://doi.org/10.1002/qua.20120.Suche in Google Scholar

[24] P. Ghosh, S. Karmakar, and B. Mandal, “Cardinalities of poly(p-phenylene) graphs,” Mol. Phys., vol. 112, no. 20, p. 2646, 2014, https://doi.org/10.1080/00268976.2014.901571.Suche in Google Scholar

[25] S. C. Basak, V. R. Magnuson, G. J. Niemi, R. R. Regal, and G. D. Veith, “Topological indices: their nature, mutual relatedness, and applications,” Math. Model., vol. 8, p. 300, 1987, https://doi.org/10.1016/0270-0255(87)90594-x.Suche in Google Scholar

[26] J. A. Rodríguez-Velázquez and A. T. Balaban, “Two new topological indices based on graph adjacency matrix eigenvalues and eigenvectors,” J. Math. Chem., vol. 57, no. 20, p. 1053, 2019, https://doi.org/10.1007/s10910-019-01008-1.Suche in Google Scholar

[27] P. Ghosh and B. Mandal, “Characteristic polynomials of alternant edge weighted linear chains with subsequent application to some linear poly (p-phenylene) graphs,” J. Math. Chem., vol. 48, no. 4, p. 1069, 2010, https://doi.org/10.1007/s10910-010-9726-y.Suche in Google Scholar

[28] P. Ghosh, S. Basu, S. Karmakar, and B. Mandal, “Matrix product forms for the characteristic polynomial coefficients of poly(p-phenylene) graphs,” J. Indian Chem. Soc., vol. 91, no. 12, p. 2197, 2014.Suche in Google Scholar

[29] S. Mondal and B. Mandal, “Sum of characteristic polynomial coefficients of cycloparaphenylene graphs as topological index,” Mol. Phys., vol. 118, no. 13, p. e1685693, 2020, https://doi.org/10.1080/00268976.2019.1685693.Suche in Google Scholar

[30] A. R. Katritzky, et al.., “Interpretation of quantitative structure−property and −activity relationships,” J. Chem. Inf. Comput. Sci., vol. 41, no. 3, p. 679, 2001, https://doi.org/10.1021/ci000134w.Suche in Google Scholar PubMed

[31] A. Mercader, E. A. Castro, and A. A. Toropov, “QSPR modeling of the enthalpy of formation from elements by means of correlation weighting of local invariants of atomic orbital molecular graphs,” Chem. Phys. Lett., vol. 330, no. 5–6, p. 612, 2000, https://doi.org/10.1016/s0009-2614(00)01126-x.Suche in Google Scholar

[32] M. Randić, M. Nović, and D. Plavšić, Solved and Unsolved Problems of Structural Chemistry, Boca Raton, CRC Press, 2016.Suche in Google Scholar

[33] M. Barysz, D. Plavšić, and N. Trinajstić, “A note on topological indices,” MATCH Commun. Math. Comput. Chem., vol. 19, p. 89, 1986.Suche in Google Scholar

[34] M. A. Johnson and G. M. Maggiora, Concepts and Applications of Molecular Similarity, New York, Wiley Interscience, 1990.Suche in Google Scholar

[35] S. Hayat, N. Suhaili, and H. Jamil, “Statistical significance of valency-based topological descriptors for correlating thermodynamic properties of benzenoid hydrocarbons with applications,” Comput. Theor. Chem., vol. 1227, p. 114259, 2023, https://doi.org/10.1016/j.comptc.2023.114259.Suche in Google Scholar

[36] S. Hayat, S. Khan, A. Khan, and J.-B. Liu, “Valency-based molecular descriptors for measuring the π-electronic energy of lower polycyclic aromatic hydrocarbons,” Polycyl. Aromat. Comp., vol. 42, no. 4, p. 1113, 2022, https://doi.org/10.1080/10406638.2020.1768414.Suche in Google Scholar

[37] M. Y. H. Malik, M. A. Binyamin, and S. Hayat, “Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications,” Polycyl. Aromat. Comp., vol. 42, no. 9, p. 6267, 2022, https://doi.org/10.1080/10406638.2021.1977349.Suche in Google Scholar

[38] D. J. Wild and P. Willett, “Similarity searching in files of three-dimensional chemical structures. Implementation of atom mapping on the distributed array processor DAP-610, the MasPar MP-1104, and the connection machine CM-200,” J. Chem. Inf. Comput. Sci., vol. 34, no. 1, p. 224, 1994, https://doi.org/10.1021/ci00017a029.Suche in Google Scholar

[39] S. C. Basak, B. D. Gute, and A. T. Balaban, “Interrelationship of Major Topological Indices Evidenced by Clustering,” Croat. Chem. Acta, vol. 77, no. 1–2, p. 331, 2004.Suche in Google Scholar

[40] S. Hayat, “Computing distance-based topological descriptors of complex chemical networks: new theoretical techniques,” Chem. Phys. Lett., vol. 688, p. 51, 2017, https://doi.org/10.1016/j.cplett.2017.09.055.Suche in Google Scholar

[41] S. Hayat, M. Imran, and J.-B. Liu, “An efficient computational technique for degree and distance based topological descriptors with applications,” IEEE Access, vol. 7, p. 32276, 2019, https://doi.org/10.1109/access.2019.2900500.Suche in Google Scholar

[42] S. Hayat, S. Khan, and M. Imran, “Quality testing of spectrum-based distance descriptors for polycyclic aromatic hydrocarbons with applications to carbon nanotubes and nanocones,” Arab. J. Chem., vol. 14, no. 3, p. 102994, 2021, https://doi.org/10.1016/j.arabjc.2021.102994.Suche in Google Scholar

[43] S. Hayat, S. Khan, A. Khan, and M. Imran, “A computer-based method to determine predictive potential of distance-spectral descriptors for measuring the π-electronic energy of benzenoid hydrocarbons with applications,” IEEE Access, vol. 9, p. 19238, 2021, https://doi.org/10.1109/access.2021.3053270.Suche in Google Scholar

[44] D. J. Klein and B. Mandal, ““Pure-polyhex” π-networks: topo-combinatorics,” Croat. Chem. Acta, vol. 93, no. 4, p. 349, 2020, https://doi.org/10.5562/cca3790.Suche in Google Scholar

[45] D. J. Klein, “Graphitic polymer strips with edge states,” Chem. Phys. Lett., vol. 217, no. 3, p. 261, 1994, https://doi.org/10.1016/0009-2614(93)e1378-t.Suche in Google Scholar

[46] K. S. Novoselov, et al.., “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A., vol. 102, no. 30, p. 10451, 2005, https://doi.org/10.1073/pnas.0502848102.Suche in Google Scholar PubMed PubMed Central

[47] K. S. Novoselov, et al.., “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, p. 666, 2004, https://doi.org/10.1126/science.1102896.Suche in Google Scholar PubMed

[48] K. S. Novoselov, et al.., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, p. 197, 2005, https://doi.org/10.1038/nature04233.Suche in Google Scholar PubMed

[49] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, p. 183, 2007, https://doi.org/10.1038/nmat1849.Suche in Google Scholar PubMed

[50] K. Y. Rhee, Electronic and Thermal Properties of Graphene, Basel, Switzerland, MDPI, 2019.Suche in Google Scholar

[51] C. N. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angew. Chem., Int. Ed., vol. 48, no. 42, p. 7752, 2009, https://doi.org/10.1002/anie.200901678.Suche in Google Scholar PubMed

[52] K. Cao, S. Feng, Y. Han, L. Gao, T. H. Ly, and Y. Lu, “Elastic straining of free-standing monolayer graphene,” Nat. Commun., vol. 11, p. 284, 2020.10.1038/s41467-019-14130-0Suche in Google Scholar PubMed PubMed Central

[53] W. Cai, et al.., “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett., vol. 10, no. 5, p. 1645, 2010, https://doi.org/10.1021/nl9041966.Suche in Google Scholar PubMed

[54] G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H. Terrones, “Electronic and optical properties of strained graphene and other strained 2D materials: a review,” Rep. Prog. Phys., vol. 80, no. 9, p. 096501, 2017, https://doi.org/10.1088/1361-6633/aa74ef.Suche in Google Scholar PubMed

[55] E. W. Hill, A. Vijayaragahvan, and K. Novoselov, “Graphene Sensors,” IEEE Sens. J., vol. 11, no. 12, p. 3161, 2011.10.1109/JSEN.2011.2167608Suche in Google Scholar

[56] Q. Han, et al.., “Graphene biodevices for early disease diagnosis based on biomarker detection,” ACS Sens., vol. 6, no. 11, p. 3841, 2021, https://doi.org/10.1021/acssensors.1c01172.Suche in Google Scholar PubMed

[57] P. Ghosh, D. J. Klein, and B. Mandal, “Analytical eigenspectra of alternant edge-weighted graphs of linear chains and cycles: some applications,” Mol. Phys., vol. 112, no. 16, p. 2093, 2014, https://doi.org/10.1080/00268976.2014.886737.Suche in Google Scholar

[58] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, p. 56, 1991, https://doi.org/10.1038/354056a0.Suche in Google Scholar

[59] S. Iijima and I. Toshinari, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, p. 603, 1993, https://doi.org/10.1038/363603a0.Suche in Google Scholar

[60] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, no. 7, p. 883, 1995, https://doi.org/10.1016/0008-6223(95)00017-8.Suche in Google Scholar

[61] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: present and future commercial applications,” Science, vol. 339, no. 6119, p. 535, 2013, https://doi.org/10.1126/science.1222453.Suche in Google Scholar PubMed

[62] M. Zhang, et al.., “Strong, transparent, multifunctional, carbon nanotube sheets,” Science, vol. 309, no. 5738, p. 1215, 2005, https://doi.org/10.1126/science.1115311.Suche in Google Scholar PubMed

[63] A. B. Dalton, et al.., “Super-tough carbon-nanotube fibres,” Nature, vol. 423, no. 6941, p. 703, 2003, https://doi.org/10.1038/423703a.Suche in Google Scholar PubMed

[64] K. Koziol, et al.., “High-performance carbon nanotube fiber,” Science, vol. 318, no. 5858, p. 1892, 2007, https://doi.org/10.1126/science.1147635.Suche in Google Scholar PubMed

[65] C. D. Zeinalipour-Yazdi, E. Z. Loizidou, and A. Chutia, “Size-dependent bond dissociation enthalpies in single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 731, p. 136628, 2019, https://doi.org/10.1016/j.cplett.2019.136628.Suche in Google Scholar

[66] Q. W. Ahmed, D. A. Alazawi, and H. B. Mohammed, “Study the behavior of elastic modulus for zigzag and armchair single wall carbon nanotube structure with FEM,” J. Eng. Sustain. Dev., vol. 25, no. 4, p. 114, 2021.10.31272/jeasd.25.4.10Suche in Google Scholar

[67] B. WenXing, Z. ChangChun, and C. WanZhao, “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics,” Phys. B Cond. Mat., vol. 352, no. 1–4, p. 156, 2004, https://doi.org/10.1016/j.physb.2004.07.005.Suche in Google Scholar

[68] J. R. Xiao, B. A. Gama, and G. W. GillespieJr., “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,” Int. J. Solids Struct., vol. 42, no. 11–12, p. 3075, 2005, https://doi.org/10.1016/j.ijsolstr.2004.10.031.Suche in Google Scholar

[69] T. Ghosh and B. Mandal, “Wiener indices of zigzag single walled carbon nanotubes and related nanotories,” Chem. Phys., vol. 572, p. 111973, 2023, https://doi.org/10.1016/j.chemphys.2023.111973.Suche in Google Scholar

[70] M. Ahlskog, et al.., “Ring formations from catalytically synthesized carbon nanotubes,” Chem. Phys. Lett., vol. 300, no. 1–2, p. 202, 1999, https://doi.org/10.1016/s0009-2614(98)01322-0.Suche in Google Scholar

[71] M. Sano, A. Kamino, J. Okamura, and S. Shinkai, “Ring closure of carbon nanotubes,” Science, vol. 293, no. 5333, p. 1299, 2001, https://doi.org/10.1126/science.1061050.Suche in Google Scholar PubMed

[72] L. Liu, G. Y. Guo, C. S. Jayanthi, and S. Y. Wu, “Colossal paramagnetic moments in metallic carbon nanotori,” Phys. Rev. Lett., vol. 88, no. 21, p. 217206, 2002, https://doi.org/10.1103/physrevlett.88.217206.Suche in Google Scholar

Received: 2023-10-09
Accepted: 2024-01-29
Published Online: 2024-02-22
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0277/html?lang=de
Button zum nach oben scrollen