Home The effect of magnetized quantum plasma on Jeans instability
Article
Licensed
Unlicensed Requires Authentication

The effect of magnetized quantum plasma on Jeans instability

  • Ashok K. Patidar EMAIL logo , Hemlata Joshi , Sonali Patidar , Ram K. Pensia and Shaheen Mansuri
Published/Copyright: July 7, 2023

Abstract

The influence of quantum plasma on Jeans instability is investigated in the presence of magnetic fields, and the dispersion relation obtained in both parallel and perpendicular directions has shown the stabilizing effect on the growth rate of Jeans instability with a moderate temperature high-density regime. The influence of the magnetic field on the Jeans criteria is illustrated through the graphical representation. The inclusion of magnetic fields with quantum effect on the motion of a charged particle involves the essential properties of acceleration and the transport of highly ionized particles is important in connection with a well-known application of the confinement of magnetized plasma. In this paper, we analytically discuss the effect of magnetic field on white dwarfs. The mass-radius relation of highly magnetized white dwarfs is different from their non-magnetic equivalent and leads to a modified super-Chandrashekhar mass limit.


Corresponding author: Ashok K. Patidar, Govt. P. G. College, Mandsaur, MP, 458001, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. Koester and G. Chanmugam, “Physics of white dwarf stars,” Rep. Prog. Phys., vol. 53, p. 837, 1990. https://doi.org/10.1088/0034-4885/53/7/001.Search in Google Scholar

[2] A. S. Eddington, The Internal Constitution of the Star, Cambridge, UK, Cambridge University Press, 1998.Search in Google Scholar

[3] J. S. Hall, “Observations of the polarised lights from the stars,” Science, vol. 109, p. 166, 1949. https://doi.org/10.1126/science.109.2825.166.Search in Google Scholar PubMed

[4] W. A. Hiltner, “On the presence of polarization in the continuous radiation of stars II,” ApJ, vol. 109, p. 471, 1949. https://doi.org/10.1086/145151.Search in Google Scholar

[5] B. F. Burke and K. L. Franklin, “Observations of a variable radio source associated with the planet jupiter,” J. Geophys. Res., vol. 60, pp. 213–217, 1955. https://doi.org/10.1029/jz060i002p00213.Search in Google Scholar

[6] S. N. Shore, Astrophysical Hydrodynamics, Italy, E2, Wiley-VCH, 2007, pp. 166–167.10.1002/9783527619054Search in Google Scholar

[7] J. Braithwaite, An Introduction to Hydrodynamics and Astrophysical Magnetohydrodynamics, California, CreateSpace Independent Publishing Platform, 2011, p. p85.Search in Google Scholar

[8] J. H. Jeans, “The stability of a spherical nebula,” Proc. Roy. Soc. Lond., vol. 68, pp. 442–450, 1901.10.1098/rspl.1901.0072Search in Google Scholar

[9] M. Salimullah, M. Jamil, H. A. Shah, and G. Murtaza, “Jeans instability in a quantum dusty magnetoplasma,” Phys. Plasmas, vol. 16, p. 014502, 2009. https://doi.org/10.1063/1.3070664.Search in Google Scholar

[10] G. L. Delzanno and G. Lapenta, “Modified Jeans instability for dust grains in a plasma,” Phys. Rev. Lett., vol. 94, p. 175005, 2005. https://doi.org/10.1103/physrevlett.94.175005.Search in Google Scholar PubMed

[11] H. Ren, Z. Wu, J. Cao, and P. K. Chu, “Jeans instability in quantum magnetoplasma with resistive effects,” Phys. Plasma., vol. 16, p. 072101, 2009. https://doi.org/10.1063/1.3168612.Search in Google Scholar

[12] P. Sharma and R. K. Chhajlani, “Modified Jeans instability of magnetized viscous spin 1/2 quantum plasma with resistive effects and Hall current,” Astrophys. Space Sci., vol. 352, pp. 175–184, 2014. https://doi.org/10.1007/s10509-014-1879-x.Search in Google Scholar

[13] J. Lundin, M. Marklund, and G. Brodin, “Modified Jeans instability criteria for magnetized systems,” Phys. Plasmas, vol. 15, p. 072116, 2008. https://doi.org/10.1063/1.2956641.Search in Google Scholar

[14] D. Bohm and D. Pines, “A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas,” Phys. Rev., vol. 92, p. 609, 1953. https://doi.org/10.1103/physrev.92.609.Search in Google Scholar

[15] Y. L. Klimontovich and V. P. Silin, “The spectra of systems of interacting particles and collective energy losses during passage of charged particles through matter,” Sov. Phys. Usp., vol. 3, no. 1, p. 84, 1960. https://doi.org/10.1070/pu1960v003n01abeh003260.Search in Google Scholar

[16] G. Manfredi and F. Haas, “Self-consistent fluid model for a quantum electron gas,” Phys. Rev. B, vol. 64, no. 7, p. 075316, 2001. https://doi.org/10.1103/physrevb.64.075316.Search in Google Scholar

[17] F. Haas, Quantum Plasmas: An Hydrodynamic Approach, New York, Springer Science & Business Media, 2011, p. 65.10.1007/978-1-4419-8201-8_4Search in Google Scholar

[18] G. Manfredi, “How to model quantum plasmas,” Fields Inst. Commun., vol. 46, pp. 263–287, 2004.10.1090/fic/046/10Search in Google Scholar

[19] G. Brodin and M. Marklund, “Ferromagnetic behaviour in magnetized plasmas,” Phys. Rev. E, vol. 76, no. 5, p. 055403, 2008. https://doi.org/10.1103/physreve.76.055403.Search in Google Scholar

[20] G. Brodin, M. Marklund, and G. Manfredi, “Quantum plasma effects in the classical regime,” Phys. Rev. Lett., vol. 100, no. 17, p. 175001, 2008. https://doi.org/10.1103/physrevlett.100.175001.Search in Google Scholar

[21] D. B. Melrose and A. Mushtaq, “Quantum recoil and Bohm diffusion,” Phys. Plasmas, vol. 16, no. 9, p. 094508, 2009. https://doi.org/10.1063/1.3242726.Search in Google Scholar

[22] S. Chandrashekhar, “The highly collapsed configurations of a stellar mass,” Mon. Not. R. Astron. Soc., vol. 95, pp. 207–225, 1935. https://doi.org/10.1093/mnras/95.3.207.Search in Google Scholar

[23] S. Chandrashekhar, “On stars, their evolution and their stability,” Science, vol. 226, pp. 497–505, 1984. https://doi.org/10.1126/science.226.4674.497.Search in Google Scholar PubMed

[24] M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk, and J. M. Dawson, “Nuclear reaction rates and energy in stellar plasmas: the effect of highly damped modes,” Phys. Plasmas, vol. 8, no. 5, pp. 2454–2460, 2001. https://doi.org/10.1063/1.1362533.Search in Google Scholar

[25] G. Chabrier, F. Douchin, and A. Y. Potekhin, “Dense astrophysical plasmas,” J. Phys. Condens. Matter, vol. 14, no. 40, p. 9133, 2002. https://doi.org/10.1088/0953-8984/14/40/307.Search in Google Scholar

[26] G. Chanmugam, “Magnetic fields of degenerate stars,” Annu. Rev. Astron. Astrophys., vol. 30, pp. 143–184, 1992. https://doi.org/10.1146/annurev.aa.30.090192.001043.Search in Google Scholar

[27] L. Ferrario and D. T. Wickramasinghe, “Magnetic fields and rotation in white dwarfs and neutron stars,” Mon. Not. R. Astron. Soc., vol. 356, pp. 615–620, 2005. https://doi.org/10.1111/j.1365-2966.2004.08474.x.Search in Google Scholar

[28] M. Bhattacharya, B. Mukhopadhyay, and S. Mukherjee, “Luminosity and cooling of highly magnetized white dwarfs: suppression of luminosity by strong magnetic fields,” Mon. Not. R. Astron. Soc., vol. 477, pp. 2705–2715, 2018. https://doi.org/10.1093/mnras/sty776.Search in Google Scholar

[29] A. Gupta, B. Mukhopadhyay, and C. A. Tout, “Suppression of luminosity and mass-radius relation of highly magnetized white dwarfs,” Mon. Not. R. Astron. Soc., vol. 496, pp. 894–902, 2020. https://doi.org/10.1093/mnras/staa1575.Search in Google Scholar

[30] B. Mukhopadhyay, M. Bhattacharya, A. J. Hackett, S. Kalita, D. Karinkuzhi, and C. A. Tout, “Highly magnetized white dwarfs: implications and current status,” WSPC Proc., vol. 1, pp. 1–13, 2021.Search in Google Scholar

[31] M. Bhattacharya, A. J. Hackett, A. Gupta, C. A. Tout, and B. Mukhopadhyay, “Evolution of highly magnetic white dwarfs by field decay and cooling: theory and simulations,” Astrophys. J., vol. 925, p. 133, 2022. https://doi.org/10.3847/1538-4357/ac450b.Search in Google Scholar

[32] I. Ablimit and K. Maeda, “Evolution of magnetized white dwarf binaries to type ia supernovae,” Astrophys. J., vol. 871, p. 31, 2019. https://doi.org/10.3847/1538-4357/aaf722.Search in Google Scholar

[33] I. Ablimit and K. Maeda, “Possible contribution of magnetized white dwarf binaries to type ia supernovae populations,” Mon. Not. R. Astron. Soc., vol. 885, p. 99, 2019. https://doi.org/10.3847/1538-4357/ab4814.Search in Google Scholar

[34] I. Ablimit, “The magnetized white dwarf + helium star binary evolution with accretion-induced collapse,” Mon. Not. R. Astron. Soc., vol. 509, p. 6061, 2022. https://doi.org/10.1093/mnras/stab3060.Search in Google Scholar

[35] K. Vanlandhingam, G. Schmidt, D. Einstein, et al.., “Magnetic white dwarfs from the SDSS. II. The second and third data releases,” Astron. J., vol. 130, pp. 734–741, 2005. https://doi.org/10.1086/431580.Search in Google Scholar

[36] L. Ferrario, D. Martino, and B. T. Gansicke, “Magnetic white dwarfs,” Space Sci. Rev., vol. 191, pp. 111–169, 2015. https://doi.org/10.1007/s11214-015-0152-0.Search in Google Scholar

[37] S. Chandrashekhar, An Introduction to the Study of Stellar Structure, Chicago, The University of Chicago Press, 1939.Search in Google Scholar

[38] M. Akbari-Moghanjoughi, “Physical interpretation of Jeans instability in quantum plasmas,” Phys. Plasmas, vol. 21, p. 082117, 2014.10.1063/1.4894111Search in Google Scholar

[39] Z. Wu, H. Ren, J. Cao, and P. K. Chu, “The effect of the hall term on Jeans instability in quantum magnetoplasma with resistive effects,” Phys. Plasmas, vol. 17, no. 6, p. 064503, 2010. https://doi.org/10.1063/1.3447871.Search in Google Scholar

[40] T. Hamada and E. E. Salpeter, “Models for zero-temperature stars,” Astrophys. J., vol. 134, p. 683, 1961.10.1086/147195Search in Google Scholar

[41] B. Mukhopadhyay, “Mass of highly magnetized white dwarfs exceeding the Chandrashekhar limit: an analytical view,” Mod. Phys. Lett. A, vol. 27, no. 15, p. 1250084, 2012. https://doi.org/10.1142/s0217732312500848.Search in Google Scholar

[42] B. Mukhopadhyay and M. Bhattacharya, “Formation, possible detection and consequences of highly magnetized compact stars,” Particles, vol. 5, no. 4, pp. 493–513, 2022. https://doi.org/10.3390/particles5040037.Search in Google Scholar

Received: 2023-04-11
Accepted: 2023-06-09
Published Online: 2023-07-07
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0084/html
Scroll to top button