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Abstract: The evidence in favor of a Universe expanding at
a constant rate, in contrast to the various episodes of decel-
eration and acceleration expected in the standard model,
has been accumulating for over a decade now. In recent
years, this inference has been strengthened by a study of
the Friedmann-Lemaitre—Robertson—Walker (FLRW) met-
ric in relation to Einstein’s principle of equivalence. This
earlier work concluded that the choice of lapse function g,
=1characterizing the FLRW solution to Einstein’s equations
is inconsistent with any kind of accelerated cosmic expan-
sion. In this paper, we demonstrate and confirm this impor-
tant result by directly testing the self-consistency of four
well-known FLRW cosmologies. These include the Milne
universe, de Sitter space, the Lanczos universe, and the
Ry, = ct model. We show that only the constantly expanding
models (Milne and Ry, = ct) are consistent with the principle
of equivalence, while de Sitter and Lanczos fail the test. We
discuss some of the many consequences of this conclusion.

Keywords: cosmological models; general relativity; princi-
ple of equivalence; spacetime metric.

1 Introduction

Modern cosmology is based on the Cosmological princi-
ple, whose symmetries inform the Friedmann-Lemaitre—
Robertson—Walker (FLRW) metric [12, 24], one of the most
influential solutions to Einstein’s equations. FLRW is a spe-
cial member of the class of spherically-symmetric space-
times often used in problems of gravitational collapse or
expansion [10, 20, 21, 23].

But a principal difference between FLRW and the other
solutions in this category is that the dynamical equations
describing the Universe’s expansion are derived by first
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using all of the possible symmetries, such as homogeneity
and isotropy, to greatly simplify the coefficients prior to
introducing the metric into Einstein’s equations. FLRW is
conventionally written in the form

@D

2 _ 2 _ 2 dr?
ds? = 2dt a(t)(l_kr2

+1 dQZ>,
where dQ* = d6* + sin?6 d¢’. The expansion factor a(t) is
a function of cosmic time ¢, and the spatial coordinates
(r,0,¢) are defined in the co-moving frame and remain
“fixed” for all particles. The spatial curvature constant k is
+1 for a closed universe, 0 for a flat, open universe, and
—1 for an open universe. Quite remarkably, this approach
assumes free-fall conditions throughout the cosmos by set-
ting the lapse function equal to a constant (i.e., g, =1),
without confirming whether this assumption is consistent
with the time dilation arising from an accelerated expansion
when d # 0. Yet the Hubble flow is notinertial in ACDM, so it
isunclear why FLRW, with a constant g,,, should adequately
account for the dynamics in standard cosmology.

In several recent papers, we have carefully studied this
question on the basis of Einstein’s principle of equivalence
(PoE) and have concluded that the choice g,, = 1is generally
not consistent with arbitrary equations-of-state. It must be
emphasized that the field equations themselves are fully
consistent with the PoE, since they were derived within the
mathematical framework founded on the equality of the
inertial and gravitational masses. But this does not ensure
that any given solution must also be consistent with the PoE
if the symmetries used to simplify the metric coefficients are
in conflict with the choice of stress-energy tensor.

A mathematical formulation of the PoE [24] states that
there exists—at every spacetime point x#—a local, inertial
(i.e., free-falling) frame &#(x), with respect to which one may
‘measure’ the spacetime curvature in the accelerated frame.
The coordinates & fulfill the role required of the local, free-
falling (inertial) frame if they satisfy the equations

acha 2 aé:a
oxHox¥ L™ ox*’ (1.2)
where the Christoffel symbols,
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characterize the spacetime curvature. Alternatively, one
may demonstrate consistency of the metric coefficients with
the PoE via the transformation equation,

_ogoeP

dxH oxY Map> (14)

gyv

where 7, p= diag(1, —1, —1, —1) is the corresponding metric
tensor in flat spacetime.

We must also point out that there are, of course, an infi-
nite number of local inertial frames at each point within the
spacetime, each distinguished from the others by a constant
non-zero velocity. Nevertheless, there is only one, unique
local free-falling frame at that point, whose coordinates,
E#(x), are the ones that must satisfy Equation (1.2). These are
the coordinates we shall derive for each of the four FLRW
solutions we consider in this paper, as given in Equations
(2.6), (3.15), (4.10) and (5.2).

We showed earlier [11] that, instead of g, =1 in
Equation (1.1), the FLRW lapse function must satisfy the

constraint )
/ Ve det) = cg, 0,

for an arbitrary expansion factor a(t). (Note that we
have corrected the missing square-root sign in the original
expression.) This is the critical condition that relates the
time dilation, measured in the accelerated frame, to the
expansion factor a(t) and the equation-of-state. Clearly, the
choice g, = 11is consistent only with the expansion profile
a(t) « t (and the much less relevant Minkowski space solu-
tion with a = constant).

The goal of this paper is to demonstrate and affirm this
result by reversing this procedure. Instead of beginning the
derivation with an arbitrary lapse function and showing
that the choice g, =1 necessarily forces a(t) to be linear
in t, we take several well-known FLRW models, including
the Milne universe, the R, = ct universe, de Sitter space,
and the Lanczos universe, and explicitly demonstrate that
the former two, with d = 0, satisfy Equations (1.2) and (1.4),
while the latter, with @ # 0, do not.

Besides providing an important confirmation of this
result using an alternative approach, the steps we under-
take in this paper also address any possible concern one
may have that beginning with g;, # 1in Equation (1.1) may
be unnecessarily shifting the FLRW metric out of the free-
falling frame, thereby creating an artificial need for a time
dilation. We shall instead take the FLRW solutions as they
are, with g, =1, and prove that they are inconsistent with
the PoE unless their expansion is linear in ¢.

In § 2, we begin this process with the Milne universe
to establish the fact that the FLRW metric in Equation (1.1)

(1.5
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with g,, =1 does in fact satisfy Equations (1.2) and (1.4) for
a non-accelerating cosmology. We then show in § 3 that the
outcome for de Sitter space is completely different. And
we amplify this result in § 4 by showing that the Lanczos
cosmology, another accelerated universe, also fails this test.
Whereas Milne and de Sitter are open universes, Lanczos is
closed, so we rule out any possibility that this inconsistency
may somehow be related to spatial curvature. Finally, in
§ 5, we confirm that FLRW cosmologies with d = 0 satisfy
the PoE by also considering the R, = ct universe, which
is based on the zero active mass condition (p + 3p = 0),
producing an expansion with a(t) = (t/t,), in terms of the
age of the Universe today. We end with our conclusions
in§6.

2 The Milne universe

The Milne universe is empty, with p =0 and a negative
spatial curvature constant, k = —1. Its expansion factor may
be written

at) = ct. (VA

This FLRW model is thus one of the special cases dis-
cussed above, for which the lapse function g, should be
set equal to one. First introduced by ref. [19], this model
has zero acceleration, i.e., d@(t) = 0, and may be viewed as
a re-parametrization of Minkowski space. To find the cor-
responding Cartesian coordinates &* = (50,51,52,53) in a
local inertial frame at any spacetime point x* = (ct, r, 0, ¢),
we shall follow a procedure described in refs. [1, 2, 14].

We first introduce the co-moving distance variable y,
defined according to

r=sinh g, 2.2)
and re-write the FLRW metric (Eq. 1.1) as
ds? = c2de? — (ct)2<d % +sinh? g sz). @3)
With the subsequent transformation,
T=tcosh y
R =ct sinh y, 2.4)
we may then recast this metric into the form
ds? = *dT? — dR? — R*dQY. 2.5)
And with the definitions
E=cT

E' =R sin 6 cos ¢
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E2=Rsin 6 sin ¢

E% =R cos 6, (2.6)
we arrive at its final Minkowski form,
ds? = (d&%* — (dEY)* — (dE** — (d&3) Q.7

The coordinates &% therefore correspond to the local free-
falling (inertial) frame, evaluated via Equation (2.6), any-
where in the Milne universe.

From Equation (1.3), we find that the only non-zero
Christoffel symbols in this case are

ct

Ftrr = m thg = CU‘Z
1 0 0 1
My=Ty=—x [y=I%=2>
rt tr ct ot t0 ct

1
r*,=r%,=_
Pt tp ct

Frrr = _ﬁrr‘z Frgg = _r(l + rZ)
M4y = -1+ rP)sin® 6

1
rgre = Fger = r

F9¢¢ = —sin 6 cos 0

6 _po _1

Turning our attention to Equation (1.2), we can now con-
sider several illustrative values of the indices. For a« = y =
v = 0, the left-hand side gives

2
%TZT = %(cosh 7)=0. 2.9)
By comparison, the right-hand side of this equation is
2 08 _ g 08 _
r Wt = Vg = 0, (2.10)

an exact match. With « =0 and u = v =1, the left-hand
side becomes

0XcT) _  ct
ot (14 1)
Correspondingly,
1 0&" _ o ct ocT)  r 0(cT)
Toxt  1+r2ac) 1+r1* or
ct
= 212
1+ r¥¥/? @12)

another exact match.
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It is easy to verify that such an exact match emerges
for all the other indices in Equation (1.2) as well. Alterna-
tively, we may wish to check that the coordinates x* and
&% satisfy the transformation of the metric coefficients in
Equation (1.4). For example,

_ 05" o0&’

8r = or W”aﬂ’ 2.13)
which gives
. dy : . 2
g» = | ct sinh o (ct sin @ cos ¢)
— (ct sin 6 sin q’))z — (ct cos 9)2

(ct)?
=——" 2.14
1412 214

the correct FLRW coefficient for the rr-component of the
Milne metric in Equation (1.1). We thus confirm that the
constraint in Equation (1.5) derived in ref. [11] is satisfied
by the non-accelerating Milne universe, whose metric with
8+ =1 and a(t) = ct is completely consistent with both
Equations (1.2) and (1.4).

3 de Sitter space

Let us next consider the perpetually accelerating de Sitter
universe, which also assumes g, =1 in Equation (1.1), but
instead has a # 0. Its metric (with k = 0) may be written

ds* = i — ¥ (dr +12dQ°), 3.1)
where we have put a(t) = e, As we shall see, de Sitter space
contrasts sharply with Milne because—unlike the latter—it
does not at all satisfy the PoE.

Both the Milne universe (as we have seen) and de Sit-
ter space have constant spacetime curvature. Using fixed
observer coordinates, one may therefore find a transforma-
tion thatrenders all of their coefficients independent of time
(see, e.g., ref. [14]). For de Sitter, we put

T =ct— %Rh In®

R =alr, (3.2)
where R, is the gravitational (or Hubble) radius [17],
=¢
R, = L (3.3)
and
R 2
(I)El—<> . (3.4)
Ry
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Under this transformation, the de Sitter interval becomes

ds* = ®EdT? — @ 'dR? — R* Q2. (3.5)

As one can confirm, all the metric coefficients in
Equation (3.5) are independent of the new time coordinate
T. For future reference, we also define the Cartesian
coordinates

X' =R sin 0 cos ¢
X? =R sin 6 sin ¢

X% =R cos 6. (3.6)

To bring this metric into its Cartesian isotropic form, we
introduce an additional coordinate transformation,

-1

2
R=6ll+(6>] , 3.7)
Oq
where
Gh = ZRh’ (3.8)
Therefore,
dR = do é, 39)
and
2
= %, (3.10)
in terms of the newly defined quantities
2
P= l1 - <6> ]
Oh
o \?
= |1 — . A1
¢ l - <°'h> ] (31D

The metric for de Sitter space may thus also be written

2
ds? = <g> cdr? — i(daz + O'ZdQZ), (3.12)

QZ

and we arrive at its final Cartesian isotropic form,
P\’ 1
ds* = <Q> c*dr? — 7 [do") + (do?)* + (do®], (313)

with the introduction of the Cartesian coordinates corre-
sponding to o:

ol=0sin 0 cos ¢

6? =0 sin 0 sin ¢

3

6° =0 cos 0. (3.14)
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The PoE requires the coordinates in the local inertial
frame to satisfy Equation (1.2) only in the vicinity of each
selected spacetime point x#. Thus, one may assume that R
and o are approximately constant wherever they appear
inside the metric coefficients, allowing us to write P = P(x*)
and Q = Q(x*) in the vicinity of x#. The local free-falling
(inertial) frame coordinates may thus be defined as

-

o= Q&ﬂ)"1

&= Q(}(")GZ

&= ﬁo% 3.15)

allowing us to write the de Sitter metric in its Minkowski
form consistent with Equation (2.7).

To see if these coordinates satisfy the PoE, we shall need
the corresponding non-zero Christoffel symbols, written in
spherical coordinates:

o2Ht
Ftrr =75
Ry
2Ht
Ftea = e*rz
Ry
2Ht
| R € 12sin @
R
h
1
Iﬂrrt = 1—‘rtr = Fh
) 1
[Py =T = th
o _mo 1
P =T = &
rrea =7r

Fr¢¢ =rsin’ 0

0 0 1
[V =17, = r
F0¢¢ = —sin 6 cos 0
1
r
Iy, =T?4 = cot 6.

r,=1%, =
(3.16)

We may now examine whether the coordinates x# and &*
(in Eq. 3.15) satisfy Equation (1.2). In fact, they do not. For
example, the « = 4 = v = 0 component yields

2
P2 (R\ .,
(= )P =0, (3.17)
QRh<Rh>
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which cannot be consistent for arbitrary values of R (or r).
Similarly, we find for the « = 4 = v = 1 component that

eZHt Q Xl

= 3.18
R, PR, G18)

which, again, is not correct for arbitrary values of X'and t.
Notice, e.g., that e?*X! may become arbitrarily large com-
pared to Ry, which is fixed in this cosmology.

Unlike the Milne universe, de Sitter space is therefore
not consistent with Einstein’s PoE. Both of these models are
FLRW cosmologies and both assume a lapse function g,, = 1.
But whereas the Milne universe expands at a constant
rate, with an implied zero time dilation with respect to the
local free-falling (inertial) frame, de Sitter space expands
at an accelerated rate. A lapse function g, =1 for this
model therefore cannot adequately account for the space-
time curvature, reflected in this spacetime’s inconsistency
with Equations (3.17) and (3.18).

4 The Lanczos universe

In the previous two sections, we considered a non-
accelerating cosmology (Milne) and the perpetually acceler-
ating de Sitter model, both open universes with k < 0. To
round out the discussion, we here consider another acceler-
ating cosmology—the Lanczos universe [6]—but this time
with k > 0, implying a finite, closed spacetime. The Lanczos
metric is

dr?
1-r2

ds® = c*de® — (ch)* cosh?(t/b) x < + 17 d£22>, C%))
where b is a constant (though not the Hubble constant
H=a/a) and k=41 The expansion factor is a(t) =
(cb) cosh(t/b), so H = (1/b) tanh(t/b). The physical inter-
pretation of this spacetime is that it represents the gravita-
tional field of a rigidly rotating dust cylinder coupled to a
cosmological constant.

To find a local inertial frame at any location x* in this
spacetime, we begin with the following transformation [3]
that brings the metric into its static form:

R = a(t)r = cbr cosh(t/b)
tanh(T/b) = (1—r2) ™/ tanh(t/b). 42)

In terms of the new coordinates (cT, R, 0, ¢), the line ele-
ment becomes

ds? = [1 - (5))2] 2dT? — [1 - (5))2] _1dR2 — RO
4.3)
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Equation (4.3) is actually identical to Equation (3.5) for de
Sitter, except that the gravitational (or apparent) horizon
is now R, = cb instead of c¢/H. But both of these radii are
constant, so it is not surprising to find that the same kind
of transformation we used in Equations (3.7)-(3.11) may be
used here as well.

We introduce a new radial coordinate w via the

definition
2 -1
R=wl1+<w>] , (4.4)
W
where
Wy, = 2R, = 2cb. 4.5)
Then,
U
d.R = dw’w, (4'6)
in terms of the quantities
2
U= [1 - <w> ]
Wy
2
V= l1+<w> ] “.7
W

The Lanczos metric written in Cartesian isotropic form is
thus

ds* = (Q)ZCZde -

v ([dw@") + @@ + ([dw®?], 48)

1
o
where the Cartesian coordinates corresponding to w are

w! = w sin 6 cos ¢

w? = w sin 6 sin ¢

3

w° = w cos 0. (4.9)

The local free-falling (inertial) frame coordinates for
the Lanczos universe are therefore

o _ Ux*)
&= Vo) cT

1 1 1

C=vn®

2 1 2

&= 0@

&= V&,,)wz‘, (4.10)

and we may use these to write its line element in Minkowski
form, analogous to Equation (2.7).
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As we did for Milne and de Sitter; we begin to examine
whether these coordinates satisfy the PoE by first deriving
the non-zero Christoffel symbols:

I, = cbr* sin® 6 cosh % sinh%
¢ _ ¢b to. ot
', = -7 cosh b sinh b

I'yy = cbr* cosh % sinh %

I, =I", = 2 tanh .
Fgm =F9t9 = %tanhé
[y =T%; = tanh |

[Myg=—-(1—-19r

My =—A—r)rsin® @
rf,=r¢, = %
F9¢¢ = —sin 6 cos 0

1

¢ _1¢
rr(p_r(br_;

Then, for the illustrative set of indices « = y = v =0 and
a = u =v =1, we find that

r2V1—r? 2 tanh(t/b)[1 — tanh*(t/b)] _ 0 412
ch [1—r2 — tanh?(t/b)]2 ' ’

and

= 1C_b';2 % cosh®(t/b) sin 6 cos 6.
As was the case for de Sitter, neither of these equations is
satisfied for arbitrary values of r and ¢. With its lapse func-
tion g,, = 1, the Lanczos universe fails the PoE test. Like de
Sitter, Lanczos accelerates, and this failure is an affirmation
of our conclusion that nonlinear expansions of the cosmos
need to be represented by metrics that allow for possible

time dilation relative to local inertial frames.

(4.13)

5 The R;, = ct universe

We close this discussion with an application of this test
to the Ry, = ct universe, another FLRW cosmology with an
expansion parameter a(t) o« t[12, 13], but with kK = 0. Unlike
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the Milne universe, however, this model is not empty; it
contains the same constituents in the cosmic fluid as the
standard model does, though it incorporates an additional
constraint from general relativity—an overall equation-
of-state given by the zero active mass condition, ie.,
p +3p =0, in terms of the total energy density p and pres-
sure p. Itis not difficult to recognize from the Raychaudhuri
equation [22] that this constraint produces zero accelera-
tion (i.e., d@ = 0), and therefore implies an expansion with
a(t) = t/t,. This normalization in terms of the age (¢,) of the
Universe is consistent with zero spatial flatness.

Theline element for the R, = ct universe may therefore
be written

2
ds? = Ade* — <tt> (@A + @2+ @ 6D
0

where, as usually defined, x* = (ct, x!, x?, x%) are the coor-
dinates in the co-moving frame. A distinguishing feature of
the R,, = ct universe, in comparison with Milne, de Sitter
and Lanczos, is that its spacetime curvature is not static.
Like ACDM, it therefore does not offer us the possibility
of first finding a coordinate-transformation (like Eqs. 2.4,
3.2 and 4.2) that permits its metric to be written in a time-
independent form.

Nevertheless, pursuant to the aforementioned require-
ment that the local free-falling (inertial) frame satisfying
Equation (1.2) need only be defined in the vicinity of each
spacetime point in the observer’s frame, we may use the
following coordinate transformation at x*:

& = ctn(x)

El=q(x!= (tt>xi,

0

(5.2)

where 7(x) is approximately constant for points in the
neighborhood of x#. Whereas one finds a global inertial
frame for Milne (corresponding to Eq. 2.6), the local inertial
framesin R, = ct need to be found point by point, each with
its own value of 7.

It is not difficult to see that the line element in
Equation (2.7), written in terms of Equation (5.2), will match
Equation (5.1) as long as

1 d
(cty)? dt

nxP =1+ tr?). (5.3)
Of course, dr/dt = 0 if the inertial frame coincides with the
Hubble flow, in which case

r2

2 —
nx)* =1+ )

(5.4

but we do not need to consider such details. The key
point is that n(x) is always of order unity. This coordinate
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transformation therefore provides us with a reasonably
accurate representation of the local free-falling (inertial)
frames we are seeking in this spacetime.

Then, the non-zero Christoffel symbols corresponding
to the R, = ct metric (Eq. 5.1) written in Cartesian coordi-
nates are

1t
Iﬁtll - IﬁtZZ - Iﬁt33 - Cl’o tO
1
rt, =r, ==
t1 1t ct
1
r2,=r% =~
t2 2t ct
[ =T% =1, (5.5)
ct

With these, we can now examine whether the coordinates
x# and &% for the R, = ct universe are consistent with
Equation (1.2).

First, we confirm that x# and &” for the R, = ct uni-
verse satisfy the coordinate transformation Equation (1.4).

We have
_ 050 2_ % 2
= (%) -2(%

i

o T
(Cto)z
=1 (5.6)
In addition,
2 A
_ (0&° o’
5= (%) - ;(ax>
=0-a
=da, (5.7
as required.
In Equation (1.2), one has fora = y = v =0,
6250
=0 5.8
Aty ) (5.8
and
1 08 _
r 00 50F = 0, (5.9)

an exact match. Similarly, for @ = y = iand v = 0, one gets

0%E! 0 [ x 1
g === )=— 5.10
oxtdct  oxt (ct0> cty’ 610
while the right-hand side gives
i i
ri,ds =19 1 (G.11)

Dox% ~ ctoxt T ct,

F. Melia: FLRW metric and the principle of equivalence == 531

an equally precise match. As a third illustrative example,
consider the case @« = y = v = i, for which

0%l _ at/ty) _

3o = ox = O (5.12)
The right-hand side yields
1061 toel 1 XL, (513

Tox* oty ty dct  ctyctyty

given that |x'/ct,| <1 and t/t, <1, while ct, > 1. All the
other components are similarly satisfied.

6 Conclusion

The four cosmological models we have considered in this
paper span a broad range of possible applications of the
FLRW metric. Three of them, i.e., Milne, de Sitter, and Lanc-
zos, have constant spacetime curvature, while the fourth
(R, = ct) does not. Two of these (Milne and R;, = ct) expand
at a constant rate, while the other two accelerate. And
de Sitter, Lanczos, and R, = ct are spatially flat, while
Milne is negatively curved. Therefore, our results cannot be
attributed to some unknown selection bias.

We have shown by direct application of the PoE
equations that the two non-accelerating models (Milne
and R, =ct) are completely consistent with Einstein’s
principle, while de Sitter and Lanczos do not satisfy
Equation (1.2). This is an important confirmation of the
result in Equation (1.5) [11, 12], that constrains the range of
possible lapse functions (g,,) consistent with a given expan-
sion factor a(t). In that earlier work, we showed that the
choice g, = 1is consistent only with two equations-of-state
that lead to a(t) « t and a(t) = constant. Here, we have
affirmed this conclusion by demonstrating that Milne and
Ry, = ct are consistent with the PoE, while de Sitter and
Lanczos are not. Ultimately, the reason for this disparity
is that one cannot ignore the gravitationally-induced time
dilation in the accelerated frame (i.e., the Hubble flow) rel-
ative to an underlying local inertial frame.

As discussed in these earlier publications, the FLRW
metric is unique among the various solutions to Einstein’s
equations, in part because it is written to comply with the
cosmological principle, which includes the assumption of
homogeneity throughout the Universe. The lapse function
&, therefore cannot be a function of the spatial coordinates;
at most, it can depend only on t. This is the peculiarity
that allows one to begin with the FLRW metric written in
terms of the co-moving coordinates, (ct,r, 8, ¢), force the
condition g;, = 1, and then choose a stress-energy tensor in
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Einstein’s equations that results in an accelerated expan-
sion. But by keeping g, equal to 1, one is effectively carrying
out a gauge transformation that shifts the original time
coordinate in the co-moving frame to the new coordinate,
dt’ = g,/* dt, that belongs to the observer in the local free-
falling frame. Because of the cosmological principle, this
can happen without affecting any of the other metric coef-
ficients, an outcome that is clearly a contradiction because
one is using the co-moving coordinates in a frame where
the lapse function is 1 (zero time dilation), i.e., the local
free-falling frame.

Needless to say, the consequences of this conclusion are
rather significant. An extensive discussion of the various
issues raised by the inconsistencies we have highlighted in
this paper have appeared elsewhere, including refs. [9, 11,
12,18]. For example, slow-roll inflation has become an indis-
pensable component of the standard model [4, 7]. This brief
period of accelerated expansion shortly after the Big Bang
is believed to have solved the horizon problem and seeded
the quantum fluctuations that eventually classicalized and
grew to form the large-scale structure we see today. But
slow-roll inflation relies critically on the expansion profile
provided by de Sitter. Thus, if the de Sitter cosmology is
inconsistent with the PoE, there doesn’t appear to be a viable
framework for describing the inflationary expansion in the
context of FLRW.

Moreover, the inconsistency of an accelerated cosmic
expansion with the PoE, as one finds within the various evo-
lutionary phases of the standard model, begins to provide
an explanation for the growing tension seen between ACDM
and the high-precision measurements carried out today [18].
By now, comparative tests between ACDM and R, = ct have
been completed using over 27 different kinds of data (see,
e.g., a recent summary in Table 2 of ref. [16]). In each and
every case, the FLRW cosmology with a constant expansion
rate accounts for the observations at least as well—and
often even better—than the standard model with a(t) # 0.

Fortunately, a confirmation (or rejection) of these ideas
and conclusions will be available in the near future. One of
the most exciting and informative campaigns will measure
the real-time redshift drift of distant quasars [5,8]. This mea-
surement will provide a simple yes/no answer: the redshift
driftis expected to be zero throughout the cosmos if a(t) « ¢,
and non-zero otherwise [15]. A confidence level of ~3¢ will
be achievable after only 5 years of observation, while ~5¢
should be reached in about 20 years. Very interestingly, an
FLRW cosmology with a(t) < t does not have any horizon
problems, so a confirmation of the work reported in this
paper may completely obviate the need for inflation any-
way. The stakes could not be higher.
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