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Abstract: The evidence in favor of a Universe expanding at

a constant rate, in contrast to the various episodes of decel-

eration and acceleration expected in the standard model,

has been accumulating for over a decade now. In recent

years, this inference has been strengthened by a study of

the Friedmann–Lemaître–Robertson–Walker (FLRW) met-

ric in relation to Einstein’s principle of equivalence. This

earlier work concluded that the choice of lapse function gtt
= 1 characterizing the FLRWsolution to Einstein’s equations

is inconsistent with any kind of accelerated cosmic expan-

sion. In this paper, we demonstrate and confirm this impor-

tant result by directly testing the self-consistency of four

well-known FLRW cosmologies. These include the Milne

universe, de Sitter space, the Lanczos universe, and the

Rh = ctmodel. We show that only the constantly expanding

models (Milne and Rh = ct) are consistent with the principle

of equivalence, while de Sitter and Lanczos fail the test. We

discuss some of the many consequences of this conclusion.

Keywords: cosmological models; general relativity; princi-

ple of equivalence; spacetime metric.

1 Introduction

Modern cosmology is based on the Cosmological princi-

ple, whose symmetries inform the Friedmann–Lemaître–

Robertson–Walker (FLRW) metric [12, 24], one of the most

influential solutions to Einstein’s equations. FLRW is a spe-

cial member of the class of spherically-symmetric space-

times often used in problems of gravitational collapse or

expansion [10, 20, 21, 23].

But a principal difference between FLRW and the other

solutions in this category is that the dynamical equations

describing the Universe’s expansion are derived by first
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using all of the possible symmetries, such as homogeneity

and isotropy, to greatly simplify the coefficients prior to

introducing the metric into Einstein’s equations. FLRW is

conventionally written in the form

ds2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2 dΩ2

)
, (1.1)

where dΩ2
≡ d𝜃2 + sin2𝜃 d𝜙2. The expansion factor a(t) is

a function of cosmic time t, and the spatial coordinates

(r, 𝜃, 𝜙) are defined in the co-moving frame and remain

“fixed” for all particles. The spatial curvature constant k is

+1 for a closed universe, 0 for a flat, open universe, and

−1 for an open universe. Quite remarkably, this approach

assumes free-fall conditions throughout the cosmos by set-

ting the lapse function equal to a constant (i.e., gtt = 1),

without confirming whether this assumption is consistent

with the timedilation arising fromanaccelerated expansion

when ä ≠ 0. Yet theHubble flow is not inertial inΛCDM, so it
is unclear why FLRW,with a constant gtt, should adequately

account for the dynamics in standard cosmology.

In several recent papers, we have carefully studied this

question on the basis of Einstein’s principle of equivalence

(PoE) and have concluded that the choice gtt = 1 is generally

not consistent with arbitrary equations-of-state. It must be

emphasized that the field equations themselves are fully

consistent with the PoE, since they were derived within the

mathematical framework founded on the equality of the

inertial and gravitational masses. But this does not ensure

that any given solution must also be consistent with the PoE

if the symmetries used to simplify themetric coefficients are

in conflict with the choice of stress-energy tensor.

A mathematical formulation of the PoE [24] states that

there exists—at every spacetime point x𝜇—a local, inertial

(i.e., free-falling) frame 𝜉𝜇(x), with respect towhich onemay

‘measure’ the spacetime curvature in the accelerated frame.

The coordinates 𝜉𝜇 fulfill the role required of the local, free-

falling (inertial) frame if they satisfy the equations

𝜕2𝜉𝛼

𝜕x𝜇𝜕x𝜈
= Γ𝜆

𝜇𝜈

𝜕𝜉𝛼

𝜕x𝜆
, (1.2)

where the Christoffel symbols,

Γ𝜆
𝜇𝜈 ≡

1

2
g𝛼𝜆

{
𝜕g𝜈𝛼
𝜕x𝜇

+ 𝜕g𝜇𝛼
𝜕x𝜈

− 𝜕g𝜈𝜇
𝜕x𝛼

}
, (1.3)
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characterize the spacetime curvature. Alternatively, one

may demonstrate consistency of themetric coefficients with

the PoE via the transformation equation,

g𝜇𝜈 =
𝜕𝜉𝛼

𝜕x𝜇
𝜕𝜉𝛽

𝜕x𝜈
𝜂𝛼𝛽 , (1.4)

where 𝜂𝛼𝛽 = diag(1,−1,−1,−1) is the correspondingmetric
tensor in flat spacetime.

Wemust also point out that there are, of course, an infi-

nite number of local inertial frames at each point within the

spacetime, each distinguished from the others by a constant

non-zero velocity. Nevertheless, there is only one, unique

local free-falling frame at that point, whose coordinates,

𝜉
𝜇(x), are the ones thatmust satisfy Equation (1.2). These are

the coordinates we shall derive for each of the four FLRW

solutions we consider in this paper, as given in Equations

(2.6), (3.15), (4.10) and (5.2).

We showed earlier [11] that, instead of gtt = 1 in

Equation (1.1), the FLRW lapse function must satisfy the

constraint
ct

∫

√
gtt(t

′) d(ct′) = cgtt(t)
a

ȧ
, (1.5)

for an arbitrary expansion factor a(t). (Note that we

have corrected the missing square-root sign in the original

expression.) This is the critical condition that relates the

time dilation, measured in the accelerated frame, to the

expansion factor a(t) and the equation-of-state. Clearly, the

choice gtt = 1 is consistent only with the expansion profile

a(t) ∝ t (and the much less relevant Minkowski space solu-

tion with a = constant).

The goal of this paper is to demonstrate and affirm this

result by reversing this procedure. Instead of beginning the

derivation with an arbitrary lapse function and showing

that the choice gtt = 1 necessarily forces a(t) to be linear

in t, we take several well-known FLRW models, including

the Milne universe, the Rh = ct universe, de Sitter space,

and the Lanczos universe, and explicitly demonstrate that

the former two, with ä = 0, satisfy Equations (1.2) and (1.4),

while the latter, with ä ≠ 0, do not.

Besides providing an important confirmation of this

result using an alternative approach, the steps we under-

take in this paper also address any possible concern one

may have that beginning with gtt ≠ 1 in Equation (1.1) may

be unnecessarily shifting the FLRW metric out of the free-

falling frame, thereby creating an artificial need for a time

dilation. We shall instead take the FLRW solutions as they

are, with gtt = 1, and prove that they are inconsistent with

the PoE unless their expansion is linear in t.

In § 2, we begin this process with the Milne universe

to establish the fact that the FLRW metric in Equation (1.1)

with gtt = 1 does in fact satisfy Equations (1.2) and (1.4) for

a non-accelerating cosmology. We then show in § 3 that the

outcome for de Sitter space is completely different. And

we amplify this result in § 4 by showing that the Lanczos

cosmology, another accelerated universe, also fails this test.

Whereas Milne and de Sitter are open universes, Lanczos is

closed, so we rule out any possibility that this inconsistency

may somehow be related to spatial curvature. Finally, in

§ 5, we confirm that FLRW cosmologies with ä = 0 satisfy

the PoE by also considering the Rh = ct universe, which

is based on the zero active mass condition (𝜌+ 3p = 0),

producing an expansion with a(t) = (t∕t0), in terms of the

age of the Universe today. We end with our conclusions

in § 6.

2 The Milne universe

The Milne universe is empty, with 𝜌 = 0 and a negative

spatial curvature constant, k = −1. Its expansion factormay
be written

a(t) = ct. (2.1)

This FLRW model is thus one of the special cases dis-

cussed above, for which the lapse function gtt should be

set equal to one. First introduced by ref. [19], this model

has zero acceleration, i.e., ä(t) = 0, and may be viewed as

a re-parametrization of Minkowski space. To find the cor-

responding Cartesian coordinates 𝜉𝛼 = (𝜉0, 𝜉1, 𝜉2, 𝜉3) in a

local inertial frame at any spacetime point x𝜇 = (ct, r, 𝜃, 𝜙),

we shall follow a procedure described in refs. [1, 2, 14].

We first introduce the co-moving distance variable 𝜒 ,

defined according to

r = sinh 𝜒, (2.2)

and re-write the FLRWmetric (Eq. 1.1) as

ds2 = c2dt2 − (ct)2
(
d𝜒 2 + sinh2 𝜒 dΩ2

)
. (2.3)

With the subsequent transformation,

T = t cosh 𝜒

R = ct sinh 𝜒, (2.4)

we may then recast this metric into the form

ds2 = c2dT2 − dR2 − R2dΩ2
. (2.5)

And with the definitions

𝜉0 = cT

𝜉1 = R sin 𝜃 cos 𝜙
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𝜉2 = R sin 𝜃 sin 𝜙

𝜉3 = R cos 𝜃, (2.6)

we arrive at its final Minkowski form,

ds2 = (d𝜉0)2 − (d𝜉1)2 − (d𝜉2)2 − (d𝜉3)2. (2.7)

The coordinates 𝜉𝛼 therefore correspond to the local free-

falling (inertial) frame, evaluated via Equation (2.6), any-

where in the Milne universe.

From Equation (1.3), we find that the only non-zero

Christoffel symbols in this case are

Γt
rr =

ct

1+ r2
Γt

𝜃𝜃 = ctr2

Γt
𝜙𝜙 = ctr2 sin2 𝜃

Γr
rt = Γr

tr =
1

ct
Γ𝜃

𝜃t = Γ𝜃
t𝜃 =

1

ct

Γ𝜙
𝜙t = Γ𝜙

t𝜙 = 1

ct

Γr
rr = − r

1+ r2
Γr

𝜃𝜃 = −r(1+ r2)

Γr
𝜙𝜙 = −r(1+ r2) sin2 𝜃

Γ𝜃
r𝜃 = Γ𝜃

𝜃r =
1

r

Γ𝜃
𝜙𝜙 = − sin 𝜃 cos 𝜃

Γ𝜙
r𝜙 = Γ𝜙

𝜙r =
1

r

Γ𝜙
𝜃𝜙 = Γ𝜙

𝜙𝜃 = cot 𝜃. (2.8)

Turning our attention to Equation (1.2), we can now con-

sider several illustrative values of the indices. For 𝛼 = 𝜇 =
𝜈 = 0, the left-hand side gives

𝜕2T

𝜕t2
= 𝜕

𝜕t

(
cosh 𝜒

)
= 0. (2.9)

By comparison, the right-hand side of this equation is

Γ𝜆
𝜇𝜈

𝜕𝜉𝛼

𝜕x𝜆
= Γ𝜆

tt
𝜕𝜉t

𝜕x𝜆
= 0, (2.10)

an exact match. With 𝛼 = 0 and 𝜇 = 𝜈 = 1, the left-hand

side becomes

𝜕2(cT)

𝜕r2
= ct

(1+ r2)3∕2
. (2.11)

Correspondingly,

Γ𝜆
rr
𝜕𝜉t

𝜕x𝜆
= ct

1+ r2
𝜕(cT)

𝜕(ct)
− r

1+ r2
𝜕(cT)

𝜕r

= ct

(1+ r2)3∕2
, (2.12)

another exact match.

It is easy to verify that such an exact match emerges

for all the other indices in Equation (1.2) as well. Alterna-

tively, we may wish to check that the coordinates x𝜇 and

𝜉
𝛼 satisfy the transformation of the metric coefficients in

Equation (1.4). For example,

grr =
𝜕𝜉𝛼

𝜕r

𝜕𝜉𝛽

𝜕r
𝜂𝛼𝛽, (2.13)

which gives

grr =
(
ct sinh 𝜒

𝜕𝜒

𝜕r

)2

−
(
ct sin 𝜃 cos 𝜙

)2

−
(
ct sin 𝜃 sin 𝜙

)2 − (
ct cos 𝜃

)2

= − (ct)2

1+ r2
, (2.14)

the correct FLRW coefficient for the rr-component of the

Milne metric in Equation (1.1). We thus confirm that the

constraint in Equation (1.5) derived in ref. [11] is satisfied

by the non-accelerating Milne universe, whose metric with

gtt = 1 and a(t) = ct is completely consistent with both

Equations (1.2) and (1.4).

3 de Sitter space

Let us next consider the perpetually accelerating de Sitter

universe, which also assumes gtt = 1 in Equation (1.1), but

instead has ä ≠ 0. Its metric (with k = 0) may be written

ds2 = c2dt2 − e2Ht
(
dr2 + r2 dΩ2

)
, (3.1)

wherewe have put a(t) = eHt. Aswe shall see, de Sitter space

contrasts sharply withMilne because—unlike the latter—it

does not at all satisfy the PoE.

Both the Milne universe (as we have seen) and de Sit-

ter space have constant spacetime curvature. Using fixed

observer coordinates, one may therefore find a transforma-

tion that renders all of their coefficients independent of time

(see, e.g., ref. [14]). For de Sitter, we put

cT = ct − 1

2
Rh lnΦ

R = a(t)r, (3.2)

where Rh is the gravitational (or Hubble) radius [17],

Rh ≡
c

H
, (3.3)

and

Φ ≡ 1−
(
R

Rh

)2

. (3.4)
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Under this transformation, the de Sitter interval becomes

ds2 = Φc2dT2 −Φ−1dR2 − R2 dΩ2
. (3.5)

As one can confirm, all the metric coefficients in

Equation (3.5) are independent of the new time coordinate

T . For future reference, we also define the Cartesian

coordinates

X1 = R sin 𝜃 cos 𝜙

X2 = R sin 𝜃 sin 𝜙

X3 = R cos 𝜃. (3.6)

To bring thismetric into its Cartesian isotropic form,we

introduce an additional coordinate transformation,

R = 𝜎

[
1+

(
𝜎

𝜎h

)2
]−1

, (3.7)

where

𝜎h ≡ 2Rh. (3.8)

Therefore,

dR = d𝜎
P

Q2
, (3.9)

and

Φ = P2

Q2
, (3.10)

in terms of the newly defined quantities

P ≡

[
1−

(
𝜎

𝜎h

)2
]

Q ≡

[
1+

(
𝜎

𝜎h

)2
]
. (3.11)

The metric for de Sitter space may thus also be written

ds2 =
(
P

Q

)2

c2dT2 − 1

Q2

(
d𝜎2 + 𝜎2dΩ2

)
, (3.12)

and we arrive at its final Cartesian isotropic form,

ds2 =
(
P

Q

)2

c2dT2 − 1

Q2

[
(d𝜎1)2 + (d𝜎2)2 + (d𝜎3)2

]
, (3.13)

with the introduction of the Cartesian coordinates corre-

sponding to 𝜎:

𝜎1 = 𝜎 sin 𝜃 cos 𝜙

𝜎2 = 𝜎 sin 𝜃 sin 𝜙

𝜎3 = 𝜎 cos 𝜃. (3.14)

The PoE requires the coordinates in the local inertial

frame to satisfy Equation (1.2) only in the vicinity of each

selected spacetime point x𝜇 . Thus, one may assume that R

and 𝜎 are approximately constant wherever they appear

inside themetric coefficients, allowing us to write P ≈ P(x𝜇)

and Q ≈ Q(x𝜇) in the vicinity of x𝜇 . The local free-falling

(inertial) frame coordinates may thus be defined as

𝜉0 = P(x𝜇)

Q(x𝜇)
cT

𝜉1 = 1

Q(x𝜇)
𝜎1

𝜉2 = 1

Q(x𝜇)
𝜎2

𝜉3 = 1

Q(x𝜇)
𝜎3, (3.15)

allowing us to write the de Sitter metric in its Minkowski

form consistent with Equation (2.7).

To see if these coordinates satisfy the PoE, we shall need

the corresponding non-zero Christoffel symbols, written in

spherical coordinates:

Γt
rr =

e2Ht

Rh

Γt
𝜃𝜃 =

e2Ht

Rh
r2

Γt
𝜙𝜙 = e2Ht

Rh
r2 sin2 𝜃

Γr
rt = Γr

tr =
1

Rh

Γ𝜃
𝜃 t = Γ𝜃

t𝜃 =
1

Rh

Γ𝜙
𝜙t = Γ𝜙

t𝜙 = 1

Rh

Γr
𝜃𝜃 = r

Γr
𝜙𝜙 = r sin2 𝜃

Γ𝜃
r𝜃 = Γ𝜃

𝜃r =
1

r

Γ𝜃
𝜙𝜙 = − sin 𝜃 cos 𝜃

Γ𝜙
r𝜙 = Γ𝜙

𝜙r =
1

r

Γ𝜙
𝜃𝜙 = Γ𝜙

𝜙𝜃 = cot 𝜃. (3.16)

We may now examine whether the coordinates x𝜇 and 𝜉
𝛼

(in Eq. 3.15) satisfy Equation (1.2). In fact, they do not. For

example, the 𝛼 = 𝜇 = 𝜈 = 0 component yields

P

Q

2

Rh

(
R

Rh

)2

Φ−2 = 0, (3.17)
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which cannot be consistent for arbitrary values of R (or r).

Similarly, we find for the 𝛼 = 𝜇 = 𝜈 = 1 component that

0 = e2Ht

Rh

Q

P

X1

Rh
(3.18)

which, again, is not correct for arbitrary values of X1 and t.

Notice, e.g., that e2HtX1 may become arbitrarily large com-

pared to Rh, which is fixed in this cosmology.

Unlike the Milne universe, de Sitter space is therefore

not consistent with Einstein’s PoE. Both of these models are

FLRWcosmologies andboth assumea lapse function gtt = 1.

But whereas the Milne universe expands at a constant

rate, with an implied zero time dilation with respect to the

local free-falling (inertial) frame, de Sitter space expands

at an accelerated rate. A lapse function gtt = 1 for this

model therefore cannot adequately account for the space-

time curvature, reflected in this spacetime’s inconsistency

with Equations (3.17) and (3.18).

4 The Lanczos universe

In the previous two sections, we considered a non-

accelerating cosmology (Milne) and the perpetually acceler-

ating de Sitter model, both open universes with k ≤ 0. To

round out the discussion, we here consider another acceler-

ating cosmology—the Lanczos universe [6]—but this time

with k > 0, implying a finite, closed spacetime. The Lanczos

metric is

ds2 = c2dt2 − (cb)
2 cosh2(t∕b) ×

(
dr2

1− r2
+ r2 dΩ2

)
, (4.1)

where b is a constant (though not the Hubble constant

H ≡ ȧ∕a) and k = +1. The expansion factor is a(t) =
(cb) cosh(t∕b), so H = (1∕b) tanh(t∕b). The physical inter-

pretation of this spacetime is that it represents the gravita-

tional field of a rigidly rotating dust cylinder coupled to a

cosmological constant.

To find a local inertial frame at any location x𝜇 in this

spacetime, we begin with the following transformation [3]

that brings the metric into its static form:

R = a(t)r ≡ cbr cosh(t∕b)

tanh(T∕b) ≡
(
1− r2

)−1∕2
tanh(t∕b). (4.2)

In terms of the new coordinates (cT,R, 𝜃, 𝜙), the line ele-

ment becomes

ds2 =
[
1−

(
R

cb

)2]
c2dT2 −

[
1−

(
R

cb

)2]−1
dR2 − R2dΩ2

.

(4.3)

Equation (4.3) is actually identical to Equation (3.5) for de

Sitter, except that the gravitational (or apparent) horizon

is now Rh = cb instead of c∕H. But both of these radii are

constant, so it is not surprising to find that the same kind

of transformation we used in Equations (3.7)–(3.11) may be

used here as well.

We introduce a new radial coordinate 𝜛 via the

definition

R = 𝜛

[
1+

(
𝜛

𝜛h

)2
]−1

, (4.4)

where

𝜛h ≡ 2Rh = 2cb. (4.5)

Then,

dR = d𝜛
U

V2
, (4.6)

in terms of the quantities

U ≡

[
1−

(
𝜛

𝜛h

)2
]

V ≡

[
1+

(
𝜛

𝜛h

)2
]
. (4.7)

The Lanczos metric written in Cartesian isotropic form is

thus

ds2 =
(
U

V

)2
c2dT2 − 1

V2

[
(d𝜛1)2 + (d𝜛2)2 + (d𝜛3)2

]
, (4.8)

where the Cartesian coordinates corresponding to𝜛 are

𝜛1 = 𝜛 sin 𝜃 cos 𝜙

𝜛2 = 𝜛 sin 𝜃 sin 𝜙

𝜛3 = 𝜛 cos 𝜃. (4.9)

The local free-falling (inertial) frame coordinates for

the Lanczos universe are therefore

𝜉0 = U(x𝜇)

V(x𝜇)
cT

𝜉1 = 1

V(x𝜇)
𝜛1

𝜉2 = 1

V(x𝜇)
𝜛2

𝜉3 = 1

V(x𝜇)
𝜛3, (4.10)

andwemay use these to write its line element inMinkowski

form, analogous to Equation (2.7).
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As we did for Milne and de Sitter, we begin to examine

whether these coordinates satisfy the PoE by first deriving

the non-zero Christoffel symbols:

Γt
𝜙𝜙 = cbr2 sin2 𝜃 cosh

t

b
sinh

t

b

Γt
rr =

cb

1− r2
cosh

t

b
sinh

t

b

Γt
𝜃𝜃 = cbr2 cosh

t

b
sinh

t

b

Γr
rt = Γr

tr =
1

cb
tanh

t

b

Γ𝜃
𝜃 t = Γ𝜃

t𝜃 =
1

cb
tanh

t

b

Γ𝜙
𝜙 t = Γ𝜙

t𝜙 = 1

cb
tanh

t

b

Γr
rr =

r

1− r2

Γr
𝜃𝜃 = −(1− r2)r

Γr
𝜙𝜙 = −(1− r2)r sin2 𝜃

Γ𝜃
r𝜃 = Γ𝜃

𝜃r =
1

r

Γ𝜃
𝜙𝜙 = − sin 𝜃 cos 𝜃

Γ𝜙
r𝜙 = Γ𝜙

𝜙r =
1

r

Γ𝜙
𝜃𝜙 = Γ𝜙

𝜙𝜃 = cot 𝜃. (4.11)

Then, for the illustrative set of indices 𝛼 = 𝜇 = 𝜈 = 0 and

𝛼 = 𝜇 = 𝜈 = 1, we find that

r2
√
1− r2

cb

2 tanh(t∕b)[1− tanh2(t∕b)]
[1− r2 − tanh2(t∕b)]2

= 0, (4.12)

and

0 = cbr

1− r2
V

U
cosh3(t∕b) sin 𝜃 cos 𝜃. (4.13)

As was the case for de Sitter, neither of these equations is

satisfied for arbitrary values of r and t. With its lapse func-

tion gtt = 1, the Lanczos universe fails the PoE test. Like de

Sitter, Lanczos accelerates, and this failure is an affirmation

of our conclusion that nonlinear expansions of the cosmos

need to be represented by metrics that allow for possible

time dilation relative to local inertial frames.

5 The Rh = ct universe

We close this discussion with an application of this test

to the Rh = ct universe, another FLRW cosmology with an

expansion parameter a(t) ∝ t [12, 13], but with k = 0. Unlike

the Milne universe, however, this model is not empty; it

contains the same constituents in the cosmic fluid as the

standard model does, though it incorporates an additional

constraint from general relativity—an overall equation-

of-state given by the zero active mass condition, i.e.,

𝜌+ 3p = 0, in terms of the total energy density 𝜌 and pres-

sure p. It is not difficult to recognize from the Raychaudhuri

equation [22] that this constraint produces zero accelera-

tion (i.e., ä = 0), and therefore implies an expansion with

a(t) = t∕t0. This normalization in terms of the age (t0) of the
Universe is consistent with zero spatial flatness.

The line element for theRh = ctuniversemay therefore

be written

ds2 = c2dt2 −
(
t

t0

)2[
(dx1)2 + (dx2)2 + (dx3)2

]
(5.1)

where, as usually defined, x𝜇 = (ct, x1, x2, x3) are the coor-

dinates in the co-moving frame. A distinguishing feature of

the Rh = ct universe, in comparison with Milne, de Sitter

and Lanczos, is that its spacetime curvature is not static.

Like ΛCDM, it therefore does not offer us the possibility

of first finding a coordinate-transformation (like Eqs. 2.4,

3.2 and 4.2) that permits its metric to be written in a time-

independent form.

Nevertheless, pursuant to the aforementioned require-

ment that the local free-falling (inertial) frame satisfying

Equation (1.2) need only be defined in the vicinity of each

spacetime point in the observer’s frame, we may use the

following coordinate transformation at x𝜇 :

𝜉0 = ct 𝜂(x)

𝜉 i = a(t)x i =
(
t

t0

)
x i, (5.2)

where 𝜂(x) is approximately constant for points in the

neighborhood of x𝜇 . Whereas one finds a global inertial

frame for Milne (corresponding to Eq. 2.6), the local inertial

frames in Rh = ct need to be found point by point, eachwith

its own value of 𝜂.

It is not difficult to see that the line element in

Equation (2.7), written in terms of Equation (5.2), will match

Equation (5.1) as long as

𝜂(x)2 ≡ 1+ 1

(ct0)
2

d

dt
(tr2). (5.3)

Of course, dr∕dt = 0 if the inertial frame coincides with the

Hubble flow, in which case

𝜂(x)2 ≡ 1+ r2

(ct0)
2
, (5.4)

but we do not need to consider such details. The key

point is that 𝜂(x) is always of order unity. This coordinate
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transformation therefore provides us with a reasonably

accurate representation of the local free-falling (inertial)

frames we are seeking in this spacetime.

Then, the non-zero Christoffel symbols corresponding

to the Rh = ct metric (Eq. 5.1) written in Cartesian coordi-

nates are

Γt
11 = Γt

22 = Γt
33 =

1

ct0

t

t0

Γ1
t1 = Γ1

1t =
1

ct

Γ2
t2 = Γ2

2t =
1

ct

Γ3
t3 = Γ3

3t =
1

ct
. (5.5)

With these, we can now examine whether the coordinates

x𝜇 and 𝜉
𝛼 for the Rh = ct universe are consistent with

Equation (1.2).

First, we confirm that x𝜇 and 𝜉
𝛼 for the Rh = ct uni-

verse satisfy the coordinate transformation Equation (1.4).

We have

gtt =
(
𝜕𝜉0

𝜕ct

)2

−
∑
i

(
𝜕𝜉i

𝜕ct

)2

= 𝜂2 − r2

(ct0)
2

= 1. (5.6)

In addition,

gii =
(
𝜕𝜉0

𝜕xi

)2

−
∑
j

(
𝜕𝜉 j

𝜕xi

)2

= 0− a2

= a2, (5.7)

as required.

In Equation (1.2), one has for 𝛼 = 𝜇 = 𝜈 = 0,

𝜕2𝜉0

𝜕(ct)2
= 0, (5.8)

and

Γ𝜆
00
𝜕𝜉0

𝜕x𝜆
= 0, (5.9)

an exact match. Similarly, for 𝛼 = 𝜇 = i and 𝜈 = 0, one gets

𝜕2𝜉 i

𝜕xi 𝜕ct
= 𝜕

𝜕xi

(
xi

ct0

)
= 1

ct0
, (5.10)

while the right-hand side gives

Γ𝜆
i0
𝜕𝜉 i

𝜕x𝜆
= 1

ct

𝜕𝜉 i

𝜕xi
= 1

ct0
, (5.11)

an equally precise match. As a third illustrative example,

consider the case 𝛼 = 𝜇 = 𝜈 = i, for which

𝜕2𝜉 i

𝜕(xi)2
= 𝜕(t∕t0)

𝜕xi
= 0. (5.12)

The right-hand side yields

Γ𝜆
ii
𝜕𝜉 i

𝜕x𝜆
= 1

ct0

t

t0

𝜕𝜉 i

𝜕ct
= 1

ct0

xi

ct0

t

t0
≈ 0, (5.13)

given that |xi∕ct0| ≤ 1 and t∕t0 ≤ 1, while ct0 ≫ 1. All the

other components are similarly satisfied.

6 Conclusion

The four cosmological models we have considered in this

paper span a broad range of possible applications of the

FLRWmetric. Three of them, i.e., Milne, de Sitter, and Lanc-

zos, have constant spacetime curvature, while the fourth

(Rh = ct) does not. Two of these (Milne and Rh = ct) expand

at a constant rate, while the other two accelerate. And

de Sitter, Lanczos, and Rh = ct are spatially flat, while

Milne is negatively curved. Therefore, our results cannot be

attributed to some unknown selection bias.

We have shown by direct application of the PoE

equations that the two non-accelerating models (Milne

and Rh = ct) are completely consistent with Einstein’s

principle, while de Sitter and Lanczos do not satisfy

Equation (1.2). This is an important confirmation of the

result in Equation (1.5) [11, 12], that constrains the range of

possible lapse functions (gtt) consistent with a given expan-

sion factor a(t). In that earlier work, we showed that the

choice gtt = 1 is consistent only with two equations-of-state

that lead to a(t) ∝ t and a(t) = constant. Here, we have

affirmed this conclusion by demonstrating that Milne and

Rh = ct are consistent with the PoE, while de Sitter and

Lanczos are not. Ultimately, the reason for this disparity

is that one cannot ignore the gravitationally-induced time

dilation in the accelerated frame (i.e., the Hubble flow) rel-

ative to an underlying local inertial frame.

As discussed in these earlier publications, the FLRW

metric is unique among the various solutions to Einstein’s

equations, in part because it is written to comply with the

cosmological principle, which includes the assumption of

homogeneity throughout the Universe. The lapse function

gtt therefore cannot be a function of the spatial coordinates;

at most, it can depend only on t. This is the peculiarity

that allows one to begin with the FLRW metric written in

terms of the co-moving coordinates, (ct, r, 𝜃, 𝜙), force the

condition gtt = 1, and then choose a stress-energy tensor in
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Einstein’s equations that results in an accelerated expan-

sion. But by keeping gtt equal to 1, one is effectively carrying

out a gauge transformation that shifts the original time

coordinate in the co-moving frame to the new coordinate,

dt′ ≡ gtt
1∕2 dt, that belongs to the observer in the local free-

falling frame. Because of the cosmological principle, this

can happen without affecting any of the other metric coef-

ficients, an outcome that is clearly a contradiction because

one is using the co-moving coordinates in a frame where

the lapse function is 1 (zero time dilation), i.e., the local

free-falling frame.

Needless to say, the consequences of this conclusion are

rather significant. An extensive discussion of the various

issues raised by the inconsistencies we have highlighted in

this paper have appeared elsewhere, including refs. [9, 11,

12, 18]. For example, slow-roll inflation has become an indis-

pensable component of the standard model [4, 7]. This brief

period of accelerated expansion shortly after the Big Bang

is believed to have solved the horizon problem and seeded

the quantum fluctuations that eventually classicalized and

grew to form the large-scale structure we see today. But

slow-roll inflation relies critically on the expansion profile

provided by de Sitter. Thus, if the de Sitter cosmology is

inconsistentwith the PoE, there doesn’t appear to be a viable

framework for describing the inflationary expansion in the

context of FLRW.

Moreover, the inconsistency of an accelerated cosmic

expansionwith the PoE, as one finds within the various evo-

lutionary phases of the standard model, begins to provide

an explanation for the growing tension seen betweenΛCDM
and thehigh-precisionmeasurements carried out today [18].

By now, comparative tests betweenΛCDM and Rh = ct have

been completed using over 27 different kinds of data (see,

e.g., a recent summary in Table 2 of ref. [16]). In each and

every case, the FLRW cosmology with a constant expansion

rate accounts for the observations at least as well—and

often even better—than the standard model with ä(t) ≠ 0.

Fortunately, a confirmation (or rejection) of these ideas

and conclusions will be available in the near future. One of

the most exciting and informative campaigns will measure

the real-time redshift drift of distant quasars [5,8]. Thismea-

surement will provide a simple yes/no answer: the redshift

drift is expected to be zero throughout the cosmos if a(t) ∝ t,

and non-zero otherwise [15]. A confidence level of ∼3𝜎 will

be achievable after only 5 years of observation, while ∼5𝜎
should be reached in about 20 years. Very interestingly, an

FLRW cosmology with a(t) ∝ t does not have any horizon

problems, so a confirmation of the work reported in this

paper may completely obviate the need for inflation any-

way. The stakes could not be higher.
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