Home Towards a self-interacting complex scalar field boson-star model
Article
Licensed
Unlicensed Requires Authentication

Towards a self-interacting complex scalar field boson-star model

  • Stanley A. Bruce ORCID logo EMAIL logo
Published/Copyright: June 2, 2022

Abstract

We propose a simple model intended to address boson stars (BSs) in a theory of self-interacting massive charged scalar fields coupled to the electromagnetic (EM) gauge field and gravity. We first consider standard scalar electrodynamics (SED) in 3 + 1 flat space-time dimensions in which only a complex scalar field and the EM field are present in the Lagrangian of the system. In order to better understand scalar field dynamics in 3 + 1 -dimensions we reduce the space dimensions to 2 and solve a problem consisting of embedded interacting charged scalar particles moving on the polar plane in the presence of certain linear static EM fields. If the 3 + 1 -dimensional system is consistently coupled to gravity, we comment on the possible relevance of this approach to study BS dynamics.


Corresponding author: Stanley A. Bruce, Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de Los Andes, Santiago, Chile, E-mail:

Funding source: Universidad de los Andes

Award Identifier / Grant number: FAI 12.19

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Universidad de Los Andes, Santiago, Chile, through grant FAI 12.19.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] F. E. Schunck and E. W. Mielke, “General relativistic boson stars,” Classical Quant. Grav., vol. 20, p. R301, 2003, [a Review article]. https://doi.org/10.1088/0264-9381/20/20/201.Search in Google Scholar

[2] S. L. Liebling and C. Palenzuela, “Dynamical boson stars,” Living Rev. Relat., vol. 15, p. 6, 2012. https://doi.org/10.12942/lrr-2012-6.Search in Google Scholar PubMed PubMed Central

[3] D. A. Feinblum and W. A. McKinley, “Stable states of a scalar particle in its own gravational field,” Phys. Rev., vol. 168, p. 1445, 1968. https://doi.org/10.1103/physrev.168.1445.Search in Google Scholar

[4] D. J. Kaup, “Klein-Gordon geon,” Phys. Rev., vol. 172, p. 1331, 1968. https://doi.org/10.1103/physrev.172.1331.Search in Google Scholar

[5] R. Ruffini and S. Bonazzola, “Systems of self-gravitating particles in general relativity and the concept of an equation of state,” Phys. Rev., vol. 187, p. 1767, 1969. https://doi.org/10.1103/physrev.187.1767.Search in Google Scholar

[6] O. Kichakova, J. Kunz, and E. Radu, “Spinning gauged boson stars in anti-de Sitter spacetime,” Phys. Lett. B, vol. 728, p. 328, 2014. https://doi.org/10.1016/j.physletb.2013.11.061.Search in Google Scholar

[7] V. Dzhunushaliev, V. Folomeev, C. Hoffmann, B. Kleihaus, and J. Kunz, “Boson stars with nontrivial topology,” Phys. Rev. D, vol. 90, p. 124038, 2014. https://doi.org/10.1103/physrevd.90.124038.Search in Google Scholar

[8] H. Arodz and J. Lis, “Compact Q-balls and Q-shells in a scalar electrodynamics,” Phys. Rev. D, vol. 79, p. 045002, 2009.10.1103/PhysRevD.79.045002Search in Google Scholar

[9] S. Kumar, U. Kulshreshtha, D. S. Kulshreshtha, S. Kahlen, and J. Kunz, “Some new results on charged compact boson stars,” Phys. Lett. B, vol. 772, p. 615, 2017. https://doi.org/10.1016/j.physletb.2017.07.041.Search in Google Scholar

[10] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha, “Charged compact boson stars and shells in the presence of a cosmological constant,” Phys. Rev. D, vol. 94, p. 125023, 2016. https://doi.org/10.1103/physrevd.94.125023.Search in Google Scholar

[11] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha, “New results on charged compact boson stars,” Phys. Rev. D, vol. 93, p. 101501, 2016. https://doi.org/10.1103/physrevd.93.101501.Search in Google Scholar

[12] E. Seidel and W. M. Suen, “Oscillating soliton stars,” Phys. Rev. Lett., vol. 66, p. 1659, 1991. https://doi.org/10.1103/physrevlett.66.1659.Search in Google Scholar PubMed

[13] M. Alcubierre, R. Becerrill, F. S. Guzmán, T. Matos, D. Nuñez, and L. A. Ureña-López, “Numerical studies of 2 -oscillatons,” Classical Quant. Grav., vol. 20, p. 2883, 2003. https://doi.org/10.1088/0264-9381/20/13/332.Search in Google Scholar

[14] L. A. Ureña-López, “Oscillations revisited,” Classical Quant. Grav., vol. 19, p. 2617, 2002.10.1088/0264-9381/19/10/307Search in Google Scholar

[15] L. A. Ureña-López, T. Matos, and R. Becerril, “Inside oscillations,” Classical Quant. Grav., vol. 19, p. 6259, 2002.10.1088/0264-9381/19/23/320Search in Google Scholar

[16] M. Alcubierre, F. S. Guzman, T. Matos, D. Nuñez, L. A. Ureña-Lopez, and P. Wiederhold, “Galactic collapse of scalar field dark matter,” Classical Quant. Grav., vol. 19, p. 5017, 2002. https://doi.org/10.1088/0264-9381/19/19/314.Search in Google Scholar

[17] L. H. Ryder, Quantum Field Theory, Cambridge, Cambridge University Press, 1996.10.1017/CBO9780511813900Search in Google Scholar

[18] I. J. R. Aitchison and A. J. G. Hey, Gauge Theories in Particle Physics, vol. 1, Bristol, Adam Hilger, 1989.10.1887/0750309822Search in Google Scholar

[19[a]] S. A. Bruce, “Remarks on the electromagnetic decays of the neutral pion,” Mod. Phys. Lett. A, vol. 36, p. 2150123, 2021. https://doi.org/10.1142/s0217732321501236.Search in Google Scholar

[b] S. A. Bruce, “Scalar electrodynamics and the decays of the neutral pion,” Int. J. of Mod. Phys. A, vol. 36, p. 2150037, 2021. https://doi.org/10.1142/s0217751x21500378.Search in Google Scholar

[20] C. Itzykson and J. B. Zuber, Quantum Field Theory, New York, McGraw-Hill, 1985.Search in Google Scholar

[21] H. B. Nielsen and P. Olesen, “Vortex-line models for dual strings,” Nucl. Phys. B, vol. 61, p. 45, 1973. https://doi.org/10.1016/0550-3213(73)90350-7.Search in Google Scholar

[22] A. A. Abrikosov, “On the magnetic properties of superconductors of the second group,” Sov. Phys. JETP, vol. 5, p. 1174, 1957.Search in Google Scholar

[23] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” Sov. Phys. JETP, vol. 20, p. 1064, 1950.10.1007/978-3-540-68008-6_4Search in Google Scholar

[24] S. Weinberg, “Superconductivity for particle theorists,” Prog. Theor. Phys. Suppl., vol. 86, p. 42, 1986.10.1143/PTPS.86.43Search in Google Scholar

[25] F. S. Guzman, “Scalar fields: at the threshold of astrophysics,” J. Phys.: Conf. Ser., vol. 91, p. 012003, 2007. https://doi.org/10.1088/1742-6596/91/1/012003.Search in Google Scholar

[26] M. Colpi, S. L. Shapiro, and I. Wasserman, “Boson stars: gravitational equilibria of self-interacting scalar fields,” Phys. Rev. Lett., vol. 57, p. 2485, 1986. https://doi.org/10.1103/physrevlett.57.2485.Search in Google Scholar PubMed

Received: 2022-02-03
Revised: 2022-05-01
Accepted: 2022-05-06
Published Online: 2022-06-02
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2022-0031/html
Scroll to top button