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Abstract: A periodically driven, moderately anharmonic
oscillator constitutes an ideal model system for inves-
tigating quantum resonances, which are amenable to a
quantum pendulum approximation. In the present paper,
I study thequasi-stationaryFloquet-state occupationprob-
abilities which emerge when such a resonantly driven
system is coupled to a heat bath. It is demonstrated that
the Floquet state which is associated with the ground state
of the pendulum turns into an effective ground state, car-
rying the highest population in the strong-driving regime.
Moreover, the population of this effective Floquet ground
state can even exceed that of the undriven system’s true
ground state at the same bath temperature. These effects
can be optimized by suitably engineering the properties of
the bath.

Keywords: Floquet states; Mathieu approximation;
nonequilibrium steady state; periodically driven quan-
tum systems; quantum resonance; quasistationary
distribution.

1 Introduction
The subject of nonequilibrium steady states of periodi-
cally driven open quantum systems has been intensely
discussed in the scientific community over the last years.
Here, the recent theoretical description [1, 2] and experi-
mental observation [3, 4] of Floquet time crystals comes to
mind as a prominent example. In these systems, the spon-
taneousbreakingof thediscrete time translation symmetry
is related to many-body localization, with the help of Flo-
quet theory. In contrast, in the present work, I describe
a peculiar quantum-statistical effect that occurs already
in periodically driven single-particle systems in contact
with a heat bath. Such open Floquet systems have been
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studied for quite some time [5–7]. The underlying theoret-
ical framework has been concisely summarized by Kohn
[8], and been dubbed “Periodic Thermodynamics”. First
and foremost, this theory allows one to determine a quasi-
stationary distribution of the occupation probabilities of
the driven system’s Floquet states; such distributions can
differ significantly from a canonical equilibrium distribu-
tion. This toolbox has been applied by several authors
to a rich variety of problems [9–14]; in particular, it has
been argued that, somewhat counterintuitively, the driven
system may effectively be cooled [15–17].

In principle, a quantum system which is exposed to a
strong time-periodic driving force with angular frequency
𝜔 does not possess a ground state in the usual sense. This
is related to the fact that the quasienergies of the system’s
Floquet states form Brillouin zones of width ℏ𝜔, so that
the quasienergy spectrum is unbounded from below. The
aim of the present paper is to demonstrate that a quantum
resonance actually can lead to an ordering of a part of the
Floquet states, implying that an effective Floquet ground
state emerges which carries most of the population in the
nonequilibrium steady state, and which is not connected
to the ground state of the undriven system by continuity
when the driving force is switched off. To achieve this goal,
I resort to the single-particlemodel of a driven anharmonic
oscillator which is coupled to a heat bath, and analyze the
effect of the driving force on the quasi-stationary distribu-
tion of Floquet-state occupation probabilities. This model
is as simple as possible, and as complicated as necessary,
for studying the role of quantum resonances in Periodic
Thermodynamics with a view on the quantum–classical
correspondence [10, 18, 19].

The quantum mechanical driven anharmonic oscilla-
tor describes a particle of mass m confined by an one-
dimensional potential with a quartic anharmonicity and
subjected to a monochromatic driving force, as defined by
the Hamiltonian

H(t) = − ℏ
2

2m
d2
dx2 +

1
2m𝜔

2
0x

2 + 1
4 gx

4 +Λx cos(𝜔t). (1)

Here, the coefficientg determines the strengthof theanhar-
monicity, and 𝜔0 is the oscillation frequency for g = 0
andΛ = 0, withΛ denoting the forcing strength. Employ-
ing the harmonic-oscillator length a =

√
ℏ∕(m𝜔0) for

introducing the dimensionless coordinate q = x∕a, and
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invoking the dimensionless time 𝜏 = 𝜔t, the Hamiltonian
takes the convenient form

H(𝜏) = ℏ𝜔0

(
− 1
2
d2
dq2 +

1
2q

2 + 𝛽

4 q
4 + 𝜆q cos(𝜏)

)
(2)

with dimensionless parameters 𝛽 = ℏg∕(m2𝜔3
0) and 𝜆 =

Λ∕
√
ℏm𝜔3

0 now encoding the anharmonicity and the driv-
ing strength, respectively.

The quantum dynamics of this system are determined
by its Floquet states [20, 21]

|𝜓n(q, 𝜏)⟩ = |un(q, 𝜏)⟩ exp
(
−i 𝜀n
ℏ𝜔

𝜏

)
, (3)

which are obtained by solving the eigenvalue equation
(
H(𝜏)− iℏ𝜔 𝜕

𝜕𝜏

)
|un(q, 𝜏)⟩ = 𝜀n|un(q, 𝜏)⟩ (4)

in an appropriate extended Hilbert space [22] for the
periodic Floquet functions |un(q, 𝜏)⟩ = |un(q, 𝜏 + 2𝜋)⟩ and
their quasienergies 𝜀n. If 𝜀n is an eigenvalue of the
quasienergy operator

(
H(𝜏)− iℏ𝜔𝜕𝜏

)
, so is 𝜀n + 𝓁ℏ𝜔 for

any positive or negative integer 𝓁, which means that the
quasienergy pertaining to a Floquet state (3) labeled by
n is defined only modulo ℏ𝜔. Thus, one representative of
the quasienergies of each Floquet state falls into the inter-
val −1∕2 ≤ 𝜀∕(ℏ𝜔) < +1∕2, and into any other Brillouin
zone, which renders a rigorous mathematical solution of
the quasienergy eigenvalue problem for the driven anhar-
monic oscillator (2) exceedingly difficult; it is expected that
its quasienergies constitute a dense pure point spectrum
[23–25].

The corresponding classical dynamics can be inferred
from the scaled Hamiltonian system

dq
d𝜏 = P

dP
d𝜏

= −𝜈−2
(
q+ 𝛽q3 + 𝜆 cos(𝜏)

)
(5)

with a dimensionless momentum variable P which is
related to the physical momentum p through the relation
P = p∕(m𝜔a), and 𝜈 = 𝜔∕𝜔0 denoting the ratio of the driv-
ing frequency to the harmonic oscillation frequency. In the
(q,P)-plane of the scaled phase space, a quantum state
then occupies the area

2𝜋ℏeff =
2𝜋ℏ

(p∕P)(x∕q) =
2𝜋ℏ
m𝜔a2 = 2𝜋𝜈−1, (6)

so that the “effective action quantum” ℏeff = 𝜈−1 now
replaces Planck’s constant ℏ.

2 The Mathieu approximation
While the quasienergy eigenvalue problem (4) cannot be
solved analytically for the driven anharmonic oscillator,
there exists a universal resonance approximation which
can be applied to periodically driven quantum systems of
the general form (1), that is,

H(t) = H0 +Λx cos(𝜔t), (7)

provided that the energy eigenvalues En of the undriven
systemH0, obtained by solving the stationary Schrödinger
equation H0|n⟩ = En|n⟩, vary sufficiently slowly with the
quantum number n, so that the formal derivatives E′n ≡
dE∕dn can bemeaningfully taken. Moreover, it is assumed
that there exists a “resonant” state n = r which is singled
out by the condition

ℏ𝜔
!= E′r ≈ Er+1 − Er. (8)

These requirements can be well satisfied by the driven
anharmonic oscillator (1) for sufficiently large 𝜈 > 1, or
correspondingly small ℏeff, placing the system into the
semiclassical regime, implying r≫ 1. With respect to the
corresponding classical system, the resonance condition
(8) means that there is a 1: 1 resonance, such that the
time T = 2𝜋∕𝜔 of one driving cycle is close to the time
required for one oscillation of the undriven particle in the
anharmonicpotential. The followingsteps therefore canbe
understood as a quantummechanical version of the famil-
iar classical pendulum approximation [26]. They originate
in a brief sketch by Berman and Zaslavsky [27], and have
been worked out in similar form in Refs. [19, 28].

Under the conditions specified above, a natural ansatz
for a Floquet state is given by [27]

|𝜓(t) = e−i𝜂t∕ℏ
∑
n
bn|n⟩ exp

[
− i
ℏ

(
Er + (n− r)ℏ𝜔

)
t
]
, (9)

where the coefficients bn and the contribution 𝜂 to the
quasienergy still need to be determined. Inserting this
ansatz into the time-dependentSchrödingerequationgives

iℏ 𝜕
𝜕t |𝜓 (t)⟩ = e−i𝜂t∕ℏ

∑
n

(
𝜂 + Er + (n− r)ℏ𝜔

)
bn|n⟩

× exp
[
− i
ℏ

(
Er + (n− r)ℏ𝜔

)
t
]

(10)

on the one hand, and

H(t) |𝜓(t)⟩ = e−i𝜂t∕ℏ
∑
n

(
En +Λx cos(𝜔t)

)
bn|n⟩

× exp
[
− i
ℏ

(
Er + (n− r)ℏ𝜔

)
t
]

(11)
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on the other, yielding the system of equations

𝜂bm =
(
Em − Er − (m− r)ℏ𝜔

)
bm

+Λ cos(𝜔t)
∑
n
⟨m|x|n⟩ bn ei(m−n)𝜔t. (12)

With the help of three approximations this system can
be simplified to give an approximate analytical solution
to the quasienergy eigenvalue problem: firstly, the energy
eigenvalues of H0 are expanded to second order,

Em ≈ Er + (m− r)ℏ𝜔+ E′′r
2 (m− r)2, (13)

again relyingon the requirement that theexact eigenvalues
vary only slowlywith the quantumnumber, and exploiting
the resonance condition (8). Secondly, in a secular approx-
imation akin to the rotating wave approximation, only the
stationary terms n = m± 1 are kept in system (12), reduc-
ing the couplings among the bm to those between nearest
neighbors only,

𝜂bm = 1
2 (m− r)2E′′r bm

+ Λ
2
(⟨m|x|m− 1⟩bm−1 + ⟨m|x|m+ 1⟩bm+1) . (14)

Thirdly, all remaining dipole matrix elements are approxi-
mated by a constant,

⟨m|x|m± 1⟩ ≈ ⟨r|x|r − 1⟩, (15)

which is viable for r≫ 1. As a result, one is left with the
system

𝜂bm = 1
2 (m− r)2E′′r bm

+ Λ
2 ⟨r|x|r − 1⟩ (bm−1 + bm+1

)
. (16)

Representing the desired coefficients bm as the Fourier
coefficients of a 2𝜋-periodic function f (𝜗), such that the
indexm = r corresponds to the zero mode, one has

bm = 1
2𝜋

2𝜋

∫

0

d𝜗 f (𝜗)e−i(m−r)𝜗, (17)

implying the identity

(m− r)2bm = − 1
2𝜋

2𝜋

∫

0

d𝜗 f (𝜗) d
2

d𝜗2 e
−i(m−r)𝜗

= − 1
2𝜋

2𝜋

∫

0

d𝜗 f ′′(𝜗)e−i(m−r)𝜗 (18)

by the virtue of a twofold integration by parts, exploiting
the 2𝜋-periodicity of f (𝜗). Thus, the approximate nearest-
neighbor system (16) is transformed into the second-order
differential equation

𝜂 f (𝜗) = − 1
2E

′′
r f

′′(𝜗)+Λ⟨r|x|r − 1⟩ cos(𝜗) f (𝜗) (19)

which may be interpreted as the stationary Schrödinger
equation for a fictitious particle moving in a cosine well
with periodic boundary conditions, i.e., a pendulum. The
depth of the cosine well is determined by the driving
strength Λ, while the mass of the fictitious particle is pro-
portional to 1∕E′′r : the smaller theanharmonicity, the larger
the mass.

The further minor transformation 𝜗 = 2z and f (2z)
≡ 𝜒(z) produces

(
d2
dz2 +

8𝜂
E′′r

− 24ΛE′′r
⟨r|x|r − 1⟩ cos(2z)

)
𝜒(z) = 0, (20)

which is the standard formof the famousMathieu equation
[29] (

d2
dz2 + 𝛼 − 2Q cos(2z)

)
𝜒(z) = 0 (21)

with parameters
𝛼 = 8𝜂

E′′r
(22)

and
Q = 4Λ

E′′r
⟨r|x|r − 1⟩. (23)

As is well known, the required 𝜋-periodic Mathieu func-
tions 𝜒(z) = 𝜒(z + 𝜋) exist only for certain characteristic
values of 𝛼; these values are usually designated [29] as
a0, a2, a4,… and b2, b4,… for even and odd functions,
respectively. Thus, introducing a new quantum number
k = 0, 1, 2, 3,…, and writing

𝛼k(Q) =
{
ak(Q) , k = 0, 2, 4,…
bk+1(Q) , k = 1, 3, 5,… ,

(24)

the energy eigenvalues of the pendulum (19) for a given
driving strengthΛ, that is, for a given value of the Mathieu
parameter (23), take the form

𝜂k =
1
8E

′′
r 𝛼k(Q). (25)

Reverting these steps, and resubstitution into the ansatz
(9),finallydelivers thesearched-forMathieuapproximation
for the near-resonant Floquet states,

|𝜓 (r)
k (t)⟩ = exp

(
− i
ℏ
(Er + 𝜂k)t

)∑
𝓁

f𝓁,k|r + 𝓁⟩e−i𝓁𝜔t, (26)
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where f 𝓁,k denotes the 𝓁th Fourier coefficient of the asso-
ciated kth Mathieu function; according to Eq. (25), their
quasienergies are given by

𝜀
(r)
k = Er +

1
8E

′′
r 𝛼k(Q) mod ℏ𝜔. (27)

These states are labeled here by the quantum number r of
the anharmonic-oscillator state which is resonant due to
the choice (8) of the driving frequency, andby the quantum
number k of the energy eigenstates of the pendulum (19). It
is this quantumnumber kwhich introduces anatural order
of the near-resonant Floquet states. I will demonstrate in
Sections 4 and 5 that this ordering actually is highly signif-
icant for Periodic Thermodynamics. Before, the reliability
of the above general approximation scheme will be ascer-
tained for the particular model system (2) of the driven
anharmonic oscillator.

To do so, the Floquet states and their quasienergies
are computed numerically by diagonalizing the one-cycle
evolution operator within a basis of b harmonic-oscillator
eigenstates. InFigure 1 thequasienergy spectra obtained in
thismanner for𝛽 = 0.1 andvarying𝜆 (black lines) are com-
pared with their Mathieu approximations (27) (dashed red
lines). The upper panel refers to r = 10 (𝜈 = 1.4508; basis
sizeb = 41), the lower panel to r = 20 (𝜈 = 1.6909;b = 61).
In both cases the approximation is remarkably good for
low Mathieu quantum numbers k and gradually deterio-
rates with increasing k; moreover, the approximation is
even better for r = 20 than for r = 10, as expected.

The fact that the “resonant” Floquet state with Math-
ieu quantum number k = 0 actually does acquire features
of aneffectivegroundstate is illustrated furtherbyFigure 2,
which shows contour plots of the probability density of
the approximate Floquet states (26) with k = 0 for 𝛽 = 0.9
and r = 10 (𝜈 = 2.577), for both𝜆 = 0.01 (upper panel) and
𝜆 = 1 (lowerpanel).Underweakdriving,𝜆 = 0.01, the time
evolution of the probability density evidently is that of the
anharmonic-oscillator eigenstate with n = r = 10 which
responds merely perturbatively to the driving force. Under
strong driving, however, 𝜆 = 1, the probability density is
that of a single-humped wave packet which follows the
stable classical periodic orbit brought about by the 1: 1-
resonance according to the Poincaré–Birkhoff-theorem,
reflecting the ground state of the pendulum (19) set in
motion. Thus, the metamorphosis undergone by this Flo-
quet state with increasing driving strength is another indi-
cation of the reordering of states effectuated by a quantum
resonance,with the resonant eigenstate of the anharmonic
oscillator turning into an effective Floquet ground state.

The interpretation of this resonant Floquet state with
Mathieu quantum number k = 0 as an effective ground

10
-0.5

0.5

10
-0.5

0.5

Figure 1: One Brillouin zone of quasienergies for the driven
anharmonic oscilllator (2) with 𝛽 = 0.1 versus the scaled driving
strength 𝜆. Black lines represent numerically computed data; red
dashed lines indicate the Mathieu approximation (27). The resonant
states are r = 10 (𝜈 = 1.4508; top) and r = 20 (𝜈 = 1.6909; bottom).

state is strengthened further by resorting to a semiclassical
viewpoint. As has been discussed by Breuer and Holthaus
[30], a semiclassical approximation to the quasienergies
and Floquet states of periodically driven, classically inte-
grable 1+ 1-dimensional systems can be obtainedwith the
help of the Poincaré–Cartan form 𝜔1 = pdx − Hdt [31]:
choosing a closed path 𝛾 1 which winds once around an
invariant T-periodic tube in the classical (p, x, t) space,
quantization is achieved by means of the condition

∮
𝛾1

𝜔
1 = 2𝜋ℏ

(
k + ind 𝛾1

4

)
, k = 0, 1, 2,… , (28)

where ind𝛾 1 denotes the Maslov index of 𝛾 1; requiring
𝛾 1 to lie in a plane t = const., and thus in a (p, x)-
plane of the usual phase space, reproduces the familiar
Bohr–Sommerfeld quantization rule for the energy eigen-
states of time-independent systems. The quasienergies
then are computed with the help of a further T-periodic
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Figure 2: The contour plot of the probability density of the
approximate Floquet state (26) with Mathieu quantum number k = 0
of the driven anharmonic oscillator (2) with 𝛽 = 0.9 and r = 10
(𝜈 = 2.577) for 𝜆 = 0.01 (top) and 𝜆 = 1 (bottom).

path which extends along such an invariant tube:

𝜀 = − 1
T ∫

𝛾2

𝜔
1 + 𝓁ℏ𝜔, 𝓁 = 0,±1,±2,… . (29)

Figure 3 shows phase-space portraits for the scaled Hamil-
tonian system (5) of the driven anharmonic oscillators, for
both 𝜈 = 1.05 (top) and 𝜈 = 1.4508 (bottom). These figures
depict sections of invariant tubes with the plane 𝜏 = 0,
confirming that the classical dynamics are still mainly reg-
ular for the driving amplitudes considered here, so that
the semiclassical rules (28) and (29) actually are applica-
ble, identifying 𝛾 1 with a matching closed curve in these
figures. For 𝜈 = 1.05, these tubes surround the periodic
orbit which originates from the stable fixed point of the
undriven oscillator, so that the corresponding Floquet
states represent perturbatively, T-periodically deformed
energy eigenstates of the anharmonic oscillator, without
change of their ordering. For 𝜈 = 1.4508 and 𝜆 = 0.9,

Figure 3: Phase-space portraits for a classical driven anharmonic
oscillator (5) with 𝛽 = 0.1 for weak (left: 𝜆 = 0.01) and strong (right:
𝜆 = 0.9) driving. Panels (a) and (b) refer to nonresonant driving with
𝜈 = 1.05, whereas (c) and (d) visualize resonant driving with
𝜈 = 1.4508. The squares in the upper right corners indicate the area
2𝜋ℏeff = 2𝜋𝜈−1 semiclassically occupied by one Floquet state.

however,most of the invariant tubes surround the new sta-
ble T-periodic orbit which is created by the 1: 1 resonance;
these tubes donot result from theprevious tubes by contin-
uous deformation. Therefore, when applying the rule (28)
to these new resonance-induced tubes, and selecting the
matching ones for k = 0, 1, 2,…, a “neworder” establishes
itself, with the number of stateswhich are accessible to the
Mathieuapproximationbeinggiven roughlyby thenumber
of quantized tubes which fit into the classical resonance
zone.

3 Quasi-stationary Floquet-state
occupation probabilities

Now the driven anharmonic oscillator is assumed to inter-
act with an infinite phonon bath modeled by thermally
occupied harmonic oscillators, the frequencies of which
aredistributedaccording toaspectraldensity J(𝜔̃). Inorder
todescribe thecouplingof theanharmonicoscillator to this
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bath, a natural choice is

Hint = 𝛾x
∑
𝜔̃

(
b𝜔̃ + b†

𝜔̃

)
, (30)

where b†
𝜔̃
(b𝜔̃) creates (annihilates) a phonon with fre-

quency 𝜔̃, accompanying a dipole-type transition among
the Floquet states, and the coupling constant 𝛾 car-
ries the dimension of energy per length. Adopting the
Born–Markov scheme worked out by Breuer et al. [7],
the rate Γfi of bath-induced transitions from an initial
anharmonic-oscillator Floquet state i to a final one f is
written as a sum of partial rates,

Γfi =
∑
𝓁

Γ(𝓁)
fi , (31)

where these partial rates take the form

Γ(𝓁)
fi = 2𝜋

ℏ2
|||V (𝓁)

fi
|||
2
N(𝜔(𝓁)

fi ) J(|𝜔(𝓁)
fi |). (32)

Here, the index𝓁 labels thedifferent transition frequencies
between the Floquet states under consideration,

𝜔
(𝓁)
fi = (𝜀f − 𝜀i)∕ℏ+ 𝓁𝜔 with 𝓁 = 0,±1,±2,… , (33)

once again reflecting the Brillouin-zone structure of the
quasienergy spectrum. The numbers N(𝜔̃) are given by
the thermal occupation numbers of the phonon modes at
the inverse bath temperature 𝛽bath = (kBTbath)−1, with kB
denoting Boltzmann’s constant, namely [7],

N(𝜔̃) =
⎧⎪⎨⎪⎩

1
exp(𝛽bathℏ𝜔̃)− 1 ; 𝜔̃ > 0

1
1− exp(𝛽bathℏ𝜔̃)

; 𝜔̃ < 0.
(34)

Finally, the quantities V (𝓁)
fi appearing in the partial rates

(32) are given by the Fourier components of the Floquet
transition matrix elements,

⟨uf(t)|𝛾x|ui(t)⟩ = ∑
𝓁

ei𝓁𝜔t V (𝓁)
fi . (35)

Having computed the total transition rates (31) in this
manner, thequasi-stationarydistributions{pn}ofFloquet-
state occupation probabilities are determined by solving
the master equation

0 =
∑
m
(Γnmpm − Γmnpn) . (36)

The numerical results described in the following two
sections have been obtained by implementing this algo-
rtithm within a basis set of b = 61 harmonic-oscillator
eigenfunctions.

4 Periodic Thermodynamics of
Mathieu states

For vanishing driving force, that is, for 𝜆 = 0, the energy
eigenstates of the anharmonic oscillator are occupied
according to the canonical distribution

Pn =
exp(−𝛽bathEn)∑

m
exp(−𝛽bathEm)

. (37)

Therefore, when considering the Floquet-state occupation
probabilities pn for 𝜆 ≠ 0, I divide these probabilities by
P0, in order to get a good feeling for the magnitude of
the observed effects. In particular, this scaling immedi-
ately indicates whether or not certain Floquet states carry
more population than the ground state of the undriven
anharmonic oscillator.

Figure 4 shows the Floquet-state occupation proba-
bilities for anharmonicity 𝛽 = 0.1 and a bath with Ohmic

0 0.5 1
10-4

10-2

100

0 0.5 1
10-4

10-2

100

Figure 4: Floquet-state occupation probabilities pn∕P0 for a driven
anharmonic oscillator (2) with 𝛽 = 0.1 in a bath with scaled
temperature kBT bath∕(ℏ𝜔) = 1.0 versus the driving strength 𝜆 for
nonresonant driving with 𝜈 = 1.05 (top), and resonant driving with
𝜈 = 1.4508 (bottom). An Ohmic bath density of states J(𝜔̃) ∝ 𝜔̃ is
assumed here.
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density of states, J(𝜔̃) ∝ 𝜔̃, and scaled bath temperature
kBTbath∕(ℏ𝜔) = 1.0 as functions of the driving strength 𝜆
for two rather distinct cases: nonresonant driving with
𝜈 = 1.05 (top), and resonant driving with 𝜈 = 1.4508 (bot-
tom). Under nonresonant driving the occupation probabil-
ity of the Floquet state originating from the lowest energy
eigenstate decreases with increasing 𝜆, whereas the other
occupation probabilities tend to increase, in accordance
with an intuitive notion of “heating”. Importantly, the
graphs of the individual functions pn(𝜆) do not cross: the
occupation probabilities retain their original order when
the nonresonant drive is turned on, and made stronger.

Under resonant driving, however, an altogether differ-
ent picture is observed. Now a certain group of Floquet
states which carry only small populations for low driv-
ing amplitudes acquires relatively high populations in the
strong-forcing regime. In parallel, the occupation proba-
bility of the Floquet state connected to the anharmonic-
oscillator ground states drops even below that of the
members of this group. Most significantly, the Floquet
states hosting most of the population for 𝜆 ≈ 1 can be
identified as those states which are described by the Math-
ieu approximation (26), such that the Mathieu quantum
number k determines their ordering: the Floquet state with
k = 0 which stems from the ground state of the pendulum
(19) bears most of the population, the states with k ≥ 1
successively less. Hence, a quantum resonance can sys-
tematically introduce a new order in a periodically driven
open quantum system, expressed by theMathieu quantum
number k which replaces the original quantum number n.

Keeping the parameters 𝛽 = 0.1, 𝜈 = 1.4508 and 𝜆 =
0.9 fixed, Figure 5 depicts the Floquet-state occupation
probabilities pn∕P0 for varying inverse bath temperature
𝛽bathℏ𝜔 = ℏ𝜔∕(kBTbath), again assuming an Ohmic bath
density of states. The most important observation here is
that the occupation probabilities do not chance their order
when the bath temperature changes. Therefore, even in the
limit of very small bath temperatures the Mathieu ground
state k = 0 is expected to hold the highest population, as
is characteristic of a true ground state. However, whereas
the canonical ground-state occupation probability P0 of
the undriven oscillator inevitably approaches unity for
ℏ𝜔∕(kBTbath)→∞, several states of theMathieu hierarchy
appear to remain significantly populated in this limit.

5 Mathieu quantum engineering
Whereas thecanonicaldistribution(37) isuniversal, that is,
doesnotdependonthedetailsof thesystem-bathcoupling,

0 2.5 5
0

0.5

1

Figure 5: Floquet-state occupation probabilities pn∕P0 for a driven
anharmonic oscillator (2) with 𝛽 = 0.1 under resonant driving with
𝜈 = 1.4508 and 𝜆 = 0.9, versus the scaled inverse bath temperature
ℏ𝜔∕(kBT bath). The bath density of states is Ohmic.

this is different for the quasi-stationary distributions {pn}
of Floquet-state occupation probabilities [7, 8]. This note-
worthy fact allows one to “engineer” such distributions by
willfully modifying the properties of the bath.

For the purpose of illustration, in this section I resort
to spectral densities having the form of power functions
with an exponent c,

J(𝜔̃) ∝ 𝜔̃c
, (38)

so that c = 1 reproduces theOhmicdensity, c < 1 gives sub-
Ohmic densities, and c > 1 describes super-Ohmic bath
densities of states. InFigure 6, I plot theFloquet-state occu-
pation probabilities computed for 𝛽 = 0.1, 𝜈 = 1.4508,
𝜆 = 0.9, and kBTbath∕(ℏ𝜔) = 1.0 as functions of the expo-
nent c. With the exception of an anomalous state which
will not be discussed here, the ordering of the occupation

70
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Figure 6: Floquet-state occupation probabilities pn∕P0 for a
resonantly driven anharmonic oscillator (2) with 𝛽 = 0.1,
𝜈 = 1.4508, and 𝜆 = 0.9, versus the exponent c of the spectral
density J(𝜔̃) ∝ 𝜔̃c of the bath.
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probabilities is not significantly affected by the exponent;
in particular, the Mathieu ground state retains its status
as the Floquet state with the highest occupation proba-
bility for all values of c considered. Most interestingly,
pk=0∕P0 increases substantiallywith c, such thatpk=0 > P0
for c > 4: in the presence of a bath with appropriate prop-
erties, the occupation of the effective Floquet ground state
in the strong-driving regime can even exceed the occupa-
tion of the actual ground state of the undriven oscillator,
with the bath having the same temperature in both cases.

This phenomenon, that is, the enhancement of the
population of the resonance-induced effective Floquet
ground state over that of the undriven true ground state,
is illustrated further in Figure 7. There I use a super-
Ohmic density with c = 6, and study the dependence of
the quasi-stationary distribution on the driving amplitude
(top), and on the bath temperature (bottom). In response
to an increasing driving amplitude one again observes the
now familiar reordering previously found in Figure 4 for
resonant driving, but here this Mathieu-state reordering is
even more pronounced, resulting in pk=0 > P0 for 𝜆 ≈ 1.
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Figure 7: Floquet-state occupation probabilities pn∕P0 for a
resonantly driven anharmonic oscillator (2) with 𝛽 = 0.1,
𝜈 = 1.4508, and spectral bath density J(𝜔̃) ∝ 𝜔̃6, versus the scaled
driving strength 𝜆 for ℏ𝜔∕(kBT bath) = 1.0 (top), and versus the
scaled inverse bath temperature ℏ𝜔∕(kBT bath) for 𝜆 = 0.9 (bottom).

Another remarkable observation is made when 𝜆 = 0.9
is kept fixed, and the bath temperature is varied: the
maximum enhancement of the population of the k = 0-
state occurs for an intermediate bath temperature, and is
diminished when the bath is made colder.

6 Conclusion
The periodically driven anharmonic oscillator (1) provides
a richmodel system for studying the ramifications of quan-
tum resonances in Periodic Thermodynamics. While the
Mathieu approximation and the appearance of a state
ordering according to the Mathieu quantum number k
have been worked out before [18, 19], here I have shown
their implications for the quasi-stationary distributions of
the Floquet-state occupation probabilities which establish
themselves when the driven system is coupled to a heat
bath [7]. In particular, I have demonstrated that the Math-
ieu state k = 0 can actually play the role of an effective
Floquet ground state, in the sense that it carries thehighest
population in the nonequilibrium steady state. Interest-
ingly, thispopulationdoesnotnecessarily go tounitywhen
the bath temperature vanishes. Moreover, the populations
of the near-resonant Floquet states which are described
by the Mathieu approximation decrease successively with
increasing Mathieu quantum number.

From the semiclassical viewpoint, is should be noted
that the resonance-induced order requires that the classi-
cal dynamics inside the resonance zones in the classical
phase space are still mainly regular, so that the corre-
sponding Floquet states are associated with tubes which
are invariant under the Hamiltonian flow, allowing the
use of the quantization rules (28) and (29). This classi-
cal regularity is reflected by the fact that the approximate
quasienergies (27) depend smoothly on the driving ampli-
tude. However, outside the regular resonance zones the
classical dynamics may be chaotic, confronting one with
the classical–quantum correspondence for partly chaotic
systems [32], leading to intricate quasienergy spectra fea-
turing many large avoided crossings. Some traces of the
resulting complications can be seen in the lower panel
of Figure 4 when inspecting the occupation probabilities
of those Floquet states which fall outside the domain of
the Mathieu approximation; these occupation probabil-
ties vary with the driving amplitude in a highly irregular
manner.

Of particular interest is the observation that a proper
choice of the parameters of the driving force, together with
a suitable tayloring of the properties of the bath, system-
atically leads to occupation probabilities of the effective
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Floquet ground state k = 0 which are appreciably higher
than the thermal occupation probability of the system’s
true ground state in the absence of the driving force. It is
an open and challenging question whether a similar effect
could also occur in periodically drivenmany-body systems
which interact with a heat bath.
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