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Abstract: Exact flows of an incompressible fluid satisfying
the Beltrami equation inside a spherical shell are con-
structed in the Cartesian coordinates in terms of elemen-
tary functions. Two scale-invariant equations defining two
infinite series of eigenvalues A, and 4,, of the operator curl
in the shell with the nonpenetration boundary conditions
on the boundary spheres are derived. The corresponding
eigenfields are presented in explicit form and their sym-
metries are investigated. Asymptotics of the eigenvalues
A, and 4, at n,m — co are obtained.

Keywords: Beltrami equation; eigenvalues; Helmholtz
equation; scale invariance; spectral problems; topology of
eigenfields.

1 Introduction

As known [1], Beltrami equation has many applications to
problems of plasma physics and fluid dynamics. Equations
of viscous incompressible magnetohydrodynamics have
the form [2]

v +curl VXV = —grad <£ + 1|V|2-+-(I>)
ot p 2

+ % curlBX B + v(t)AV, (1.1)

0B

5= curl(Vx B) + n(t)AB, divV =0, divB=0.

Here, V(x, t) is fluid velocity, B(x, t) is magnetic field, p(x, t)

is the pressure, ®(x) is the gravitational potential, p is

constant fluid density, v(t) is viscosity coefficient, #(t) is

magnetic viscosity, and A is the Laplace operator.
Equation (1.1) for V(x, t) = 0 reduce to

curlBX B = grad (p + p®), %—]t; =0, divB=0.

(1.2
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Equation (1.2) describes plasma equilibria and is
equivalent to the generalized Beltrami equation [3]:

curl (curlBx B) = 0. 1.3)

The force-free plasma equilibria are defined by condition
p(x,t) + ®(x) = const and are equivalent to the Beltrami
equation curl B = AB, where A = const in view of equation
divB = 0.

If magnetic field B = 0 and viscosity v(t) = 0, Eq. (1.1)
becomes Euler equations for ideal incompressible fluid:
v + curlVXV = —grad <p + 1|V|2+(I>> , divVv=0.

ot p 2

For the steady case and with the additional condition
p/p +|V|?/2+ @ = const, the Euler equations reduce to
the Beltrami equation

curl V(x) = AV(x). (1.4)

Equation (1.4) implies A = const in view of div V(x) = 0.
Beltrami Eq. (1.4) evidently is invariant with respect to the
scale transformations

X, =Xy, Xy Xy X3 Xz A %/1, (1.5)
where ¢ # 0 is an arbitrary parameter.

In case of collinear vector fields V(x,t) and B(x, t),
Eq. (1.1) with nonzero viscosities v(t) # 0, 5(t) # O have

the following solutions [4]:

t

V(x,t) = exp —ﬂz/ v(t)dr | V,(x),
fo
t

B(x,t) = C, exp —/12/ n(r)dr | V,(x),

to

(1.6)

(1.7)

where V,(x) is any solution to the Beltrami Eq. (1.4) and
pressure p is defined from equation p/p + |[V|>/2+ ®
= const.

If B(x, t) = 0 then Eq. (1.1) reduce to the Navier—Stokes
equations

v +curlVxV = —grad <p + 1|V|2 + d>> + v(H)AV,
ot p 2
div V=0, (1.8)

that have exact solutions (1.6) [4].
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In this paper, we construct two infinite series of exact
Beltrami flows satisfying Eq. (1.4) inside the spherical
shells

Sk Ra SR<R;, R=4/x]+x+x].

We assume that on the two boundary spheres Sf: R=R,
and Sg: R =R, the nonpenetration boundary condition
n(x) - V(x) = 0 is satisfied. Here, n(x) is vector field of unit
normals to the boundary. Since for the spheres Si we have
n(x) = x/|x| the boundary conditions have the equivalent
form

(1.9

x-V,(x)=0 (1.10)

forx € Si, k = 1,2. The same solutions with magnetic field
B(x) instead of velocity V(x) describe the force-free mag-
netic fields inside a spherical shell (1.9). All constructed
exact solutions define by formulas (1.6) and (1.7) exact
flows of viscous magnetic fluid inside the spherical shell
SR, (1.9) with the nonpenetration conditions (1.10).

The main problem consists of finding the eigenvalues
A, of the operator curl and its eigenfields V,(x) that satisfy
Eq. (1.4) inside the spherical shell and the nonpenetration
condition (1.10) at its two boundaries. Cantarella, DeTurck,
Gluck, and Teytel studied in paper [5] vector fields V that
“satisfy the equation V X V = AV, where A is the eigenvalue
of curl having smallest nonzero absolute value among such
fields. It is shown that on the ball the energy minimizers are
axially symmetric spheromak fields found by Woltjer and
Chandrasekhar-Kendall, and on spherical shells they are
spheromak-like fields” [5], p. 2766. The authors used the
spherical coordinate r, 8, ¢ in R3 and the theory of Bessel
functions, and the Legendre and Gegenbauer functions
applied earlier by Woltjer [6] and by Chandrasekhar and
Kendall [7, 8]. The methods of papers [6—8] were used also
in the works [1, 9-12] where the eigenvalue problem (1.4),
(1.10) was studied in spherical coordinates in the ball using
the Bessell functions.

Cantarella, DeTurck, Gluck, and Teytel presented in
Table 1 of paper [5] results of their calculations (using
Bessel’s functions) of the minimal eigenvalues /151) for
different values of R; and R,.

In this paper, we calculate for the first time in the liter-
ature the products of the correspondent numbers /151) and
R, — R, from Table 1 of [5]. The results of our calculations
are presented in the right column of Figure 1.

Reading the right column of Figure 1 down from the
top to the bottom we see that numbers x; = /151) (R,—Ry)
monotonously decrease and tend to the number of =
= 3.1415926535 .... Therefore our calculations prove that
the dimensionless eigenvalues x; = Ail) (R, — R,) converge
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to the number of # when (R, — R,) — 0 (hence the dimen-

sionless parameter 4 = R;R,/(R; — R,) — o0). As a conse-
quence of this we get the asymptotics

m

A=

as u — oo. (1.11)

Rl - RZ ’
This result is the first appearance of the scale invariance
of the spectral problem (1.4), (1.10). In Section 3, we prove
asymptotics (1.11) more rigorously.

Note that for R, = 10 and R, = 9.996665555, the cor-
responding value of parameter y is y = 8996999.5. For
R, =100 and R, =99.99996667 (in the bottom line of
Figure 1), the value of y is enormous: g = 9001797 X 10°.

Due to the scale invariance (1.5) of the Beltrami
Eq. (1.4) the eigenvalue problem (1.4), (1.10) is invariant
with respect to the scale transformations

R,—>cR,, R,—>CR,, 11— %),, (1.12)
wherec > Oisanarbitrary parameter. We define the dimen-
sionless parameters

RR,

x= AR, —R,)) >0, —12
1 2 (Rl_R2)2

U= >0, (1.13)
that are invariant under the group of scaling transforma-
tions (1.12). We will call parameter x the dimensionless
eigenvalue.

We construct in this paper two infinite series of
eigenvalues A, and im and the corresponding eigenfields
V,(x,A) and V,,(x, A, B) which depend on arbitrary con-
stant vectors A, B € R>. Each eigenvalue 4, has multiplic-
ity 3 and each eigenvalue 4,, has multiplicity 5. We study
the eigenvalue problem (1.4), (1.10) in an arbitrary shell
Sk,z, (1.9) and use only Cartesian coordinates x4, x2, x3 and
elementary functions of them. In Section 3, we derive the
first series of eigenvalues 4, = x,,/(R; — R,) where x,, are

roots of equation

X

tan(x) =
In Section 3, we show that any root x,, of Eq. (1.14) defines
the eigenvalue A,

AT+

n 2R, n (1.15)

of the spectral problem (1.4) and (1.10). Here, radius R, is
arbitrary due to the scale invariance (1.12). Radius R, is
connected with R, by relation

R Vauti-l,
N v R

(1.16)
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Figure 1: Calculation of dimensionless
eigenvalues x,.

In Section 4, we derive the second series of eigenvalues ~ where radius R, is arbitrary in accordance with the scale

:Im =X,,/(R, — R,) where X,, are the roots of equation invariance (1.12) and radius R, is defined by Eq. (1.16).
an() X+ ud/3 w17) Remark 1. Cantarella, DeTurck, Gluck, and Teytel wrote on
anix) = . .
1+ (u—Dx2/3 + u>x4/9 p. 2767 of [5]:
We prove that any root X, of Eq. (1.17) defines the eigen- “Theorem B. For the spherical shell B>(a, b) of inner radius a
value im: and outer radius b, the eigenvalue of curl having least absolute
i @ @ ; P
5 [ty +1+1_ valueis A;”, where 4;” is the smallest of the infinite sequence of
A = vapToiT o o (1.18) positive numbers x, that satisfy

2R,
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J3/2(@x)Y;5(bx) = J35(bX) Y3 5 (ax) = 0.”

Thus the eigenvalues Agl) are defined in paper [5] by this
equation in terms of Bessel’s functions. The scale invari-
ance (1.12) and the dimensionless Egs. (1.14) and (1.17) were
not derived in paper [5].

Let us prove that for any given radii R, and R, no one
eigenvalue A, coincides with an eigenvalue 4,,. Indeed, let
A be the common value of A, = 4,,. Then the dimension-
less eigenvalue x = A(R, — R,) satisfies both Eqs (1.14) and
(1.17). Subtracting Eqs (1.14) and (1.17) and reducing to the
common denominator we arrive at equation

25 +9u+3=0 (1.19)

that has no real solutions. Hence there are no real numbers
x satisfying to both Eqs (1.14) and (1.17). Therefore for any
R, and R, the eigenvalues 1, and 4,, are not equal for any
n and m.

In Section 3, we prove that all eigenvalues A, for
R, — R, have the following asymptotics

kr
Y ,
““R R,

as U — oo.

This asymptotics for k = 1 reduces to the special asymp-
totics (1.11). Equation (1.14) with arbitrary values of param-
eter u > O (that means for arbitrary R, and R,) yields the
following asymptotics for eigenvalues 4,

nz
Ry =Ry’

Ap & as n— oo.

In Section 4, we prove the following asymptotics for
the eigenvalues 4,,:

5 o krx
kNRl_RZ as U — oo,
Ao~ asm o oo.
m Rl_RZ

In Section 3, we present the three-dimensional (3D)
space of eigenfields V,(x,A) in explicit form that yields
that any linear combination of the axisymmetric eigen-
fields V,(x,A) with arbitrary axes of symmetry is again
axisymmetric.

We present in Section 5 in an explicit form the linear
five-dimensional (5D) space of eigenfields V,,(x, A, B) and
prove in Section 6 that the eigenfields Vm(x, A, B) with non-
collinear constant vectors A, B are not axisymmetric. The
corresponding dynamical systems dx/dt = V,,(x, A, B) do
not have first integrals. A recent numerical investigation
[4] proves that some of these systems possess chaotic
streamlines and therefore are not integrable.

DE GRUYTER

The special eigenfields KVm(x, A, A) with B = kA are
axisymmetric. The general linear combinations of the
axisymmetric eigenfields \7m (x, A, A;) are not axisymmet-
ric. In Section 7, we demonstrate that topologies of the
axisymmetric fluid flows V,,(x, A, A) and V,,(x, A) are com-
pletely different. All eigenfields V,,(x, A, B) are presented
in explicit form in terms of elementary functions of the
Cartesian coordinates x!, x2, x3.

2 Functions H,(AR) and their
properties

Using the method of Chandrasekhar and Kendall [8], we
study vector fields

V(x) = curl U(x) + /{i curl curl U(x),

where U(x) satisfies the vector Helmholtz equation

AU(x) = —A2U(x). (2.1

In view of the identity curlcurlU(x) = grad(div U(x))
— AU(x) and Eq. (2.1), we get

V(%) = cul Ux) + AU®X) + % grad(div U®).  (2.2)

Applying to V(x) the operator curl and using the iden-
tity curl(grad F(x)) = 0 we find that vector field V(x) (2.2)
satisfies the Beltrami Eq. (1.4).

We consider vector field U(x) (2.1) of the form
U(x) = H,(AR)A, where A is an arbitrary vector and func-
tion H,(AR) satisfies the spherically symmetric Helmholtz
equation

_ d’u(R) | 2du(R) _

Au= + = —Au(R),

dR? R dR @3)

variable R is the spherical radius R = y/x; +x3 + x3. All

solutions to the Helmholtz Eq. (2.3) have the form

HR) = i) = a0 4 S0,
d
)= If?lf”)’ 2.4)

where v = AR, and a, b are arbitrary constants.! Here,
function H,(v) is

H,(AR) = Hy(v) = —a cos v + b sin v. (2.5

1 Applications of the exact solution (sinR)/R to the atomic bomb
physics were presented by Heisenberg in his lecture [15], see pp.
195-196.
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In this paper, we will use elementary functions

_1dH,(v) _ a _sinv
Hy(v) = v dv 12 [COS v v ]
— % [sin v+ &5 U] , (2.6)
v
_1dH)(v) _ a [, osinv
H;(v) = S dy S [(3 v?) 5 3 cos v]
b . 5, COS U
+—4[3smv+(3—v) ] (2.7)
v
1 dH,(v)
H,(v)= > d311
= % [(61)2 —15)3Y _ (12 —15)cos U]
v
+ % [(02 —15)sin v + (602 — 15) <% U] .
v
Let us define by induction the functions
1dH, (v)
Hn+l(U) = ; # (28)

Lemma 1. Functions Hy(v), H,(v), ..., H,(v), ... with arbi-
trary constants a and b satisfy an infinite series of identities

H,(v) + 2n+ D)H,,(v) + v’H,,,(v) = 0. (2.9)

Proof. 1t is easy to verify using formulas (2.4), (2.5), and
(2.6) the identity (2.9) for n = 0:

Hy(v) + H,(v) + v*H,(v) = 0.

Assume that identity (2.9) is true for an integer n > 0 and
apply to it the operator v='d/dv. Then using the definitions
(2.8) we get

H,,,(v) + @n+ DH,, () + 2H,,,(v) + v*H,,5(v) = 0,

that is the identity (2.9) for n + 1. Hence identities (2.9) are
proven by induction for all n > 0. O

We apply identity (2.9) for n=1 and n=2 in
Sections 3, 4, 5, and 7 of this paper.

3 The first series of eigenvalues 4,
and axisymmetric eigenfields
V. (x, A)

Substituting formula U(x) = H,(v)A into Eq. (2.2) we derive

V(x,A) = grad H,(v) X A+ AH,(v)A
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+ % grad [grad H,(v) - A|
= L3Oy o p g ) + LW
v dv v dv
4 pld (LAH@)Y o pyy (3.1)
vdv \v dv

Remark 2. Vector field (3.1) evidently is invariant with
respect to rotations around the axis having direction A.
Vector fields (3.1) for any vector A and for A =1 and
H,(v) = (sinR) /R (that corresponds to b = 0) are equiva-
lent to the well-known in plasma physics spheromak exact
solution [1, 7, 13, 14].

Using formulas (2.6) and (2.7) we represent vector field
V(x,A) (3.1) in the form

V(x,A) = H,(v)x X A+ 4 [H,(v) + H,(v)| A

+ PH;(0)(x - A)x. (3.2)

Hence we get
x-V(x,A)
= A [H,(v) + H)(v)] (x- A) + H;(v)(x - X)(x - A)
= A [H,(v) + H,(v) + v’H;(v)] (x - A), (3.3)

where we put A%(x - X) = A’R? = v2. Identity (2.9) forn =1
has the form

H,(v) + 3H,(v) + v*Hy(v) = 0. (3.4)
In view of identity (3.4), Eq. (3.3) becomes
x-V(x,A) = -2AH,(v)(x - A). (3.5)

Therefore the two nonpenetration boundary conditions
(1.10) are satisfied for the fluid flow V(x,A) (3.2) if and
only if

Hy(v;)=0, H,(v,) =0, v;=A4R,,

v, = AR,. (3.6)

Multiplying Eq. (2.6) with v?/(a cos v) we find

UZ
acos v

Hz(u)=1—taﬂ—9(1 ).

—+4tan v
v

Hence equation H,(v) = 0 takes the form

b v—tan v
-—= 3.7
a 1+vtan v 5.7)

Therefore Eqgs (3.6) and (3.7) yield

b_ v —tanvy, _ v,—tany, (3.8)
a l1+4v,tanv, 1+4v,tano, )
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The second equality implies
v, + v, tan v, —tan v, — v, tan v, tan o,
= v, + v,v, tan v; — tan v, — v; tan v, tan o,.
Collecting the similar terms we get
(v, — v,)1 + tan v, tan v,)
= (1+ v,v,)(tan v, — tan v,).

Hence we find

tan v; —tan v,
1+ tan v, tan v,

_Ui—U
1+ 00, (.9

Substituting v; = AR, and v, = AR, into Eq. (3.9) and using
the trigonometric identity

tan @« —tan f§

—————— = = tan(a —
1+ tan « tan g @=p

(3.10)

we get from Eq. (3.9) the equation for the eigenvalues A:

AR, —R,)

tan [A(R, — R))| = T+ FRR,
1

(B.11)

Substituting v; = AR, and v, = AR, into Eq. (3.8) we get

b _ AR, —tan(4R;) _ AR, —tan(4R)) (3.12)
a 1+ AR, tan(AR,) 1+ AR, tan(4AR,)’ ’

Hence function H,(4R) (2.4) has the form

H,(R) = a (Sin(/m) AR, — tan(ARy) cosuR)>
l - 9

AR 1+ AR, tan (AR, AR
(3.13)
where a is an arbitrary parameter.
Let us express the dimensionless quantities AR, and
AR, in terms of variables (1.13). We have

__R
B RI_RZ’
_ R
_Rl_RZ.

AR, =ax, o

(3.14)

AR, =X, o,

Evidently a; —a, =1 and a;a, = u. Hence a; satisfies
equation af — a; — u = 0. Therefore by Vieta formula we
find

@ = % <\/4ﬂ+1+1>, @, = % <\/4ﬂ+1—1). (3.15)
Equations (3.14) and (3.15) yield

i_&x_ \/4,u+1+1x

1
R, 2R, (G.16)

Another consequence of Egs (3.14) and (3.15) is

AR1=§(\/W+1), AR2=)§(<\/W—1).

(3.17)
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Substituting formulas (3.17) into Eq. (3.13) we get

sin(AR) , aux — tan(a;x) cos(AR)

H.(AR) =
1UR) =a AR 1+ ayx tan(a;x) AR

(3.18)
Equation (3.11) evidently is invariant with respect to the
group of scale transformations (1.12). In the dimensionless
variables x = A(R, — R,) and u =R,R,/(R, — R,)* (1.13)
Eg. (3.11) takes the form

X

tan(x) =
Anyrootx, of Eq. (3.19) defines the eigenvalue 4, according
to formula (3.16):

Vap+F1+1
in=7ﬂ X

. .20
® (20)

Here, radius R, is arbitrary in accordance with the scale
invariance (1.12). Equation (3.17) implies that radius R, is
connected with R, by relation

R Vauti-1,
Y o

Formula (3.21) agrees with the definition (1.13) of parameter
H=RR,/(R; — R,))*.

Since function tan(x) is z-periodic and tan(x) - +oco
as x — (n+1/2)x we see that Eq. (3.19) for any constant
4 > 0 has infinitely many roots x,, that satisfy the inequal-
ities nw < x, <n+1/2) x. The maximal value of func-
tion f(x) = x/(1+ ux?) is 1/ (2\/ﬁ) that is attained at x,, =
1/ \/ﬁ Therefore at u > 1 function f(x) <1/ (2\/ﬁ) <1
for all x. Hence solutions x; of Eq. (3.19) are close to the
roots of function tan(x) that means to kz. Hence we get the
asymptoticsat y > 1oratR, - R;:

(3.21)

kx

22
Fo 622

A =

as R, = R,.

Since the right hand side of Eq. (3.19) tends to zero as
x — oo we get that Eq. (3.19) with arbitrary value of param-
eter u > Oyields the following asymptotics for eigenvalues
A, asn— oo:

(3.23)

Example 1. Let R,/R, =10. Then parameter y =10/81
= 0.1234568. For any root x; to Eq. (3.19) the correspond-
ing eigenvalue A, = x;/(R; — R,) = x;/(9R,). The first five
roots of Eq. (3.19) are:

X, = 4.070059, x, =7.061906, x; =10.065190,

X, = 13.099750, x; = 16.160470. (3.24)
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Example 2. Let R, /R, = 2. Then parameter 4 = 2 and any
root x; to Eq. (3.19) defines an eigenvalue A, = x;/(R,
— R,) = x;/R;. The first five roots to Eq. (3.19) are:

X, =3.286005, x, = 6360678, x5 = 9.477196,

X, = 12.605920, x; = 15.739670. (3.25)

Comparing these sequences with the sequence of numbers
z, = kn:

z; = 3.141593, 2z, = 6.283185, z3 = 9.424778,

z, =12.56637, 2z = 15.70796, (3.26)

we observe that the roots x; (3.25) corresponding to u, = 2
tend to the sequence z;, = kx faster than the roots (3.24)
corresponding to y; = 0.1234568.

Let x,, be a root of Eq. (3.19). Substituting x = x,, into
formula (3.18) we obtain function

Hl.n(’lnR)

Y sin(4,R) + a,x, — tan(a;x,) cos(4,R) . (3.2
7R 1+ ayx, tan(ayx,)  4,R

corresponding to the eigenvalue A, = x,/(R; — R,). Vec-
tor field V,(x,A) (3.1) and (3.2) corresponding to function
H, ,(4,R) (3.27) satisfies the Beltrami Eq. (1.4) with 4 = 4,
and the two nonpenetration boundary conditions (1.10).
Therefore it is one of the corresponding eigenfields.

Remark 3. Any linear combination of eigenfields V, (x, A)
(3.2) depending on arbitrary vectors A; has the form

(3.28)

N N
Y oV, (x.A) =V, (x, D ckAk) ,
k=1 k=1

due to the linearity of formula (3.2) with respect to vector
A. Hence an arbitrary linear combination (3.28) is another
Beltrami vector field (3.2). Therefore for any eigenvalue
A, the linear space of the corresponding eigenfields (3.2)
has dimension 3. Hence each eigenvalue 4,, = x,,/(R; — R,)
where x,, is a root of Eq. (3.19) has multiplicity 3.

In view of formula (3.2), the eigenfield (3.28) is invari-
ant under rotations around vector Z;:’:lckAk. Formula
(3.28) provides an explanation why any linear combination
of the axisymmetric eigenfields V,, (x, A;) is also axisym-
metric. For the second series of eigenfields in Section 4,
this is not so.
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4 1:he second series of eigenvalues
1., and eigenfields V,(x,A,B)

For any A vector field V(x, A) (3.1), (3.2) satisfies Beltrami
Eq. (1.4). Hence its derivative VgV (x, A) in direction of any
vector B also satisfies Eq. (1.4). By definition we have
3
oV(x,A)
VgV(x,A) = ) ———B,. 4.1

sV(X,A) ; ox D (4.1)
For functions H, (v) we find using the equality v = AR and
definition (2.8):

o dH,(v) dv B~ 0 2

dv ox; '~ dv g B

VeH, (v) =

i=1

2
_ A dH,(v) (x
dv

(4.2)
-B) = A’H,,(v)(x - B).
Applying formulas (4.1) and (4.2) to vector field (3.2) we
find
VpV(x,A) = A’H,(v)B X A+ A*H;(v)(x - B)x X A
+ A’ [Hy(v) + H;(v)] (x - B)A
+ A°H,()(x - A)(x - B)x

+ PHy(v) [(A-B)x+ (x-A)B].  (4.3)

Permuting here vectors A and B we get vector field
VAV(x,B) = A’H,(v)A X B+ A*H;(v)(x - A)x X B
+ A’ [Hy(v) + Hy(v)] (x - A)B
+ XH,(v)(x - B)(x - A)x

+ AH;(v) [B-A)x + (x - B)A] . (4.4)

Adding formulas (4.3) and (4.4), we get Beltrami field that
is symmetric with respect to vectors A and B:

1
2A3

= SHH,(0) [(x - BX X A+ (x - A)x x B]

V(x,A,B) = = [V,V(x,B) + V5V(x,A)]

+ 2 [Hy(0) + Hy(0)] [(x- B+ (x- B)A]
+ J2H,(0)(x - A)(X - B)X
+ 2H,0) [2A - B)x + (x - B)A + (x - A)B .
(4.5)
Formula (4.5) and A*(x - X) = A*R? = 1? yield

x-V(x,A,B)
= [H,(v) + H;(v)] (x - A)(x - B) + v’H,(v)(x - A)(x - B)
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+ (x - X)H;(v)(A - B) + H;(v)(x - A)(x - B)
=H;(v)A-B)(x - x)

+ [Hy(v) 4 2H;(v) + v’H, ()] (x - A)(x - B). (4.6)
Identity (2.9) for n = 2 takes the form
H,(v) + 5H;(v) + v’H,(v) = 0. .7

Equation (4.6) in view of identity (4.7) becomes

x-V(x,A,B) = H;(v) [(A-B)(x - x) — 3(x - A)(x - B)] .
(4.8)

Remark 4. Equation (4.8) implies that on each sphere
S? satisfying equ~ati0n R =R,, where H,(v,) = H;(1R,)
=0 we have x-V(x, A, B) = 0. That means vector field
V(x, A,B) is tangent to the spheres Si: R =R,. Hence
the spheres S? are invariant submanifolds for the flows
V(x, A, B) (4.5) with arbitrary vectors A and B. Therefore
the two nonpenetration boundary conditions (1.10) are
satisfied for the fluid flows V(x, A, B) (4.5) if and only if

Hs(v,) =0, Hs(vy) =0,

v, = AR;, v,=AR,. (4.9)

Multiplying function H,(v) (2.7) with v*/(a cos v) we get
4
Y H;(v)

acos v
— 12

vz)tanv—3+b<3tanv+3 U>.
v a v

Hence equation H;(v) = 0 is equivalent to

b 3v-Q3-vd)tanv
7 . 4.10
a 3vtanv+3-—11? (4.10)

Since b/ais const, the two nonpenetration conditions (4.9)
and Eq. (4.10) imply the equality
b _3u,-B-uv)tanv, 3v,-G- v%) tan v,

Z = = , (411
a 3vtanuv,+3-0v] 3v,tan v, +3 -1 (410

where v, = AR, and v, = AR,. Equation (4.11) leads to
9,0, tan v, + 33 — v3)v; — 3v,(3 — v?) tan v, tan v,
- (B-v)B-v)tan v,
= 9u,v, tan v, + 33 — v)v, — 30,3 — v3) tan v, tan v,
- B-v)(B-v)tan v,
Collecting here similar terms we find
3(v; — v,)B + vyv,) [1+ tan v, tan v,

= [9v,0, + B — v?)(3 — V)] (tan v, — tan v,).
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This equation evidently implies

tan v, —tan v, _  3(v; — ;)3 + v,0,)
l+tan v, tan v, 9vv,+ B —1v2)B—0vd)’

Applying here the trigonometric identity (3.10) and substi-
tuting v; = AR, and v, = AR, we get the equation for the
eigenvalues A:

tan [A(R, — R,)|

3A(R, — R,)3 + A°R,R,)

= : 12
9AR\R, + 9 — 34%(R} + R2) + A*RIR’ (.12)

Equation (4.12) evidently is invariant with respect to
the scale transformations (1.12). Using formulas (3.17) it is
easy to verify that in the dimensionless variables x, u (1.13)
Eq. (4.12) takes the form

X+ ux/3

T+ (u—Dx2/3+ u2x4/9° “.13)

tan(x) =

Due to Eq. (3.16), any root X,, of Eq. (4.13) defines the
eigenvalue A,

Go— oy _ VApFIFILL (4.14)
m= R R m '
1 1

Here, radius R, is arbitrary in agreement with the scale
invariance (1.12). For any fixed y (1.13) radius R, is con-
nected with R, by Eq. (1.16).

Example 3. Let R,/R, = (3 + /5)/2 = 2.618034. Then y
= 1and any root X,, to Eq. (4.13) defines an eigenvalue :lm
=%,./(R, —R,) = 2%, /(1 + \/5)R,] = X,,/(1.618034R,).
The first five roots to Eq. (4.13) with g = 1are:

X, = 3.871221,

X, = 6.725464, X3 = 9.732386,

%, = 12.800570, X, = 15.896620. (4.15)

It is evident that sequence (4.15) is an approximation of
sequence z; = kr (3.26).

Since tan(x) is periodic with period 7z, tan(kz) = 0
and tan(x) - +o0 as x — (k + 1/2)x we get that Eq. (4.13)
has infinitely many roots. The function f,(x) in the right
hand side of Eq. (4.13) tends to zero when either y — oo
(that means R, — R;) or when x — co. Hence we get the
asymptotics

5 kx
A~ as R, - R,
k R - R, 2 Iy
§) mrn as m— co. (4.16)

mNRl_RZ
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m
= a,X,, where X, satlsﬁes Eq. (4.13) Substltutmg v
= :lmR = q,X,, into the first Eq. (4.11) we find the constant

b _ 3aXy, — B — (%)) tan(a, X,,) “.17)
a 3uX, tan(oX,) +3 — (%) )

Therefore the corresponding function H,;(AR) (2.4) takes
the form

H, ,,(0)
3a,%, — (3 — (a;,%,,)?)
—a sin(v) tan(a;X,,) cos(v)
v 3, %, tan(a;X,,) v |
- (a])’zm)2
(4.18)

where a is an arbitrary constant. Vector fields Vm(x, A,B)
(4.5)with A = im and constant b/a (4.17) and correspond-
ing to the function H,,(v) (4.18) satisfy the Beltrami
Eq. (1.4) with 4 = :1," in the spherical shell S p (1.9) and
the two nonpenetration boundary conditions (1.10) on the
spheresR =R;and R =R,.

Vector fields V(x,A,B) (4.5) are hilinear symmet-
ric functions of vectors A and B because of equality
V(x, A, B) = V(x, B, A). Expanding vectors A and B in an
orthonormal basis é;, é,, and é; we find that any eigen-
field V (X, A, B) is a linear combination of six eigenfields
V,.(x, 6, é)= vV, (x,é é;,€). However, in view of identity
(5.1) proved in Section 5 below only five of these eigenfields
are linearly independent. Therefore for any eigenvalue Zm
the space of eigenfields \7,,, (x, A, B) has dimension 5. Hence
the multiplicity of each eigenvalue :1,,, is equal to 5.

5 An identity for axisymmetric
eigenfields

Vector field V(x, A, A) (4.5) with B = A has the form

V(x,A,A) = AH;(v) [(x - A)x X A] + A’H,()(x - A)’x
+ [Hy(v) + H3(v)] (x - A)A + H;(v) [(A - A)x + (x - A)A] .

(5.1)

Vector field V(x,A,A) (5.1) evidently is invariant under
rotations around the axis generated by vector A. The
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corresponding fluid flow is integrable and its streamlines
belong to certain axisymmetric tori T2, see Section 7.

Lemma 2. Let vectors A;, A,, and A; are mutually orthogo-
nal: (A; - A;) = 0 and i # j. Then the identity holds:

V(x, A, A) + ——V(x,A,,A,)

|A1|2 IA |2

—V(x,A,A;) = (5.2)

IA |2

Proof. Vector fields é, = A;/|A;] have unit lengths
and are mutually orthogonal. Evidently we have
V(x, A, A/ 1A = V(x, €, 6,). Vector field V(x,é,,€é,)
(4.5) has the form

V(x, 6, 6) = AH;(v) [x X (x - €,)€,)] (5.3)
+ [H,(v) + Hy(v)] [(x - €)€;]
+ A*H,(v)(x - 6,)*x + H,(v)
X [(€, - €)x + (x- €)é,] .
The following identities evidently hold in the basis €é;, €,,
and é;:

IxP? =R,

3
Y (x- €6 =x,

3
Z (X . ék)2 =

k=1 k=1

Hence using Eq. (5.3) and equation A*R? = 12 we find

3
Z V(X, éks ék)
k=1

= AH;(0)[x X X] + [H,(v) + 5H5(v) + v’H,(v)] x

This expression vanishes due to the identity x X x = 0 and
identity (4.7). Hence we get
3 3
Z AT VX, AL A) = ) V(% 6, 6) =
k=1
that proves the identity (5.2). U

Remark 5. An arbitrary linear combination of two axisym-
metric eigenfields V,,(x,A,,A,) and V,(x,A,,A,) is not
axisymmetric. However, if vectors A; and A, are orthog-
onal and have equal lengths A = |A,| = |A,| then using
identity (5.2) of Lemma 2 we get

V, (%, ALA)+V, (X, A,,A) = -V, (x,A;,A;), (5.4)
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where A; = (A; X A,)/A, |A;| = A. Equations (5.4), (5.1)
imply that for this case the eigenfield V,,(x,A;,A,)
+ Vm(x, A,.A)) is axisymmetric with respect to the axis
generated by vector A, that is orthogonal to both vectors
A, and A,.

6 Eigenfields V (x, A, B) with any
noncollinear vectors A, B are not
axisymmetric

Fluid streamlines defined by an eigenfield V,,(x, A, B) are
trajectories of the dynamical system
dax(t)

aXU) = ¥, (x(t), A, B).

at (6.1)

Theorem 1. For any noncollinear vectors A and B vec-
tor field Vm(x, A,B) and dynamical system (6.1) are not
axisymmetric.

Proof. On the boundaries of the spherical shell (1.9)
Si: R =R, and v = v, = AR, we have H;(v;) = 0. Hence
from identity (4.7) we get viH4(vk) = —H,(v). Note that
H,(v,) # O0because if both H5(v,) = 0 and H,(v,) = O then
from identities (2.9) forn = 1and n = 0 we get H,(v;) =0
and H,(v,) = 0 that implies a2 + b* = 0. Therefore in view
of Eq. (4.5) dynamical system (6.1) at H;(v) = O takes the
form

dx 1 2
@ 2Hz(vk) (x-A)B+ (x-B)A Ri(x A)x - B)x|.
(6.2)
System (6.2) evidently has critical points
Ry
= A X B. 6.
Xee = E 0 ¢ 63)

Note that A X B # 0 because vectors A and B are non-
collinear. The critical points (6.3) are intersections of the
sphere S; with the axis

L: x(t) = r(t)(A X B). (6.4)

Substituting x = r(A X B) into formula (4.5) and using
((AxB)-A)=0and ((AXB)-B) =0 we get

V(r(A x B), A, B) = Hy(v)(A - B)r(A x B).

Therefore dynamical system (6.1) on the axis L (6.4) reduces
to equation

a0 _ (a. BH,(0(O)r(0),

at (6.5)
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where v(t) = A|r(t)||A X B|. Equation (6.5) yields that the
axis L is an invariant submanifold of system (6.1).

Equation (6.5) shows that if (A - B) = O then the axis L
consists of critical points of the system (6.1). Equation (6.5)
defines nontrivial dynamics on the line L if (A - B) # 0. In
both cases, if system (6.1) is axisymmetric then its axis of
symmetry can be only the axis L and then system (6.1) has
no isolated critical points outside of the axis L.

However, let us show that system (6.2) has another crit-
ical points which belong to the intersection of the sphere
Si with the plane P orthogonal to the axis L and have the
form

% =aA + fB. (6.6)

Equation (6.2) at a critical point X yields
(%-A)B+ (X -B)A = R%(i .A)&-B)[¢A + fB]. (6.7)
k

Since vectors A and B are linearly independent, we get
from Eq. (6.7) two equations

20(X-A)=R;, 2p(X-B)=R;. (6.8)
Using expression (6.6) we find
a®-A) = ?|AP? +af(A-B),
p(X-B) = f*B]> + af(A - B), (6.9)
R, = (%-%) = o’|A” +2a¢p(A-B) + f*[B>.  (6.10)

Substituting formulas (6.9) and (6.10) we find that each of
the two Eq. (6.8) is equivalent to equation

@’|A]” = f*B|.
Hence we get f = +a|A|/|B|. Substituting this into

Eqg. (6.10) we find

202|A
B = 208l (1A1B] £ (- B))
The bracket here is nonzero due to the Cauchy inequality
and the noncollinearity of vectors A and B. Therefore we
derive

g+ /BL__ R
~ V2IAl /|A|B| + (A-B)
pox AL R

2/B| \/|A|B| + (A-B)

Hence we find the critical points (6.6):

g R \/|_T| \/E ]
i |A||B| +(A-B) [i 2|A|Ai 2|B|B . (6.11)
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If system (6.1) were axisymmetric then the orbit S of any
critical point X under the rotations around the axis of
symmetry L would be a continuous set of critical points.
Each of the four critical points X (6.11) belong to the plane
P orthogonal to the axis of symmetry L. Hence their one-
dimensional orbits S'(X) consisting of critical points also
would belong to the plane P. However, we have demon-
strated above that the critical set of system (6.1) in the
plane P is not continuous but consists only of the four
isolated critical points X (6.11). The obtained contradic-
tion proves that the dynamical system (6.1) and eigenfield
\7," (x, A, B) are not axisymmetric if vectors A and B are non-
collinear. O

Remark 6. Forany collinear vectors Aand B, the axis L (6.4)
degenerates into one point X = 0 and therefore the above
proofis notapplicable. A recent numerical investigation [4]
proves that some systems (6.1) with noncollinear vectors
A and B possess chaotic streamlines and hence are not
integrable.

7 Topology of axisymmetric
eigenfields

The axisymmetry and incompressibility of eigenfields

V,,(x,A,A) (5.1) lead to the existence of a first integral

of the corresponding dynamical systems
dax(t)

=52 =V,,(x(6), A, A).

it (7.1)

Dynamical system (7.1) possesses a first integral

F(x) = Hy(v)(x-A)Z(x), Z(x)=(A-A)x-x)—(x-A)>
(7.2)
Indeed, differentiating function F,(x(t)) along the flow (7.1)

we find

dF,(x(1))

i = A-AX-AH;0) [(A-A)(x-x)—3(x-A)]

X [H,(v) + 5H;(v) + v*H,(v)] . (7.3)

Applying in Eq. (7.3) the identity (4.7) we obtain
dF,(x(t))/dt = 0. Therefore function F,(x) (7.2) is the first
integral of dynamical system (7.1).

The existence of the first integral F,(x) = H;(v)
(x - A)Z(x) implies that all surfaces of its constant lev-
els F,(x) = const are invariant submanifolds of dynamical
system (7.1). Inside the spherical shell Sg p all surfaces
of nonzero levels of first integral F,(x) = ¢ are compact
axisymmetric tori T?. Dynamics of the fluid streamlines
(7.1) on the tori T? is quasi-periodic. The invariant surface
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of zero level F,(x) = 0 consists of the plane (x-A) =0,
the straight line x = cA, and infinitely many spheres S2 :
R = R,, where R,, are roots of equation H;(4R,,) = 0.

The axisymmetry and incompressibility of the flow
with velocity field V(x,A) (3.1) lead to the existence of a
first integral for the fluid streamlines defined by equation

ax(t)

=2 = V(x(¢t), A).

dt (7.4)

Dynamical system (7.4) has first integral

F,(x) = H,(v)Z(x), Zx)=(A-A)x-x)—(x-A)7 (7.5

Indeed, differentiating function F, (x(t)) along the flow (7.4)
we get equation

d%’ﬂ = —2A(x- A, (0)(A - A)

X [Hy(v) + 3H,(v) + v*H; ()], (7.6)

where we used equation A*(x - X) = v Applying to the
last formula the identity (3.4) we get from Eq. (7.6)
dF,(x(t))/dt = 0. Hence function F;(x) (7.5) is a first inte-
gral of system (7.4).

The existence of the first integral F,(x) (7.5) yields that
all surfaces of its constant level F,(x) = const are invari-
ant submanifolds of the system (7.4). Inside the spherical
shell Sg p all nonzero levels of first integral F;(x) = c are
axisymmetric tori T2. Dynamics of the fluid streamlines
(7.4) on the tori TCZ is quasi-periodic. The surface of zero
level F,(x) = H,(AR)Z(x) = O consists of the straight line
X = cA and infinitely many spheres Si: R = R, satisfying
equation H,(4R;) = 0.

Remark 7. Topology of the axisymmetric fluid flows
V,.(x,A,A) and that of V,(x,A) are completely different.
Indeed, invariant tori TCZ for V,,(x, A, A) belong either to the
half space (x - A) > 0 or to the half space (x - A) < 0 and
there is invariant plane (x - A) = 0. For fluid flow V,(x, A)
each invariant torus T2 belongs to the both sides of any
plane (x - C) = 0 where C is an arbitrary constant vector.

8 Summary

We have studied the boundary eigenvalue problem for vec-
tor fields V(x) satisfying the Beltrami equation curl V(x)
= AV(x) inside a spherical shell Sy » : R, < 1/X] + X3 + X3
< R, with nonpenetration boundary conditions x - V(x)
= O on the spheresR = R, and R = R;. We have introduced
the scale invariance (1.12) of the eigenvalue problem and
have defined the dimensionless parameters x = A(R, — R,)
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and u = RR,/(R, — R,)*>. We have shown that eigenvalues
A are connected with parameters x, u by equation

A= 7””2;1“;@ 8.1)

1

where radius R, is arbitrary due to the scale invari-

ance. Radius R, =R,(v/4u+1-1)/(/4u+1+1). We

have derived equations

tan(x) = ﬁ, (8.2)
tan(x) = X+ /3 (8.3)

T4+ (u—Dx2/3+ u?x4/9
for the dimensionless parameters x, u. For any u > 0 the
roots x,, of Eq. (8.2) define by formula (8.1) eigenvalues
A,. Any root X,, of Eq. (8.3) specifies eigenvalue 4, by for-
mula (8.1). Using Egs. (8.2) and (8.3) we have obtained
asymptotics of eigenvalues 4,, Zm atR, — R, (that is equiv-
alent to y — oo0) and at n, m — oo and have proved that the
eigenvalues A, and 4,, are not equal for any n and m.

We have derived in elementary functions the corre-
sponding to A, 3D linear space of eigenfields V,(x, A) and
the corresponding to :lm 5D linear space of eigenfields
V,,(x, A, B) where A and B are arbitrary constant vectors
in R3. We have proved that eigenfields Vm(x, A, B) with
noncollinear vectors A and B are not axisymmetric and
eigenfields Vm(x, A, A) are axisymmetric. The topologies
of fluid flows V,(x,A), V,,(x,A,A), and V,,(x, A, B) with
A X B # 0 are completely different.

The constructed eigenfields V,(x,A) and V,,(x, A, B)
define the incompressible fluid and plasma equilibria in
the shell Sg  and also time-dependent flows (1.6) and
(1.7) of viscous magnetic fluid in the shell.
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