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Abstract: Exact flows of an incompressible fluid satisfying
the Beltrami equation inside a spherical shell are con-
structed in the Cartesian coordinates in terms of elemen-
tary functions. Two scale-invariant equations defining two
infinite series of eigenvalues 𝜆n and 𝜆̃m of the operator curl
in the shell with the nonpenetration boundary conditions
on the boundary spheres are derived. The corresponding
eigenfields are presented in explicit form and their sym-
metries are investigated. Asymptotics of the eigenvalues
𝜆n and 𝜆̃m at n,m →∞ are obtained.

Keywords: Beltrami equation; eigenvalues; Helmholtz
equation; scale invariance; spectral problems; topology of
eigenfields.

1 Introduction
As known [1], Beltrami equation has many applications to
problems of plasma physics and fluid dynamics. Equations
of viscous incompressible magnetohydrodynamics have
the form [2]

𝜕V
𝜕t
+ curl V × V = − grad

(
p
𝜌
+ 1

2
|V|2 +Φ)

+ 1
𝜌

curl B × B + 𝜈(t)ΔV, (1.1)

𝜕B
𝜕t
= curl(V × B)+ 𝜂(t)ΔB, div V = 0, div B = 0.

Here, V(x, t) is fluid velocity, B(x, t) is magnetic field, p(x, t)
is the pressure, Φ(x) is the gravitational potential, 𝜌 is
constant fluid density, 𝜈(t) is viscosity coefficient, 𝜂(t) is
magnetic viscosity, andΔ is the Laplace operator.

Equation (1.1) for V(x, t) = 0 reduce to

curl B × B = grad (p+ 𝜌Φ) , 𝜕B
𝜕t
= 0, div B = 0.

(1.2)
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Equation (1.2) describes plasma equilibria and is
equivalent to the generalized Beltrami equation [3]:

curl (curl B × B) = 0. (1.3)

The force-free plasma equilibria are defined by condition
p(x, t)+Φ(x) = const and are equivalent to the Beltrami
equation curl B = 𝜆B, where𝜆 = const in view of equation
div B = 0.

If magnetic field B = 0 and viscosity 𝜈(t) = 0, Eq. (1.1)
becomes Euler equations for ideal incompressible fluid:

𝜕V
𝜕t
+ curl V × V = − grad

(
p
𝜌
+ 1

2
|V|2 +Φ) , div V = 0.

For the steady case and with the additional condition
p∕𝜌+ |V|2∕2+Φ = const, the Euler equations reduce to
the Beltrami equation

curl V(x) = 𝜆V(x). (1.4)

Equation (1.4) implies 𝜆 = const in view of div V(x) = 0.
Beltrami Eq. (1.4) evidently is invariant with respect to the
scale transformations

x1 → cx1, x2 → cx2, x3 → cx3, 𝜆→
1
c
𝜆, (1.5)

where c ≠ 0 is an arbitrary parameter.
In case of collinear vector fields V(x, t) and B(x, t),

Eq. (1.1) with nonzero viscosities 𝜈(t) ≠ 0, 𝜂(t) ≠ 0 have
the following solutions [4]:

V(x, t) = exp
⎛⎜⎜⎝−𝜆

2

t

∫
t0

𝜈(𝜏)d𝜏
⎞⎟⎟⎠V1(x), (1.6)

B(x, t) = C1 exp
⎛⎜⎜⎝−𝜆

2

t

∫
t0

𝜂(𝜏)d𝜏
⎞⎟⎟⎠V1(x), (1.7)

where V1(x) is any solution to the Beltrami Eq. (1.4) and
pressure p is defined from equation p∕𝜌+ |V|2∕2+Φ
= const.

If B(x, t) = 0 then Eq. (1.1) reduce to the Navier–Stokes
equations

𝜕V
𝜕t
+ curl V × V = − grad

(
p
𝜌
+ 1

2
|V|2 +Φ) + 𝜈(t)ΔV,

div V = 0, (1.8)

that have exact solutions (1.6) [4].
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In this paper, we construct two infinite series of exact
Beltrami flows satisfying Eq. (1.4) inside the spherical
shells

SR2R1
: R2 ≤ R ≤ R1, R =

√
x2

1 + x2
2 + x2

3. (1.9)

We assume that on the two boundary spheres 𝕊2
1: R = R1

and 𝕊2
2: R = R2 the nonpenetration boundary condition

n(x) ⋅ V(x) = 0 is satisfied. Here, n(x) is vector field of unit
normals to the boundary. Since for the spheres 𝕊2

k we have
n(x) = x∕|x| the boundary conditions have the equivalent
form

x ⋅ Vn(x) = 0 (1.10)

for x ∈ 𝕊2
k, k = 1, 2. The same solutions with magnetic field

B(x) instead of velocity V(x) describe the force-free mag-
netic fields inside a spherical shell (1.9). All constructed
exact solutions define by formulas (1.6) and (1.7) exact
flows of viscous magnetic fluid inside the spherical shell
SR2R1

(1.9) with the nonpenetration conditions (1.10).
The main problem consists of finding the eigenvalues

𝜆n of the operator curl and its eigenfields Vn(x) that satisfy
Eq. (1.4) inside the spherical shell and the nonpenetration
condition (1.10) at its two boundaries. Cantarella, DeTurck,
Gluck, and Teytel studied in paper [5] vector fields V that
“satisfy the equation∇ × V = 𝜆V, where 𝜆 is the eigenvalue
of curl having smallest nonzero absolute value among such
fields. It is shown that on the ball the energy minimizers are
axially symmetric spheromak fields found by Woltjer and
Chandrasekhar-Kendall, and on spherical shells they are
spheromak-like fields” [5], p. 2766. The authors used the
spherical coordinate r, 𝜃, 𝜑 in ℝ3 and the theory of Bessel
functions, and the Legendre and Gegenbauer functions
applied earlier by Woltjer [6] and by Chandrasekhar and
Kendall [7, 8]. The methods of papers [6–8] were used also
in the works [1, 9–12] where the eigenvalue problem (1.4),
(1.10) was studied in spherical coordinates in the ball using
the Bessell functions.

Cantarella, DeTurck, Gluck, and Teytel presented in
Table 1 of paper [5] results of their calculations (using
Bessel’s functions) of the minimal eigenvalues 𝜆(1)

1 for
different values of R1 and R2.

In this paper, we calculate for the first time in the liter-
ature the products of the correspondent numbers 𝜆(1)

1 and
R1 − R2 from Table 1 of [5]. The results of our calculations
are presented in the right column of Figure 1.

Reading the right column of Figure 1 down from the
top to the bottom we see that numbers x1 = 𝜆(1)

1 (R1 − R2)
monotonously decrease and tend to the number of 𝜋
= 3.1415926535…. Therefore our calculations prove that
the dimensionless eigenvalues x1 = 𝜆(1)

1 (R1 − R2) converge

to the number of 𝜋 when (R1 − R2) → 0 (hence the dimen-
sionless parameter 𝜇 = R1R2∕(R1 − R2) →∞). As a conse-
quence of this we get the asymptotics

𝜆
(1)
1 ≈ 𝜋

R1 − R2
, as 𝜇→∞. (1.11)

This result is the first appearance of the scale invariance
of the spectral problem (1.4), (1.10). In Section 3, we prove
asymptotics (1.11) more rigorously.

Note that for R1 = 10 and R2 = 9.996665555, the cor-
responding value of parameter 𝜇 is 𝜇 = 8996999.5. For
R1 = 100 and R2 = 99.99996667 (in the bottom line of
Figure 1), the value of 𝜇 is enormous: 𝜇 = 9001797 × 106.

Due to the scale invariance (1.5) of the Beltrami
Eq. (1.4) the eigenvalue problem (1.4), (1.10) is invariant
with respect to the scale transformations

R1 → cR1, R2 → cR2, 𝜆→
1
c
𝜆, (1.12)

where c > 0 is an arbitrary parameter. We define the dimen-
sionless parameters

x = 𝜆(R1 − R2) > 0, 𝜇 = R1R2
(R1 − R2)2 > 0, (1.13)

that are invariant under the group of scaling transforma-
tions (1.12). We will call parameter x the dimensionless
eigenvalue.

We construct in this paper two infinite series of
eigenvalues 𝜆n and 𝜆̃m and the corresponding eigenfields
Vn(x,A) and Ṽm(x,A,B) which depend on arbitrary con-
stant vectors A,B ∈ ℝ3. Each eigenvalue 𝜆n has multiplic-
ity 3 and each eigenvalue 𝜆̃m has multiplicity 5. We study
the eigenvalue problem (1.4), (1.10) in an arbitrary shell
SR2R1

(1.9) and use only Cartesian coordinates x1, x2, x3 and
elementary functions of them. In Section 3, we derive the
first series of eigenvalues 𝜆n = xn∕(R1 − R2) where xn are
roots of equation

tan(x) = x
1 + 𝜇x2 . (1.14)

In Section 3, we show that any root xn of Eq. (1.14) defines
the eigenvalue 𝜆n:

𝜆n =
√

4𝜇 + 1 + 1
2R1

xn (1.15)

of the spectral problem (1.4) and (1.10). Here, radius R1 is
arbitrary due to the scale invariance (1.12). Radius R2 is
connected with R1 by relation

R2 =
√

4𝜇 + 1 − 1√
4𝜇 + 1 + 1

R1. (1.16)
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Figure 1: Calculation of dimensionless
eigenvalues x1.

In Section 4, we derive the second series of eigenvalues
𝜆̃m = x̃m∕(R1 − R2) where x̃m are the roots of equation

tan(x) = x + 𝜇x3∕3
1+ (𝜇 − 1)x2∕3 + 𝜇2x4∕9

. (1.17)

We prove that any root x̃m of Eq. (1.17) defines the eigen-
value 𝜆̃m:

𝜆̃m =
√

4𝜇 + 1 + 1
2R1

x̃m, (1.18)

where radius R1 is arbitrary in accordance with the scale
invariance (1.12) and radius R2 is defined by Eq. (1.16).

Remark 1. Cantarella, DeTurck, Gluck, and Teytel wrote on
p. 2767 of [5]:

“Theorem B. For the spherical shell B3(a,b) of inner radius a
and outer radius b, the eigenvalue of curl having least absolute
value is 𝜆(1)

1 , where 𝜆(1)
1 is the smallest of the infinite sequence of

positive numbers xk that satisfy
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J3∕2(ax)Y3∕2(bx)− J3∕2(bx)Y3∕2(ax) = 0.′′

Thus the eigenvalues 𝜆(1)
1 are defined in paper [5] by this

equation in terms of Bessel’s functions. The scale invari-
ance (1.12) and the dimensionless Eqs. (1.14) and (1.17) were
not derived in paper [5].

Let us prove that for any given radii R1 and R2 no one
eigenvalue 𝜆n coincides with an eigenvalue 𝜆̃m. Indeed, let
𝜆 be the common value of 𝜆n = 𝜆̃m. Then the dimension-
less eigenvalue x = 𝜆(R1 − R2) satisfies both Eqs (1.14) and
(1.17). Subtracting Eqs (1.14) and (1.17) and reducing to the
common denominator we arrive at equation

2𝜇2x2 + 9𝜇 + 3 = 0 (1.19)

that has no real solutions. Hence there are no real numbers
x satisfying to both Eqs (1.14) and (1.17). Therefore for any
R1 and R2 the eigenvalues 𝜆n and 𝜆̃m are not equal for any
n and m.

In Section 3, we prove that all eigenvalues 𝜆k for
R2 → R1 have the following asymptotics

𝜆k ≈
k𝜋

R1 − R2
, as 𝜇→∞.

This asymptotics for k = 1 reduces to the special asymp-
totics (1.11). Equation (1.14) with arbitrary values of param-
eter 𝜇 > 0 (that means for arbitrary R1 and R2) yields the
following asymptotics for eigenvalues 𝜆n:

𝜆n ≈
n𝜋

R1 − R2
, as n →∞.

In Section 4, we prove the following asymptotics for
the eigenvalues 𝜆̃m:

𝜆̃k ≈
k𝜋

R1 − R2
as 𝜇→∞,

𝜆̃m ≈
m𝜋

R1 − R2
as m →∞.

In Section 3, we present the three-dimensional (3D)
space of eigenfields Vn(x,A) in explicit form that yields
that any linear combination of the axisymmetric eigen-
fields Vn(x,A) with arbitrary axes of symmetry is again
axisymmetric.

We present in Section 5 in an explicit form the linear
five-dimensional (5D) space of eigenfields Ṽm(x,A,B) and
prove in Section 6 that the eigenfields Ṽm(x,A,B) with non-
collinear constant vectors A,B are not axisymmetric. The
corresponding dynamical systems dx∕dt = Ṽm(x,A,B) do
not have first integrals. A recent numerical investigation
[4] proves that some of these systems possess chaotic
streamlines and therefore are not integrable.

The special eigenfields 𝜅Ṽm(x,A,A) with B = 𝜅A are
axisymmetric. The general linear combinations of the
axisymmetric eigenfields Ṽm(x,Ak,Ak) are not axisymmet-
ric. In Section 7, we demonstrate that topologies of the
axisymmetric fluid flows Ṽm(x,A,A) and Vn(x,A) are com-
pletely different. All eigenfields Ṽm(x,A,B) are presented
in explicit form in terms of elementary functions of the
Cartesian coordinates x1, x2, x3.

2 Functions Hn(𝝀R) and their
properties

Using the method of Chandrasekhar and Kendall [8], we
study vector fields

V(x) = curl U(x)+ 1
𝜆

curl curl U(x),

where U(x) satisfies the vector Helmholtz equation

ΔU(x) = −𝜆2U(x). (2.1)

In view of the identity curl curl U(x) = grad(div U(x))
−ΔU(x) and Eq. (2.1), we get

V(x) = curl U(x)+ 𝜆U(x)+ 1
𝜆

grad(div U(x)). (2.2)

Applying to V(x) the operator curl and using the iden-
tity curl(grad F(x)) = 0 we find that vector field V(x) (2.2)
satisfies the Beltrami Eq. (1.4).

We consider vector field U(x) (2.1) of the form
U(x) = H1(𝜆R)A, where A is an arbitrary vector and func-
tion H1(𝜆R) satisfies the spherically symmetric Helmholtz
equation

Δu = d2u(R)
dR2 + 2

R
du(R)

dR
= −𝜆2u(R), (2.3)

variable R is the spherical radius R =
√

x2
1 + x2

2 + x2
3. All

solutions to the Helmholtz Eq. (2.3) have the form

H1(𝜆R) = H1(𝑣) = a sin(𝑣)
𝑣

+ b cos(𝑣)
𝑣

,

H1(𝑣) = 1
𝑣

dH0(𝑣)
d𝑣

, (2.4)

where 𝑣 = 𝜆R, and a, b are arbitrary constants.1 Here,
function H0(𝑣) is

H0(𝜆R) = H0(𝑣) = −a cos 𝑣 + b sin 𝑣. (2.5)

1 Applications of the exact solution (sin R)∕R to the atomic bomb
physics were presented by Heisenberg in his lecture [15], see pp.
195–196.
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In this paper, we will use elementary functions

H2(𝑣) = 1
𝑣

dH1(𝑣)
d𝑣

= a
𝑣2

[
cos 𝑣− sin 𝑣

𝑣

]

− b
𝑣2

[
sin 𝑣+ cos 𝑣

𝑣

]
, (2.6)

H3(𝑣) = 1
𝑣

dH2(𝑣)
d𝑣

= a
𝑣4

[
(3 − 𝑣2) sin 𝑣

𝑣
− 3 cos 𝑣

]
+ b
𝑣4

[
3 sin 𝑣+ (3 − 𝑣2) cos 𝑣

𝑣

]
, (2.7)

H4(𝑣) = 1
𝑣

dH3(𝑣)
d𝑣

= a
𝑣6

[
(6𝑣2 − 15) sin 𝑣

𝑣
− (𝑣2 − 15) cos 𝑣

]

+ b
𝑣6

[
(𝑣2 − 15) sin 𝑣 + (6𝑣2 − 15) cos 𝑣

𝑣

]
.

Let us define by induction the functions

Hn+1(𝑣) = 1
𝑣

dHn(𝑣)
d𝑣

. (2.8)

Lemma 1. Functions H0(𝑣),H1(𝑣),… ,Hn(𝑣),… with arbi-
trary constants a and b satisfy an infinite series of identities

Hn(𝑣)+ (2n+ 1)Hn+1(𝑣)+ 𝑣2Hn+2(𝑣) = 0. (2.9)

Proof. It is easy to verify using formulas (2.4), (2.5), and
(2.6) the identity (2.9) for n = 0:

H0(𝑣)+ H1(𝑣)+ 𝑣2H2(𝑣) = 0.

Assume that identity (2.9) is true for an integer n ≥ 0 and
apply to it the operator𝑣−1d∕d𝑣. Then using the definitions
(2.8) we get

Hn+1(𝑣)+ (2n+ 1)Hn+2(𝑣)+ 2Hn+2(𝑣)+ 𝑣2Hn+3(𝑣) = 0,

that is the identity (2.9) for n+ 1. Hence identities (2.9) are
proven by induction for all n ≥ 0. □

We apply identity (2.9) for n = 1 and n = 2 in
Sections 3, 4, 5, and 7 of this paper.

3 The first series of eigenvalues 𝝀n
and axisymmetric eigenfields
Vn(x, A)

Substituting formula U(x) = H1(𝑣)A into Eq. (2.2) we derive

V(x,A) = grad H1(𝑣) × A+ 𝜆H1(𝑣)A

+ 1
𝜆

grad
[
grad H1(𝑣) ⋅ A

]
= 𝜆2 1

𝑣

dH1(𝑣)
d𝑣

x × A+ 𝜆
[

H1(𝑣)+ 1
𝑣

dH1(𝑣)
d𝑣

]
A

+ 𝜆3 1
𝑣

d
d𝑣

(
1
𝑣

dH1(𝑣)
d𝑣

)
(x ⋅ A)x. (3.1)

Remark 2. Vector field (3.1) evidently is invariant with
respect to rotations around the axis having direction A.
Vector fields (3.1) for any vector A and for 𝜆 = 1 and
H1(𝑣) = (sin R)∕R (that corresponds to b = 0) are equiva-
lent to the well-known in plasma physics spheromak exact
solution [1, 7, 13, 14].

Using formulas (2.6) and (2.7) we represent vector field
V(x,A) (3.1) in the form

V(x,A) = 𝜆2H2(𝑣)x × A+ 𝜆
[
H1(𝑣)+ H2(𝑣)

]
A

+ 𝜆3H3(𝑣)(x ⋅ A)x. (3.2)

Hence we get

x ⋅ V(x,A)

= 𝜆
[
H1(𝑣)+ H2(𝑣)

]
(x ⋅ A)+ 𝜆3H3(𝑣)(x ⋅ x)(x ⋅ A)

= 𝜆
[
H1(𝑣)+ H2(𝑣)+ 𝑣2H3(𝑣)

]
(x ⋅ A), (3.3)

where we put 𝜆2(x ⋅ x) = 𝜆2R2 = 𝑣2. Identity (2.9) for n = 1
has the form

H1(𝑣)+ 3H2(𝑣)+ 𝑣2H3(𝑣) = 0. (3.4)

In view of identity (3.4), Eq. (3.3) becomes

x ⋅ V(x,A) = −2𝜆H2(𝑣)(x ⋅ A). (3.5)

Therefore the two nonpenetration boundary conditions
(1.10) are satisfied for the fluid flow V(x,A) (3.2) if and
only if

H2(𝑣1) = 0, H2(𝑣2) = 0, 𝑣1 = 𝜆R1, 𝑣2 = 𝜆R2. (3.6)

Multiplying Eq. (2.6) with 𝑣2∕(a cos𝑣) we find

𝑣2

a cos 𝑣
H2(𝑣) = 1− tan 𝑣

𝑣
− b

a

( 1
𝑣
+ tan 𝑣

)
.

Hence equation H2(𝑣) = 0 takes the form

b
a
= 𝑣− tan 𝑣

1 + 𝑣 tan 𝑣
. (3.7)

Therefore Eqs (3.6) and (3.7) yield

b
a
= 𝑣1 − tan 𝑣1

1 + 𝑣1 tan 𝑣1
= 𝑣2 − tan 𝑣2

1+ 𝑣2 tan 𝑣2
. (3.8)
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The second equality implies

𝑣1 + 𝑣1𝑣2 tan 𝑣2 − tan 𝑣1 − 𝑣2 tan 𝑣1 tan 𝑣2

= 𝑣2 + 𝑣1𝑣2 tan 𝑣1 − tan 𝑣2 − 𝑣1 tan 𝑣1 tan 𝑣2.

Collecting the similar terms we get

(𝑣1 − 𝑣2)(1 + tan 𝑣1 tan 𝑣2)

= (1 + 𝑣1𝑣2)(tan 𝑣1 − tan 𝑣2).

Hence we find
tan 𝑣1 − tan 𝑣2

1 + tan 𝑣1 tan 𝑣2
= 𝑣1 − 𝑣2

1 + 𝑣1𝑣2
. (3.9)

Substituting𝑣1 = 𝜆R1 and𝑣2 = 𝜆R2 into Eq. (3.9) and using
the trigonometric identity

tan 𝛼 − tan 𝛽
1 + tan 𝛼 tan 𝛽

= tan(𝛼 − 𝛽) (3.10)

we get from Eq. (3.9) the equation for the eigenvalues 𝜆:

tan
[
𝜆(R1 − R2)

]
= 𝜆(R1 − R2)

1 + 𝜆2R1R2
. (3.11)

Substituting 𝑣1 = 𝜆R1 and 𝑣2 = 𝜆R2 into Eq. (3.8) we get

b
a
= 𝜆R1 − tan(𝜆R1)

1 + 𝜆R1 tan(𝜆R1)
= 𝜆R2 − tan(𝜆R2)

1 + 𝜆R2 tan(𝜆R2)
. (3.12)

Hence function H1(𝜆R) (2.4) has the form

H1(𝜆R) = a
(

sin(𝜆R)
𝜆R

+ 𝜆R1 − tan(𝜆R1)
1+ 𝜆R1 tan (𝜆R1

cos(𝜆R)
𝜆R

)
,

(3.13)
where a is an arbitrary parameter.

Let us express the dimensionless quantities 𝜆R1 and
𝜆R2 in terms of variables (1.13). We have

𝜆R1 = 𝛼1x, 𝛼1 =
R1

R1 − R2
,

𝜆R2 = 𝛼2x, 𝛼2 =
R2

R1 − R2
.

(3.14)

Evidently 𝛼1 − 𝛼2 = 1 and 𝛼1𝛼2 = 𝜇. Hence 𝛼1 satisfies
equation 𝛼2

1 − 𝛼1 − 𝜇 = 0. Therefore by Vieta formula we
find

𝛼1 =
1
2

(√
4𝜇 + 1 + 1

)
, 𝛼2 =

1
2

(√
4𝜇 + 1− 1

)
. (3.15)

Equations (3.14) and (3.15) yield

𝜆 = 𝛼1x
R1

=
√

4𝜇 + 1+ 1
2R1

x. (3.16)

Another consequence of Eqs (3.14) and (3.15) is

𝜆R1 =
x
2

(√
4𝜇 + 1 + 1

)
, 𝜆R2 =

x
2

(√
4𝜇 + 1− 1

)
.

(3.17)

Substituting formulas (3.17) into Eq. (3.13) we get

H1(𝜆R) = a
[

sin(𝜆R)
𝜆R

+ 𝛼1x − tan(𝛼1x)
1 + 𝛼1x tan(𝛼1x)

cos(𝜆R)
𝜆R

]
.

(3.18)
Equation (3.11) evidently is invariant with respect to the
group of scale transformations (1.12). In the dimensionless
variables x = 𝜆(R1 − R2) and 𝜇 = R1R2∕(R1 − R2)2 (1.13)
Eq. (3.11) takes the form

tan(x) = x
1 + 𝜇x2 . (3.19)

Any root xn of Eq. (3.19) defines the eigenvalue𝜆n according
to formula (3.16):

𝜆n =
√

4𝜇 + 1 + 1
2R1

xn. (3.20)

Here, radius R1 is arbitrary in accordance with the scale
invariance (1.12). Equation (3.17) implies that radius R2 is
connected with R1 by relation

R2 =
√

4𝜇 + 1 − 1√
4𝜇 + 1 + 1

R1. (3.21)

Formula (3.21) agrees with the definition (1.13) of parameter
𝜇 = R1R2∕(R1 − R2)2.

Since function tan(x) is 𝜋-periodic and tan(x) → ±∞
as x → (n± 1∕2)𝜋 we see that Eq. (3.19) for any constant
𝜇 > 0 has infinitely many roots xn that satisfy the inequal-
ities n𝜋 < xn < n+ 1∕2)𝜋. The maximal value of func-
tion f (x) = x∕(1 + 𝜇x2) is 1∕(2

√
𝜇) that is attained at x∗ =

1∕
√
𝜇. Therefore at 𝜇 ≫ 1 function f (x) ≤ 1∕(2

√
𝜇) ≪ 1

for all x. Hence solutions xk of Eq. (3.19) are close to the
roots of function tan(x) that means to k𝜋. Hence we get the
asymptotics at 𝜇 ≫ 1 or at R2 → R1:

𝜆k ≈
k𝜋

R1 − R2
, as R2 → R1. (3.22)

Since the right hand side of Eq. (3.19) tends to zero as
x →∞we get that Eq. (3.19) with arbitrary value of param-
eter𝜇 > 0 yields the following asymptotics for eigenvalues
𝜆n as n →∞:

𝜆n ≈
n𝜋

R1 − R2
. (3.23)

Example 1. Let R1∕R2 = 10. Then parameter 𝜇 = 10∕81
= 0.1234568. For any root xk to Eq. (3.19) the correspond-
ing eigenvalue 𝜆k = xk∕(R1 − R2) = xk∕(9R2). The first five
roots of Eq. (3.19) are:

x1 = 4.070059, x2 = 7.061906, x3 = 10.065190,

x4 = 13.099750, x5 = 16.160470. (3.24)
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Example 2. Let R1∕R2 = 2. Then parameter 𝜇 = 2 and any
root xk to Eq. (3.19) defines an eigenvalue 𝜆k = xk∕(R1
− R2) = xk∕R2. The first five roots to Eq. (3.19) are:

x1 = 3.286005, x2 = 6.360678, x3 = 9.477196,

x4 = 12.605920, x5 = 15.739670. (3.25)

Comparing these sequences with the sequence of numbers
zk = k𝜋:

z1 = 3.141593, z2 = 6.283185, z3 = 9.424778,

z4 = 12.56637, z5 = 15.70796, (3.26)

we observe that the roots xk (3.25) corresponding to 𝜇2 = 2
tend to the sequence zk = k𝜋 faster than the roots (3.24)
corresponding to 𝜇1 = 0.1234568.

Let xn be a root of Eq. (3.19). Substituting x = xn into
formula (3.18) we obtain function

H1.n(𝜆nR)

= a
[

sin(𝜆nR)
𝜆nR

+ 𝛼1xn − tan(𝛼1xn)
1+ 𝛼1xn tan(𝛼1xn)

cos(𝜆nR)
𝜆nR

]
, (3.27)

corresponding to the eigenvalue 𝜆n = xn∕(R1 − R2). Vec-
tor field Vn(x,A) (3.1) and (3.2) corresponding to function
H1.n(𝜆nR) (3.27) satisfies the Beltrami Eq. (1.4) with 𝜆 = 𝜆n
and the two nonpenetration boundary conditions (1.10).
Therefore it is one of the corresponding eigenfields.

Remark 3. Any linear combination of eigenfields Vn (x,Ak)
(3.2) depending on arbitrary vectors Ak has the form

N∑
k=1

ckVn (x,Ak) = Vn

(
x,

N∑
k=1

ckAk

)
, (3.28)

due to the linearity of formula (3.2) with respect to vector
A. Hence an arbitrary linear combination (3.28) is another
Beltrami vector field (3.2). Therefore for any eigenvalue
𝜆n the linear space of the corresponding eigenfields (3.2)
has dimension 3. Hence each eigenvalue𝜆n = xn∕(R1 − R2)
where xn is a root of Eq. (3.19) has multiplicity 3.

In view of formula (3.2), the eigenfield (3.28) is invari-
ant under rotations around vector

∑N
k=1ckAk. Formula

(3.28) provides an explanation why any linear combination
of the axisymmetric eigenfields Vn (x,Ak) is also axisym-
metric. For the second series of eigenfields in Section 4,
this is not so.

4 The second series of eigenvalues
𝝀̃m and eigenfields Ṽm(x,A,B)

For any 𝜆 vector field V(x,A) (3.1), (3.2) satisfies Beltrami
Eq. (1.4). Hence its derivative∇BV(x,A) in direction of any
vector B also satisfies Eq. (1.4). By definition we have

∇BV(x,A) =
3∑

i=1

𝜕V(x,A)
𝜕xi

Bi. (4.1)

For functions Hk(𝑣) we find using the equality 𝑣 = 𝜆R and
definition (2.8):

∇BHk(𝑣) =
3∑

i=1

dHk(𝑣)
d𝑣

𝜕𝑣

𝜕xi
Bi =

dHk(𝑣)
d𝑣

𝜆

R
(x ⋅ B)

= 𝜆2

𝑣

dHk(𝑣)
d𝑣

(x ⋅ B) = 𝜆2Hk+1(𝑣)(x ⋅ B).

(4.2)

Applying formulas (4.1) and (4.2) to vector field (3.2) we
find

∇BV(x,A) = 𝜆2H2(𝑣)B × A+ 𝜆4H3(𝑣)(x ⋅ B)x × A

+ 𝜆3 [H2(𝑣)+ H3(𝑣)
]

(x ⋅ B)A

+ 𝜆5H4(𝑣)(x ⋅ A)(x ⋅ B)x

+ 𝜆3H3(𝑣)
[
(A ⋅ B)x + (x ⋅ A)B

]
. (4.3)

Permuting here vectors A and B we get vector field

∇AV(x,B) = 𝜆2H2(𝑣)A × B + 𝜆4H3(𝑣)(x ⋅ A)x × B

+ 𝜆3 [H2(𝑣)+ H3(𝑣)
]

(x ⋅ A)B

+ 𝜆5H4(𝑣)(x ⋅ B)(x ⋅ A)x

+ 𝜆3H3(𝑣)
[
(B ⋅ A)x + (x ⋅ B)A

]
. (4.4)

Adding formulas (4.3) and (4.4), we get Beltrami field that
is symmetric with respect to vectors A and B:

Ṽ(x,A,B) = 1
2𝜆3

[
∇AV(x,B)+∇BV(x,A)

]
= 1

2
𝜆H3(𝑣)

[
(x ⋅ B)x × A + (x ⋅ A)x × B

]
+ 1

2
[
H2(𝑣)+ H3(𝑣)

] [
(x ⋅ A)B + (x ⋅ B)A

]
+ 𝜆2H4(𝑣)(x ⋅ A)(x ⋅ B)x

+ 1
2

H3(𝑣)
[
2(A ⋅ B)x + (x ⋅ B)A+ (x ⋅ A)B

]
.

(4.5)

Formula (4.5) and 𝜆2(x ⋅ x) = 𝜆2R2 = 𝑣2 yield

x ⋅ Ṽ(x,A,B)

=
[
H2(𝑣)+ H3(𝑣)

]
(x ⋅ A)(x ⋅ B)+ 𝑣2H4(𝑣)(x ⋅ A)(x ⋅ B)
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+ (x ⋅ x)H3(𝑣)(A ⋅ B)+ H3(𝑣)(x ⋅ A)(x ⋅ B)

= H3(𝑣)(A ⋅ B)(x ⋅ x)

+
[
H2(𝑣)+ 2H3(𝑣)+ 𝑣2H4(𝑣)

]
(x ⋅ A)(x ⋅ B). (4.6)

Identity (2.9) for n = 2 takes the form

H2(𝑣)+ 5H3(𝑣)+ 𝑣2H4(𝑣) = 0. (4.7)

Equation (4.6) in view of identity (4.7) becomes

x ⋅ Ṽ(x,A,B) = H3(𝑣)
[
(A ⋅ B)(x ⋅ x)− 3(x ⋅ A)(x ⋅ B)

]
.

(4.8)

Remark 4. Equation (4.8) implies that on each sphere
𝕊2
∗ satisfying equation R = R∗, where H3(𝑣∗) = H3(𝜆R∗)
= 0 we have x ⋅ Ṽ(x,A,B) = 0. That means vector field
Ṽ(x,A,B) is tangent to the spheres 𝕊2

∗: R = R∗. Hence
the spheres 𝕊2

∗ are invariant submanifolds for the flows
Ṽ(x,A,B) (4.5) with arbitrary vectors A and B. Therefore
the two nonpenetration boundary conditions (1.10) are
satisfied for the fluid flows Ṽ(x,A,B) (4.5) if and only if

H3(𝑣1) = 0, H3(𝑣2) = 0, 𝑣1 = 𝜆R1, 𝑣2 = 𝜆R2. (4.9)

Multiplying function H3(𝑣) (2.7) with 𝑣4∕(a cos𝑣) we get

𝑣4

a cos 𝑣
H3(𝑣)

= (3 − 𝑣2) tan 𝑣
𝑣

− 3 + b
a

(
3 tan 𝑣+ 3− 𝑣2

𝑣

)
.

Hence equation H3(𝑣) = 0 is equivalent to

b
a
= 3𝑣 − (3 − 𝑣2) tan 𝑣

3𝑣 tan 𝑣 + 3 − 𝑣2 . (4.10)

Since b∕a is const, the two nonpenetration conditions (4.9)
and Eq. (4.10) imply the equality

b
a
= 3𝑣1 − (3− 𝑣2

1) tan 𝑣1
3𝑣1 tan 𝑣1 + 3 − 𝑣2

1
=

3𝑣2 − (3 − 𝑣2
2) tan 𝑣2

3𝑣2 tan 𝑣2 + 3− 𝑣2
2
, (4.11)

where 𝑣1 = 𝜆R1 and 𝑣2 = 𝜆R2. Equation (4.11) leads to

9𝑣1𝑣2 tan 𝑣2 + 3(3− 𝑣2
2)𝑣1 − 3𝑣2(3− 𝑣2

1) tan 𝑣1 tan 𝑣2

− (3 − 𝑣2
1)(3 − 𝑣2

2) tan 𝑣1

= 9𝑣1𝑣2 tan 𝑣1 + 3(3 − 𝑣2
1)𝑣2 − 3𝑣1(3− 𝑣2

2) tan 𝑣1 tan 𝑣2

− (3 − 𝑣2
1)(3 − 𝑣2

2) tan 𝑣2.

Collecting here similar terms we find

3(𝑣1 − 𝑣2)(3 + 𝑣1𝑣2)
[
1+ tan 𝑣1 tan 𝑣2

]
=
[
9𝑣1𝑣2 + (3− 𝑣2

1)(3 − 𝑣2
2)
]

(tan 𝑣1 − tan 𝑣2).

This equation evidently implies

tan 𝑣1 − tan 𝑣2
1 + tan 𝑣1 tan 𝑣2

= 3(𝑣1 − 𝑣2)(3 + 𝑣1𝑣2)
9𝑣1𝑣2 + (3− 𝑣2

1)(3 − 𝑣2
2)
.

Applying here the trigonometric identity (3.10) and substi-
tuting 𝑣1 = 𝜆R1 and 𝑣2 = 𝜆R2 we get the equation for the
eigenvalues 𝜆:

tan
[
𝜆(R1 − R2)

]
= 3𝜆(R1 − R2)(3 + 𝜆2R1R2)

9𝜆2R1R2 + 9− 3𝜆2(R2
1 + R2

2)+ 𝜆4R2
1R2

2
. (4.12)

Equation (4.12) evidently is invariant with respect to
the scale transformations (1.12). Using formulas (3.17) it is
easy to verify that in the dimensionless variables x, 𝜇 (1.13)
Eq. (4.12) takes the form

tan(x) = x + 𝜇x3∕3
1+ (𝜇 − 1)x2∕3 + 𝜇2x4∕9

. (4.13)

Due to Eq. (3.16), any root x̃m of Eq. (4.13) defines the
eigenvalue 𝜆̃m:

𝜆̃m =
𝛼1x̃m

R1
=
√

4𝜇 + 1 + 1
2R1

x̃m. (4.14)

Here, radius R1 is arbitrary in agreement with the scale
invariance (1.12). For any fixed 𝜇 (1.13) radius R2 is con-
nected with R1 by Eq. (1.16).

Example 3. Let R1∕R2 = (3 +
√

5)∕2 = 2.618034. Then 𝜇

= 1 and any root x̃m to Eq. (4.13) defines an eigenvalue 𝜆̃m
= x̃m∕(R1 − R2) = 2x̃m∕[(1 +

√
5)R2] = x̃m∕(1.618034R2).

The first five roots to Eq. (4.13) with 𝜇 = 1 are:

x̃1 = 3.871221, x̃2 = 6.725464, x̃3 = 9.732386,

x̃4 = 12.800570, x̃5 = 15.896620. (4.15)

It is evident that sequence (4.15) is an approximation of
sequence zk = k𝜋 (3.26).

Since tan(x) is periodic with period 𝜋, tan(k𝜋) = 0
and tan(x) → ±∞ as x → (k ± 1∕2)𝜋 we get that Eq. (4.13)
has infinitely many roots. The function f 2(x) in the right
hand side of Eq. (4.13) tends to zero when either 𝜇→∞
(that means R2 → R1) or when x →∞. Hence we get the
asymptotics

𝜆̃k ≈
k𝜋

R1 − R2
as R2 → R1,

𝜆̃m ≈
m𝜋

R1 − R2
as m →∞. (4.16)
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Let 𝜆̃m be a root of Eq. (4.12). Then from Eq. (4.14), we get
𝜆̃mR1 = 𝛼1x̃m where x̃m satisfies Eq. (4.13) Substituting 𝑣1
= 𝜆̃mR1 = 𝛼1x̃m into the first Eq. (4.11) we find the constant

b
a
= 3𝛼1x̃m − (3 − (𝛼1x̃m)2) tan(𝛼1x̃m)

3𝛼1x̃m tan(𝛼1x̃m)+ 3 − (𝛼1x̃m)2 . (4.17)

Therefore the corresponding function H1(𝜆R) (2.4) takes
the form

H1.m(𝑣)

= a

⎡⎢⎢⎢⎢⎣
sin(𝑣)
𝑣

+

⎛⎜⎜⎜⎜⎝

3𝛼1x̃m − (3 − (𝛼1x̃m)2)
tan(𝛼1x̃m)

3𝛼1x̃m tan(𝛼1x̃m)
+ 3− (𝛼1x̃m)2

⎞⎟⎟⎟⎟⎠
cos(𝑣)
𝑣

⎤⎥⎥⎥⎥⎦
,

(4.18)

where a is an arbitrary constant. Vector fields Ṽm(x,A,B)
(4.5) with 𝜆 = 𝜆̃m and constant b∕a (4.17) and correspond-
ing to the function H1.m(𝑣) (4.18) satisfy the Beltrami
Eq. (1.4) with 𝜆 = 𝜆̃m in the spherical shell SR2R1

(1.9) and
the two nonpenetration boundary conditions (1.10) on the
spheres R = R1 and R = R2.

Vector fields Ṽ(x,A,B) (4.5) are bilinear symmet-
ric functions of vectors A and B because of equality
Ṽ(x,A,B) = Ṽ(x,B,A). Expanding vectors A and B in an
orthonormal basis ê1, ê2, and ê3 we find that any eigen-
field Ṽm(x,A,B) is a linear combination of six eigenfields
Ṽm(x, êi, ê j) = Ṽm(x, ê j, êi). However, in view of identity
(5.1) proved in Section 5 below only five of these eigenfields
are linearly independent. Therefore for any eigenvalue 𝜆̃m
the space of eigenfields Ṽm(x,A,B) has dimension 5. Hence
the multiplicity of each eigenvalue 𝜆̃m is equal to 5.

5 An identity for axisymmetric
eigenfields

Vector field Ṽ(x,A,A) (4.5) with B = A has the form

Ṽ(x,A,A) = 𝜆H3(𝑣)
[
(x ⋅ A)x × A

]
+ 𝜆2H4(𝑣)(x ⋅ A)2x

+
[
H2(𝑣)+ H3(𝑣)

]
(x ⋅ A)A+ H3(𝑣)

[
(A ⋅ A)x + (x ⋅ A)A

]
.

(5.1)

Vector field Ṽ(x,A,A) (5.1) evidently is invariant under
rotations around the axis generated by vector A. The

corresponding fluid flow is integrable and its streamlines
belong to certain axisymmetric tori 𝕋 2, see Section 7.

Lemma 2. Let vectors A1, A2, and A3 are mutually orthogo-
nal: (Ai ⋅ A j) = 0 and i ≠ j. Then the identity holds:

1|A1|2 Ṽ(x,A1,A1)+ 1|A2|2 Ṽ(x,A2,A2)

+ 1|A3|2 Ṽ(x,A3,A3) = 0. (5.2)

Proof. Vector fields êk = Ak∕|Ak| have unit lengths
and are mutually orthogonal. Evidently we have
Ṽ(x,Ak,Ak)∕|Ak|2 = Ṽ(x, êk, êk). Vector field Ṽ(x, êk, êk)
(4.5) has the form

Ṽ(x, êk, êk) = 𝜆H3(𝑣)
[
x × ((x ⋅ êk)êk)

]
(5.3)

+
[
H2(𝑣)+ H3(𝑣)

] [
(x ⋅ êk)êk

]
+ 𝜆2H4(𝑣)(x ⋅ êk)2x+ H3(𝑣)

×
[
(êk ⋅ êk)x + (x ⋅ êk)êk

]
.

The following identities evidently hold in the basis ê1, ê2,
and ê3:

3∑
k=1

(x ⋅ êk)êk = x,
3∑

k=1
(x ⋅ êk)2 = |x|2 = R2

,

3∑
k=1

(êk ⋅ êk) = 3.

Hence using Eq. (5.3) and equation 𝜆2R2 = 𝑣2 we find

3∑
k=1

Ṽ(x, êk, êk)

= 𝜆H3(𝑣)[x × x] +
[
H2(𝑣)+ 5H3(𝑣)+ 𝑣2H4(𝑣)

]
x.

This expression vanishes due to the identity x × x = 0 and
identity (4.7). Hence we get

3∑
k=1

1|Ak|2 Ṽ(x,Ak,Ak) =
3∑

k=1
Ṽ(x, êk, êk) = 0,

that proves the identity (5.2). □

Remark 5. An arbitrary linear combination of two axisym-
metric eigenfields Ṽm(x,A1,A1) and Ṽm(x,A2,A2) is not
axisymmetric. However, if vectors A1 and A2 are orthog-
onal and have equal lengths A = |A1| = |A2| then using
identity (5.2) of Lemma 2 we get

Ṽm(x,A1,A1)+ Ṽm(x,A2,A2) = −Ṽm(x,A3,A3), (5.4)
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where A3 = (A1 × A2)∕A, |A3| = A. Equations (5.4), (5.1)
imply that for this case the eigenfield Ṽm(x,A1,A1)
+ Ṽm(x,A2,A2) is axisymmetric with respect to the axis
generated by vector A3 that is orthogonal to both vectors
A1 and A2.

6 Eigenfields Ṽm(x,A,B) with any
noncollinear vectors A, B are not
axisymmetric

Fluid streamlines defined by an eigenfield Ṽm(x,A,B) are
trajectories of the dynamical system

dx(t)
dt

= Ṽm(x(t),A,B). (6.1)

Theorem 1. For any noncollinear vectors A and B vec-
tor field Ṽm(x,A,B) and dynamical system (6.1) are not
axisymmetric.

Proof. On the boundaries of the spherical shell (1.9)
𝕊2

k: R = Rk and 𝑣 = 𝑣k = 𝜆Rk we have H3(𝑣k) = 0. Hence
from identity (4.7) we get 𝑣2

kH4(𝑣k) = −H2(𝑣k). Note that
H2(𝑣k) ≠ 0 because if both H3(𝑣k) = 0 and H2(𝑣k) = 0 then
from identities (2.9) for n = 1 and n = 0 we get H1(𝑣k) = 0
and H0(𝑣k) = 0 that implies a2 + b2 = 0. Therefore in view
of Eq. (4.5) dynamical system (6.1) at H3(𝑣k) = 0 takes the
form

dx
dt
= 1

2
H2(𝑣k)

[
(x ⋅ A)B + (x ⋅ B)A − 2

R2
k

(x ⋅ A)(x ⋅ B)x
]
.

(6.2)

System (6.2) evidently has critical points

xk± = ±
Rk|A × B|A × B. (6.3)

Note that A × B ≠ 0 because vectors A and B are non-
collinear. The critical points (6.3) are intersections of the
sphere 𝕊2

k with the axis

L: x(t) = r(t)(A × B). (6.4)

Substituting x = r(A × B) into formula (4.5) and using
((A × B) ⋅ A) = 0 and ((A × B) ⋅ B) = 0 we get

Ṽ(r(A × B),A,B) = H3(𝑣)(A ⋅ B)r(A × B).

Therefore dynamical system (6.1) on the axis L (6.4) reduces
to equation

dr(t)
dt

= (A ⋅ B)H3(𝑣(t))r(t), (6.5)

where 𝑣(t) = 𝜆|r(t)‖A × B|. Equation (6.5) yields that the
axis L is an invariant submanifold of system (6.1).

Equation (6.5) shows that if (A ⋅ B) = 0 then the axis L
consists of critical points of the system (6.1). Equation (6.5)
defines nontrivial dynamics on the line L if (A ⋅ B) ≠ 0. In
both cases, if system (6.1) is axisymmetric then its axis of
symmetry can be only the axis L and then system (6.1) has
no isolated critical points outside of the axis L.

However, let us show that system (6.2) has another crit-
ical points which belong to the intersection of the sphere
𝕊2

k with the plane P orthogonal to the axis L and have the
form

x̃ = 𝛼A + 𝛽B. (6.6)

Equation (6.2) at a critical point x̃ yields

(x̃ ⋅ A)B + (x̃ ⋅ B)A = 2
R2

k
(x̃ ⋅ A)(x̃ ⋅ B) [𝛼A + 𝛽B] . (6.7)

Since vectors A and B are linearly independent, we get
from Eq. (6.7) two equations

2𝛼(x̃ ⋅ A) = R2
k, 2𝛽(x̃ ⋅ B) = R2

k. (6.8)

Using expression (6.6) we find

𝛼(x̃ ⋅ A) = 𝛼2|A|2 + 𝛼𝛽(A ⋅ B),

𝛽(x̃ ⋅ B) = 𝛽2|B|2 + 𝛼𝛽(A ⋅ B), (6.9)

R2
k = (x̃ ⋅ x̃) = 𝛼2|A|2 + 2𝛼𝛽(A ⋅ B)+ 𝛽2|B|2. (6.10)

Substituting formulas (6.9) and (6.10) we find that each of
the two Eq. (6.8) is equivalent to equation

𝛼
2|A|2 = 𝛽2|B|2.

Hence we get 𝛽 = ±𝛼|A|∕|B|. Substituting this into
Eq. (6.10) we find

R2
k =

2𝛼2|A||B| {|A‖B| ± (A ⋅ B)} .

The bracket here is nonzero due to the Cauchy inequality
and the noncollinearity of vectors A and B. Therefore we
derive

𝛼 = ±
√ |B|

2|A| Rk√|A‖B| ± (A ⋅ B)
,

𝛽 = ±
√ |A|

2|B| Rk√|A‖B| ± (A ⋅ B)
.

Hence we find the critical points (6.6):

x̃ = Rk√|A‖B| ± (A ⋅ B)

[
±
√ |B|

2|A|A ±
√ |A|

2|B|B
]
. (6.11)
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If system (6.1) were axisymmetric then the orbit S̃1 of any
critical point x̃ under the rotations around the axis of
symmetry L would be a continuous set of critical points.
Each of the four critical points x̃ (6.11) belong to the plane
P orthogonal to the axis of symmetry L. Hence their one-
dimensional orbits S̃1(x̃) consisting of critical points also
would belong to the plane P. However, we have demon-
strated above that the critical set of system (6.1) in the
plane P is not continuous but consists only of the four
isolated critical points x̃ (6.11). The obtained contradic-
tion proves that the dynamical system (6.1) and eigenfield
Ṽm(x,A,B) are not axisymmetric if vectors A and B are non-
collinear. □

Remark 6. For any collinear vectors A and B, the axis L (6.4)
degenerates into one point x = 0 and therefore the above
proof is not applicable. A recent numerical investigation [4]
proves that some systems (6.1) with noncollinear vectors
A and B possess chaotic streamlines and hence are not
integrable.

7 Topology of axisymmetric
eigenfields

The axisymmetry and incompressibility of eigenfields
Ṽm(x,A,A) (5.1) lead to the existence of a first integral
of the corresponding dynamical systems

dx(t)
dt

= Ṽm(x(t),A,A). (7.1)

Dynamical system (7.1) possesses a first integral

F2(x) = H3(𝑣)(x ⋅ A)Z(x), Z(x) = (A ⋅ A)(x ⋅ x)− (x ⋅ A)2
.

(7.2)
Indeed, differentiating function F2(x(t)) along the flow (7.1)
we find

dF2(x(t))
dt

= (A ⋅ A)(x ⋅ A)H3(𝑣)
[
(A ⋅ A)(x ⋅ x)− 3(x ⋅ A)2]

×
[
H2(𝑣)+ 5H3(𝑣)+ 𝑣2H4(𝑣)

]
. (7.3)

Applying in Eq. (7.3) the identity (4.7) we obtain
dF2(x(t))∕dt ≡ 0. Therefore function F2(x) (7.2) is the first
integral of dynamical system (7.1).

The existence of the first integral F2(x) = H3(𝑣)
(x ⋅ A)Z(x) implies that all surfaces of its constant lev-
els F2(x) = const are invariant submanifolds of dynamical
system (7.1). Inside the spherical shell SR2R1

all surfaces
of nonzero levels of first integral F2(x) = c are compact
axisymmetric tori 𝕋 2

c . Dynamics of the fluid streamlines
(7.1) on the tori 𝕋 2

c is quasi-periodic. The invariant surface

of zero level F2(x) = 0 consists of the plane (x ⋅ A) = 0,
the straight line x = cA, and infinitely many spheres 𝕊2

m:
R = Rm where Rm are roots of equation H3(𝜆Rm) = 0.

The axisymmetry and incompressibility of the flow
with velocity field V(x,A) (3.1) lead to the existence of a
first integral for the fluid streamlines defined by equation

dx(t)
dt

= V(x(t),A). (7.4)

Dynamical system (7.4) has first integral

F1(x) = H2(𝑣)Z(x), Z(x) = (A ⋅ A)(x ⋅ x)− (x ⋅ A)2
. (7.5)

Indeed, differentiating function F1(x(t)) along the flow (7.4)
we get equation

dF1(x)
dt

= −2𝜆(x ⋅ A)H2(𝑣)(A ⋅ A)

×
[
H1(𝑣)+ 3H2(𝑣)+ 𝑣2H3(𝑣)

]
, (7.6)

where we used equation 𝜆
2(x ⋅ x) = 𝑣2. Applying to the

last formula the identity (3.4) we get from Eq. (7.6)
dF1(x(t))∕dt ≡ 0. Hence function F1(x) (7.5) is a first inte-
gral of system (7.4).

The existence of the first integral F1(x) (7.5) yields that
all surfaces of its constant level F1(x) = const are invari-
ant submanifolds of the system (7.4). Inside the spherical
shell SR2R1

all nonzero levels of first integral F1(x) = c are
axisymmetric tori 𝕋 2

c . Dynamics of the fluid streamlines
(7.4) on the tori 𝕋 2

c is quasi-periodic. The surface of zero
level F1(x) = H2(𝜆R)Z(x) = 0 consists of the straight line
x = cA and infinitely many spheres 𝕊2

k: R = Rk satisfying
equation H2(𝜆Rk) = 0.

Remark 7. Topology of the axisymmetric fluid flows
Ṽm(x,A,A) and that of Vn(x,A) are completely different.
Indeed, invariant tori𝕋 2

c for Ṽm(x,A,A) belong either to the
half space (x ⋅ A) > 0 or to the half space (x ⋅ A) < 0 and
there is invariant plane (x ⋅ A) = 0. For fluid flow Vn(x,A)
each invariant torus 𝕋 2

c belongs to the both sides of any
plane (x ⋅ C) = 0 where C is an arbitrary constant vector.

8 Summary
We have studied the boundary eigenvalue problem for vec-
tor fields V(x) satisfying the Beltrami equation curl V(x)
= 𝜆V(x) inside a spherical shell SR2R1

: R2 <
√

x2
1 + x2

2 + x3
3

< R1 with nonpenetration boundary conditions x ⋅ V(x)
= 0 on the spheres R = R2 and R = R1. We have introduced
the scale invariance (1.12) of the eigenvalue problem and
have defined the dimensionless parameters x = 𝜆(R1 − R2)
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and 𝜇 = R1R2∕(R1 − R2)2. We have shown that eigenvalues
𝜆 are connected with parameters x, 𝜇 by equation

𝜆 =
√

4𝜇 + 1 + 1
2R1

x, (8.1)

where radius R1 is arbitrary due to the scale invari-
ance. Radius R2 = R1(

√
4𝜇 + 1− 1)∕(

√
4𝜇 + 1 + 1). We

have derived equations

tan(x) = x
1 + 𝜇x2 , (8.2)

tan(x) = x + 𝜇x3∕3
1+ (𝜇 − 1)x2∕3+ 𝜇2x4∕9

(8.3)

for the dimensionless parameters x, 𝜇. For any 𝜇 > 0 the
roots xn of Eq. (8.2) define by formula (8.1) eigenvalues
𝜆n. Any root x̃m of Eq. (8.3) specifies eigenvalue 𝜆̃m by for-
mula (8.1). Using Eqs. (8.2) and (8.3) we have obtained
asymptotics of eigenvalues 𝜆n, 𝜆̃m at R2 → R1 (that is equiv-
alent to 𝜇→∞) and at n,m →∞ and have proved that the
eigenvalues 𝜆n and 𝜆̃m are not equal for any n and m.

We have derived in elementary functions the corre-
sponding to 𝜆n 3D linear space of eigenfields Vn(x,A) and
the corresponding to 𝜆̃m 5D linear space of eigenfields
Ṽm(x,A,B) where A and B are arbitrary constant vectors
in ℝ3. We have proved that eigenfields Ṽm(x,A,B) with
noncollinear vectors A and B are not axisymmetric and
eigenfields Ṽm(x,A,A) are axisymmetric. The topologies
of fluid flows Vn(x,A), Ṽm(x,A,A), and Ṽm(x,A,B) with
A × B ≠ 0 are completely different.

The constructed eigenfields Vn(x,A) and Ṽm(x,A,B)
define the incompressible fluid and plasma equilibria in
the shell SR2R1

and also time-dependent flows (1.6) and
(1.7) of viscous magnetic fluid in the shell.
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