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Abstract: Trace estimators allow us to approximate
thermodynamic equilibrium observables with astonish-
ing accuracy. A prominent representative is the finite-
temperature Lanczos method (FTLM) which relies on a
Krylov space expansion of the exponential describing the
Boltzmann weights. Here we report investigations of an
alternative approach which employs Chebyshev polyno-
mials. This method turns out to be also very accurate in
general, but shows systematic inaccuracies at low temper-
atures that can be traced back to an improper behavior
of the approximated density of states with and without
smoothing kernel. Applications to archetypical quantum
spin systems are discussed as examples.

Keywords: Chebyshev expansion; spin systems; trace esti-
mators; typicality.

1 Introduction
The (numerically) exact evaluation of thermodynamic
quantum equilibrium observables is restricted to small sys-
tems due to the exponential growth of the Hilbert space
for systems with finite-size single-site Hilbert spaces such
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as Heisenberg or Hubbard models. For quantum systems
with unrestricted single-site spaces, the situation is even
more severe. Only very few analytically solvable systems
are known which creates a massive need for numerical
(approximation) schemes. One rather successful means to
approximate thermodynamic quantities rests on trace esti-
mators which approximate a trace by an expectation value
with respect to a random vector [1–12]. These schemes,
sometimes also called typicality or (microcanonical) ther-
mal pure quantum states [13–16], have been used very
successfully, in particular, in the field of correlated electron
systems, see e.g., [16–37] but also in quantum chemistry
[38, 39].

A prominent formulation of the method is the finite
temperature Lanczos method (FTLM) [4, 21, 40–42] which
employs a Krylov space expansion for exp{−𝛽H

∼
} (opera-

tors are marked by a tilde). It turns out that FTLM produces
very accurate approximations when estimates are aver-
aged over random vectors (order of ∼ 100, fewer for larger
spaces); compare [10, 16, 31, 36, 43–45].

Despite this success, the authors of [8] suggest that an
alternative approximation using an expansion of the den-
sity of states in terms of Chebyshev polynomials should be
more accurate [8]. The major argument is that this expan-
sion does not suffer from the loss of orthogonality during
recursive state generation used in Krylov space methods.
This property is certainly responsible for the high accu-
racy obtained in numerical unitary time evolution using a
Chebyshev expansion, see e.g., [8, 46–50].

In the present paper, we therefore study several
Heisenberg quantum spin systems and derive numerical
as well as formal conclusions about the accuracy of the
method. We can summarize that the approach via Cheby-
shev polynomials is indeed accurate, but not more accurate
than FTLM [44]. On the contrary, under certain circum-
stances the employed kernel which smoothens (unphys-
ical) oscillations of the approximated density of states
introduces systematic inaccuracies. The same holds for
the mapping of the energy spectrum onto the interval
[−1 + 𝜀∕2, 1 − 𝜀∕2] to comply with the domain of definition
of the polynomials.

The paper is organized as follows. In Section 2, we reca-
pitulate the Chebyshev method. In Section 3, we present
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our numerical examples. The article closes with a discus-
sion in Section 4.

2 Method
In this section, we briefly introduce the Chebyshev method
and its parameters to be able to discuss the method’s accu-
racy. For a more detailed description of the algorithm we
recommend [8].

In a quantum mechanical system with a discrete
energy spectrum, the microcanonical density of states is
defined as

𝜌(E) :=
∑

n
𝛿(E − En). (1)

The canonical partition function Z(𝛽) is determined
by the integral over the density of states weighted with the
Boltzmann factor:

Z(𝛽) =
∑

n
e−𝛽En = ∫

∞

−∞
𝜌(E)e−𝛽EdE (2)

with 𝛽 = 1
kBT . Correspondingly, the heat capacity is evalu-

ated as

C(𝛽)
kB

= 𝛽2

[
1

Z(𝛽)∫
∞

−∞
𝜌(E)e−𝛽EE2dE

−
(

1
Z(𝛽)∫

∞

−∞
𝜌(E)e−𝛽EEdE

)2
]
. (3)

For the susceptibility, we use the S
∼

z-symmetry of
Heisenberg systems and decompose the density into contri-
butions from all orthogonal subspaces with total magnetic
quantum number M, i.e.,

𝜒(𝛽)
(g𝜇B)2 = 𝛽

⎡⎢⎢⎣
1

Z(𝛽)
∑

M
M2∫

∞

−∞
𝜌(E,M)e−𝛽EdE

−
(

1
Z(𝛽)

∑
M

M∫
∞

−∞
𝜌(E,M)e−𝛽EdE

)2⎤⎥⎥⎦ . (4)

We further calculate only contributions for M ≥ 0,
since the respective contributions for negative M are degen-
erate and can be added accordingly.

The idea of the Chebyshev algorithm is to expand the
microcanonical density of states 𝜌(E) in terms of Cheby-
shev polynomials and then approximate the integral (2)
by Gauss–Chebyshev integration. We would like to state
already at this stage that some accuracy problems shown
later in this article arise if the approximated density of
states does not behave like a proper density, e.g., if it
becomes negative.

Since the Chebyshev polynomials are restricted to the
interval [−1, 1], a variable transformation of the Chebyshev
polynomials to arbitrary intervals must be introduced as in
[51, Section 1.3.2]. The transformation of the Hamiltonian
results in

H
∼
′ := 1

m
(H
∼
− c ⋅ 1

∼
) (5)

with
m = Emax − Emin

2− 𝜀 , c = Emax + Emin
2

(6)

where, as suggested in [8], a parameter 𝜀 is introduced to
prevent truncation of the approximated delta peaks corre-
sponding to the extremal eigenvalues. The original energy
interval is thus scaled to the interval [−1 + 𝜀

2 , 1 −
𝜀

2 ].
The corresponding scaled density of states 𝜌(x) is then

expanded in terms of Chebyshev polynomials Cn(x):

𝜌(x) ≈ 1
𝜋
√

1 − x2

⎡⎢⎢⎣𝜇0 + 2
N deg∑
n=1

𝜇nCn(x)
⎤⎥⎥⎦ . (7)

It can be shown that the coefficients of the expansion
are given by the traces

𝜇n = Tr
[

Cn(H
∼
′)
]
. (8)

These traces are approximated using the typicality
approach, i.e.,

𝜇n ≈
dim (H)

R

R∑
r=1

⟨r|Cn(H
∼
′)|r⟩

⟨ r | r ⟩ = Θn(R), (9)

with |r⟩ =∑
𝜈

r𝜈 |𝜈⟩ (10)

being a random vector with Gaussian distributed compo-
nents r𝜈 with respect to a chosen orthonormal basis {|𝜈⟩}.
The relative error of an estimate Θn(R) is proportional to
1∕
√

R dim() as shown in e.g. [8], where R is the number
of random vectors and dim() the dimension of the Hilbert
space. At this point it should be noted that these traces can
also be evaluated to numerical accuracy using a complete
basis. This possibility will be used to distinguish statistical
and systematic deviations later on.

Due to the finite order of the expansion, so-called
Gibbs’ oscillations can occur which causes the approxi-
mated density of the states to have negative values. If one
wants to obtain a “physical” representation of the density,
i.e., without negative values, one can modify the coeffi-
cients 𝜇n by a kernel [8]. The kernel fixes this problem at
the cost of introducing a systematic error which vanishes
for Ndeg →∞. In this paper, we restrict our discussion to
the use of the Jackson kernel whose coefficients read
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gn =
1

Ndeg + 1

[
(Ndeg − n+ 1) cos

(
𝜋n

Ndeg + 1

)

+ sin
(

𝜋n
Ndeg + 1

)
cot

(
𝜋

Ndeg + 1

)
Ndeg + 1

]
. (11)

In figure captions or legends, we will write gn = JK
when the kernel is applied, otherwise gn = 1.

For an arbitrary function f (x), the Gauss–Chebyshev
integration gives rise to the approximation

∫
1

−1

f (x)√
1− x2

dx ≈ 𝜋

Ñ

Ñ∑
k=1

f (xk) , see [52], (12)

where the supporting points read

xk = cos
(
𝜋(k − 1

2 )
Ñ

)
, k = 1,… , Ñ. (13)

This approximation is an exact identity if f (x) is a
polynomial of order 2Ñ − 1 or smaller [51]. In the case at
hand, f (x) has to be chosen as

f (x) :=
⎡⎢⎢⎣g0𝜇0 + 2

N deg∑
n=1

gn𝜇nCn(x)
⎤⎥⎥⎦ e𝛽(mx+c), (14)

and is thus no polynomial of order smaller than 2Ñ − 1.
However, the approximation through Gauss-Chebyshev
integration is still a good choice for numerical purposes
as it can be computed through a discrete cosine-transform
(type III). Deploying the f (x) to Eq. (12) gives

Z = ∫
∞

−∞
𝜌(E)e−𝛽EdE (15)

= ∫
1

−1
𝜌(x)e𝛽(mx+c) dx (16)

≈ 1
Ñ

Ñ∑
k=1
𝛾k e−𝛽(mxk+c), (17)

where the values of the weights 𝛾k read

𝛾k :=𝜋
√

1 − x2
k 𝜌M(xk) (18)

= g0𝜇0 + 2
Ndeg∑
n=1

gn𝜇n cos
(

n𝜋(k − 1
2 )

Ñ

)
. (19)

If one chooses Ñ ≥ Ndeg, the sum can be comple-
mented to an upper limit of Ñ with additional gn = 0 terms.
The 𝛾k can then be computed through a discrete cosine-
transform (type III) of the coefficients gn𝜇n which allows

a faster computation of the sum. The time needed scales
with Ñ ln Ñ instead of ÑNdeg [8].

If there are known symmetries, the scheme can be
performed for each orthogonal subspace Γ separately.
The approximated partition function can then be written
as

Z(𝛽) = 1
Ñ
∑
Γ

Ñ∑
k=1
𝛾Γk e−𝛽(mΓxk+cΓ). (20)

All of the following systems possess S
∼

z symmetry
which implies orthonormal subspaces corresponding to
the quantum number of the total magnetization Γ = M.
In our numerical examples, subspaces with dimension
D < 15,000 are fully diagonalized for larger systems. For
smaller systems, i.e., those containing only subspaces of
dimension D < 15,000, only subspaces with dimension
D < 1000, are fully diagonalized. In a real application,
one would of course diagonalize all subspaces numerically
exactly where this is possible.

To summarize, the Chebyshev method depends on sev-
eral parameters that can have an effect on the accuracy of
the results. These are the order of the expansion Ndeg, the
scaling parameter 𝜀, the number of random vectors R, the
use of a kernel gn, and the number of supporting points Ñ.

3 Numerical results
The Chebyshev algorithm uses random vectors for trace
estimation, compare Eq. (9), therefore the results are
expected to exhibit a statistical distribution. To assess
this statistical behavior, we perform two kinds of stud-
ies: (A) We investigate a thermodynamic observable as a
function of the number R of random vectors used for the
trace estimator (9), and (B) we study the variance among P
realizations per fixed parameter set (for some of the cases
presented below).

By considering each realization Oi(𝛽) as a random
measurement, a mean O(𝛽) and a variance 𝛿O(𝛽)2 can be
defined:

O(𝛽) = 1
P

P−1∑
i=0

Oi(𝛽) , (21)

𝛿O(𝛽)2 = O2(𝛽)− O(𝛽) 2 . (22)

If additionally an exact result OE is known, the sys-
tematic deviation

ΔO(𝛽) = |O(𝛽)− O E(𝛽)| (23)

can be defined.
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As specific quantum spin systems we investigate three
archetypical systems that show fundamentally different
behavior at low temperatures, namely a spin ladder that is
gapped in the thermodynamic limit [53], a spin chain that
is gapless in the thermodynamic limit [54], and a sawtooth
chain in the vicinity of a quantum-critical point [55–57];
compare Figure 1.

3.1 Heisenberg ladder
In this subsection, the accuracy of the Chebyshev
algorithm is investigated using a Heisenberg ladder for
various numbers of spins N with spin quantum number
s = 1∕2 and periodic boundary conditions. The Hamilto-
nian reads

H
∼
= J1

∑
i

s⃗
∼i,1

⋅ s⃗
∼i,2
+ J2

∑
i, j

s⃗
∼i, j

⋅ s⃗
∼i+1, j

(24)

+ g𝜇B B
∑
i, j

s
∼

z
i, j
.

where the first subscript i ∈ {1,… ,N∕2} of the spin oper-
ators denotes the rung and the second subscript j ∈ {1, 2}
denotes the leg of the spin. Thus, the exchange interaction
J1 connects the nearest neighbor spins on rungs, and J2
does the same on legs. Both are chosen to be antiferromag-
netic, J1 = J2 = 1.

Table 1 shows the standard configuration of param-
eters used in the following. The order of expansion Ndeg
and the number of random states R are chosen for low
computation times and sufficiently accurate results. Their
influences on the accuracy are discussed in Section 3.1.2a
and Section 3.1.1. As the parameter 𝜀 is introduced as a cor-
rective variable, its influence will be shown separately in
Section 3.1.2b and is omitted for the time being. The same
argument holds for the kernel gn, shown in Section 3.1.2d.

Figure 1: Systems investigated in Section 3.1, from top to bottom:
Ladder, chain, sawtooth chain. Periodic boundary conditions will be
applied.

Table 1: Standard configuration of parameters used in the following
calculations.

R Ndeg 𝜺 Ñ gn

200 100 0 100 1

To make use of the discrete cosine-transform (type III), the
number of points of integration Ñ has to be greater than or
equal to Ndeg. The equality is chosen as a starting point.

3.1.1 Statistical deviations

Since the approximation of the traces by using random vec-
tors is the cause of the statistical variations in the result,
the number of random vectors R is varied to investigate the
latter. The values given in Table 1 are used as a standard
configuration. In Figures 2 and 3, the heat capacity and
susceptibility for various values of R are plotted next to the

Figure 2: The heat capacity of the Heisenberg ladder with N = 16
spins s = 1∕2 at zero field in linear and logarithmic plots computed
using the Chebyshev algorithm in the standard parameter
configuration, see Table 1, for various values of R (colored curves)
and with exact diagonalization (ED). The purple curve shows a result
of the Chebyshev algorithm where the calculation of the traces 𝜇n is
done using a complete basis.
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Figure 3: The differential magnetic susceptibility of the Heisenberg
ladder with N = 16 spins s = 1∕2 at zero field in linear and
logarithmic plots computed using the Chebyshev algorithm in the
standard parameter configuration, see Table 1, for various values of
R (colored curves) and with exact diagonalization (ED). The purple
curve shows a result of the Chebyshev algorithm where the
calculation of the traces 𝜇n is done using a complete basis.

result determined by exact diagonalization. In addition, a
result determined by the Chebyshev algorithm is shown
where the traces 𝜇n are computed numerically exactly
instead of approximating them using random vectors.

One can see that both the heat capacity (Figure 2)
as well as the differential susceptibility (Figure 3) match
the respective curve derived from exact diagonalization
very well for T∕|J1| > 10−2. However, for R = 10 a notice-
able deviation in the maximum of the main peak of both
observables can be seen. Additionally, all curves of the
heat capacity show a “ghost dip” at low temperatures
for T∕|Ji| ≈ 10−3 − 10−2. Nevertheless, for most purposes
the achieved accuracy for the standard parameter con-
figuration and R > 100 is more than sufficient at higher
temperatures.

It is noticeable that in the region of the “ghost dip”,
all approximate curves deviate from the exact solution
independently of R, suggesting a small statistical but

significant systematic error. This is confirmed by the fact
that the curve determined with numerically exact traces
shows this deviation as well.

3.1.2 Systematic deviations

Next, we discuss how tuning the parameters Ndeg, 𝜀, Ñ,
and gn affects systematic deviations. This is mostly done
by observing the behavior of the “ghost dip” of the heat
capacity under variation of each parameter.
(a) The order of expansion can be increased to push

the systematic deviations, i.e., the “ghost dip”, to

Figure 4: The heat capacity C∕kB of the Heisenberg ladder with
N = 16 spins s = 1∕2 computed using the Chebyshev method in the
standard parameter configuration, see Table 1, for various Ndeg
(colored curves) compared to exact diagonalization (ED).

Figure 5: The heat capacity C∕kB of the Heisenberg ladder with
N = 16 spins s = 1∕2 computed using the Chebyshev algorithm in
the standard parameter configuration, see Table 1, for various
values of 𝜀 (colored curves) compared to exact diagonalization (ED).
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lower temperatures. This is demonstrated in Figure 4.
Computation time increases linearly with Ndeg.

(b) The scaling parameter 𝜀 seems to have a negative
rather than the intended positive effect on the heat
capacity as shown in Figure 5. The best result is
achieved for 𝜀 = 0. Conversely, when considering the
results for the density of states of the largest subspace
with M = 0 (see Figure 6), one can see that the param-
eter 𝜀 has the intended effect to prevent the peaks
of the lowest and highest eigenvalues to be cut off.
There are also situations where a 𝜀 ≈ 10−6 seemingly
decreases the depth of the dip compared to 𝜀 = 0.
Anyhow, such small values of 𝜀 are not sufficient to
prevent the cut-off of the density of states, and the
improvement was not significant when compared to
statistical deviations.

Figure 6: Detail of the scaled density of states 𝜌M(x) of the
Heisenberg ladder with N = 16 spins s = 1∕2 on the subspace
with M = 0 computed using the Chebyshev algorithm in the
standard parameter configuration, see Table 1, and the scaled
ground state eigenvalue obtained by the Lanczos algorithm for
various values of 𝜀.

Figure 7: The heat capacity C∕kB of the Heisenberg ladder with
N = 16 spins s = 1∕2 computed using the Chebyshev method in the
standard parameter configuration, see Table 1, for various Ñ
(colored) and with exact diagonalization (ED).

(c) The number of supporting points Ñ is investigated in
Figure 7. It is difficult to give universal recommen-
dations regarding this parameter. Our experience is
that it should be chosen equal to the order of expan-
sion Ndeg. Other systems could show very different

Figure 8: The heat capacity C∕kB of the Heisenberg ladder with
N = 16 spins s = 1∕2 computed using the Chebyshev algorithm
(colored) in the standard parameter configuration, see Table 1, for
various Ndeg with and without Jackson kernel compared to exact
diagonalization (ED).

Figure 9: The heat capacity C∕kB of the Heisenberg ladder with
N = 24 spins s = 1∕2 computed using the Chebyshev method (CM)
and exact diagonalization (ED). Displayed are the results with and
without Jackson kernel (JK) for Ndeg = 100 and Ndeg = 500.
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Figure 10: The heat capacity C∕kB of the Heisenberg ring with
N = 24 spins s = 1∕2 computed using the Chebyshev method (CM)
and exact diagonalization (ED). Displayed are the results with and
without Jackson kernel (JK) for Ndeg = 100 and Ndeg = 500.

results, but it is important to note that a good choice
of Ñ scales with Ndeg.

(d) The smoothing with the Jackson kernel causes the
unphysical ghost dip to become a ghost peak, see
Figure 8, but it does not seem to improve the result.
It could even produce a negative effect as a dip (neg-
ative C) is more easily identified as an error than a
peak. A good approach could be to always compare
both the smoothened and the native result. This can
be done without great computational effort.

For larger systems a kernel can have an even stronger
negative effect as is demonstrated in Figure 9 for N = 24
and s = 1∕2. The Jackson kernel is significantly setting
back the convergence of the expansion. For an order of
Ndeg = 100, which produces very accurate approximations
without kernel, the application of the kernel renders the
result to become unusable, compare top of Figure 9. One
needs to expand the polynomial to an order of Ndeg = 500
to counteract the inaccuracy introduced by the kernel,
but even then the result with kernel is still not signifi-
cantly better than the result without the kernel. The result
without the kernel seems already sufficiently accurate for
kBT∕|J1| < 10−2 and Ndeg = 100.

3.2 Heisenberg ring
Since the Heisenberg ladder is a gapped system, i.e., a
spin system with a non-zero excitation energy between the
ground state and the first excited state in the thermody-
namic limit, we would also like to investigate a system that
is gapless in the thermodynamic limit. The behavior of ther-
modynamic functions of the system at low temperatures
highly depends on this excitation energy. One could argue
that the deviation shown in the previous section are due to
this dependency. Hence, in this section we will discuss an
antiferromagnetic Heisenberg ring with s = 1∕2 for which
the excitation energy vanishes in the thermodynamic limit.

In Figure 10, the results for the Heisenberg ring with
N = 24 spins are displayed. One can see that the devia-
tions here are very similar to the ones for the Heisenberg
ladder with the same system size and choice of parameters,
compare Figure 9, even though here, they occur at slightly
lower temperatures.

To further investigate the influence of the gap’s size
on the deviations in the results, the curves for the heat
capacity per site for various numbers of spins are displayed
in Figure 11. While the differences of the results between

Figure 11: The heat capacity per site C∕(NkB) of the Heisenberg ring
with s = 1∕2 computed using the Chebyshev method (CM) for
N = 16, 20, 24, 28 and exact diagonalization (ED) for N = 24.
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kBT∕|J| = 2 × 10−2 and 2 × 10−1 are mostly due to finite-
size effects, so even the exact curves would deviate from
each other, the differences between kBT∕|J| = 10−3 and
10−2 on the other hand are due to the method’s inability to
reproduce the low temperature behavior of the Heisenberg
ring for various system sizes. However, there is no definite
trend of better results for larger systems recognizable, see
the lower graph in Figure 11. Thus, the inaccuracies of the
results do not directly depend on the gap size.

The antiferromagnetic Heisenberg ring with N = 10,
s = 5∕2 and the nearest neighbor interaction is an interest-
ing example as well, as this system is realized as a magnetic
molecule (abbreviated Fe10) called the “ferric wheel” [44]
that can be accurately described by this model. In Figure 12,
P = 100 estimates with the Chebyshev method using R = 1
random vectors and their mean are compared to an esti-
mate using R = 100 random vectors. They are displayed
with and without kernel.

One can see that without kernel the estimates with
R = 1 are broadly scattered at low temperatures while

Figure 12: The heat capacity C∕kB of the Heisenberg ring with
N = 10 spins s = 5∕2 computed using the Chebyshev method (CM)
and exact diagonalization (ED). Displayed are the results of P = 100
realizations with R = 1 (light blue curves), their average (dark solid
curve), the exact result (red solid curve), and one realization (P = 1)
with R = 100 (dotted curve); Ndeg = 100.

their mean and the estimate with R = 100 random vec-
tors are almost perfectly aligned with the exact result.
When employing the kernel the estimates with R = 1 are
distributed less broadly but their mean and the estimate
with R = 100 deviate strongly from the result of the exact
diagonalization. From the experience collected before, we
assume that these deviations can be resolved by using
higher orders of expansion Ndeg, see Figure 13 with a linear
temperature axis. Note that even for Ndeg = 200 the result
without kernel outperforms the one with kernel. Further-
more, the result with Ndeg = 100 without kernel is more
accurate than the result with Ndeg = 200 and kernel.

However, because of the narrower distribution of the
estimates when using the kernel we want to investigate
the statistical behavior of the results obtained with a
higher order of expansions, see Figure 14 for the results for
Ndeg = 200. One can see that the narrowing of the R = 1
estimates by using the kernel is less significant than in the
Ndeg = 100 case but still non-negligible especially in the
low temperature regime. This can be seen in the devia-
tion of mean from the exact result which is greater in the
case without kernel. But again the deviation is still there

Figure 13: The heat capacity C∕kB of the Heisenberg ring with
N = 10 spins s = 5∕2 computed using the Chebyshev method (CM)
and exact diagonalization (ED). Displayed are the results with and
without Jackson kernel (JK) for Ndeg = 100 and Ndeg = 200.
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Figure 14: The heat capacity C∕kB of the Heisenberg ring with
N = 10 spins s = 5∕2 computed using the Chebyshev method (CM)
and exact diagonalization (ED). Displayed are the results of P = 100
realizations with R = 1 and one with R = 100; Ndeg = 200. Compare
Figure 12.

for the same and even slightly higher temperatures. The
best result is obtained with the R = 100 estimates without
kernel. In this case an order of expansion of Ndeg = 100 is
sufficient.

Also for the differential susceptibility (not shown),
we obtain that the mean of the R = 1 estimates deviates
from the exact diagonalization result without kernel more
strongly than with kernel. The R = 100 estimate on the
other hand is almost accurate without kernel but deviates
as strongly as the mean in the case with kernel.

3.3 Sawtooth chain
The sawtooth chain (also known as delta chain) is an
example with a highly degenerate spectrum. The Hamil-
tonian reads

H
∼
= J1

N∑
i=1

s⃗
∼i
⋅ s⃗
∼i+1

+ J2

N∕2∑
k

s⃗
∼2k−1

⋅ s⃗
∼2k+1

(25)

with periodic boundary conditions, ferromagnetic nearest
neighbor interaction J1 < 0 and antiferromagnetic next-
nearest neighbor interaction J2 > 0. We select a case with

Figure 15: The heat capacity C∕kB of the sawtooth chain with N = 24
spins s = 1∕2 computed using the Chebyshev method (CM) the finite
temperature Lanczos method (FTLM). Displayed are the results of
P = 100 realizations with R = 1 and one with R = 100.

|J2∕J1| = 0.45 which is close to the quantum critical point
(QCP) at |J2∕J1| = 1∕2 [55]. The typicality approach has
shown to be very efficient for these systems in schemes
such as FTLM [44]. This can be confirmed for the Cheby-
shev method as well. In Figure 15, the R = 1 estimates of the
heat capacity are distributed very narrowly around their
mean which itself is perfectly aligned with R = 100. While
the result without kernel is also aligned with the FTLM esti-
mate, the result with kernel shows significant deviations
from the FTLM result.

We again show another result for a higher order of
expansion Ndeg = 500, the lower graph in Figure 16. The
deviation due to the kernel can be minimized, but still does
not fall below those of the results without kernel.

4 Discussion and conclusions
We have seen that the Chebyshev method achieves very
accurate results when handled with care. There are many
possible choices for the parameters introduced for this
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Figure 16: The heat capacity C∕kB of the delta chain with N = 24
spins s = 1∕2 computed using the Chebyshev method (CM) and the
finite temperature Lanczos method (FTLM). Displayed are the results
with and without Jackson kernel (JK) for Ndeg = 100 and Ndeg = 500.

method. We tried to identify some “good” choices and some
methods to optimize them.

In particular we found that the number of points
of integration Ñ should be chosen closely to the order
of expansion which itself has to be chosen according to
the dimension of the problem. In the cases investigated,
Ndeg = 100–200 is a sufficient choice as well as R ≥ 100.
The parameter𝜀had no positive effect at least not when try-
ing to approximate thermodynamic functions. So it seems
advisable to set it equal to zero.

The most interesting “parameter” was whether to
smooth the result with the Jackson kernel or not. We found
here as well that for the investigated systems there was no
positive effect. However, there might be a different use of
the kernel. When the expansion of the density of states
is completed the kernel can be employed without great
computational effort to check the approximation with and
without kernel for differences. For good results with a high
order of the expansion the kernel changes the results only
where they were already wrong, e.g., where heat capacity
is negative. Therefore, if the kernel does not change the

result too much one can be reasonably sure that the choice
of the order of expansion is sufficient.

Finally, we can summarize that the approach via
Chebyshev polynomials is accurate, but does not show
any advantage compared to FTLM [44].
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