Startseite Study of optical guiding of the Hermite–Gaussian laser beam in preformed collisional parabolic plasma channel and second harmonic generation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study of optical guiding of the Hermite–Gaussian laser beam in preformed collisional parabolic plasma channel and second harmonic generation

  • Jyoti Wadhwa und Arvinder Singh EMAIL logo
Veröffentlicht/Copyright: 29. Juli 2021

Abstract

In the present work, the scheme of optical guiding of the Hermite–Gaussian laser beam and the generation of second-harmonic 2ω radiation (ω being the frequency of incident beam) is presented in plasma having the preformed collisional plasma channel in which density variation is parabolic. The nonlinear coupling of excited electron plasma wave with the carrier or incident beam results in the production of second harmonics of the latter. The method of moments is used for finding the coupled differential equations for the beam diameter to study the dynamics of the Hermite–Gaussian laser beam in plasma under the effect of the collisional parabolic channel. For numerical simulations, the Runge–Kutta fourth-order numerical method is used. Standard perturbation theory gives the equation for excitation of electron plasma wave which further acts as the source term for the second harmonic generation. The numerical results show that the preformed plasma channel has a significant effect on the guiding as well as on the 2ω generation of the Hermite–Gaussian laser beam in plasma.


Corresponding author: Arvinder Singh, Department of Physics, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, India, E-mail:

Funding source: Ministry of Human Resource Development doi.org/10.13039/501100004541

Award Identifier / Grant number: Unassigned

Acknowledgments

The authors are thankful to the Ministry of Human Resources and Development (MHRD) of India for the financial support to carry out the research work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Ministry of Human Resource Development, India.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. Faure, Y. Glinec, A. Pukhov, et al.., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature, vol. 431, p. 541, 2004. https://doi.org/10.1038/nature02963.Suche in Google Scholar PubMed

[2] E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys., vol. 81, p. 1229, 2009. https://doi.org/10.1103/revmodphys.81.1229.Suche in Google Scholar

[3] D. N. Gupta, H. Nam, and H. Suk, “Laser-driven plasma beat-wave propagation in a density-modulated plasma,” Phys. Rev. E, vol. 84, p. 056403, 2011. https://doi.org/10.1103/physreve.84.056403.Suche in Google Scholar PubMed

[4] K. Gopal and D. N. Gupta, “Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses,” Phys. Plasmas, vol. 24, p. 103101, 2017. https://doi.org/10.1063/1.5001849.Suche in Google Scholar

[5] N. G. Basov, V. Y. Bychenkov, O. N. Krokhin, et al.., “Second harmonic generation in a laser plasma (review),” Sov. J. Quantum Electron., vol. 9, no. 9, p. 1081, 1979. https://doi.org/10.1070/qe1979v009n09abeh009430.Suche in Google Scholar

[6] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., vol. 7, p. 118, 1961. https://doi.org/10.1103/physrevlett.7.118.Suche in Google Scholar

[7] B. W. J. McNeil and N. R. Thompson, “X-ray free-electron lasers,” Nat. Photonics, vol. 4, p. 814, 2010. https://doi.org/10.1038/nphoton.2010.239.Suche in Google Scholar

[8] A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett., vol. 89, p. 185003, 2002. https://doi.org/10.1103/physrevlett.89.185003.Suche in Google Scholar

[9] B. Hafizi, A. Ting, P. Sprangle, and R. F. Hubbard, “Relativistic focusing and ponderomotive channeling of intense laser beams,” Phys. Rev. E, vol. 62, p. 4120, 2000. https://doi.org/10.1103/physreve.62.4120.Suche in Google Scholar PubMed

[10] D. N. Gupta, M. S. Hur, I. Hwang, H. Suk, and A. K. Sharma, “Plasma density ramp for relativistic self-focusing of an intense laser,” J. Opt. Soc. Am. B, vol. 24, p. 1155, 2007. https://doi.org/10.1364/josab.24.001155.Suche in Google Scholar

[11] D. J. Spence, A. Butler, and S. M. Hooker, “First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide,” J. Phys. B Atom. Mol. Opt. Phys., vol. 34, p. 4103, 2001. https://doi.org/10.1088/0953-4075/34/21/303.Suche in Google Scholar

[12] D. N. Gupta, M. R. Islam, D. G. Jang, H. Suk, and D. A. Jaroszynski, “Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity,” Phys. Plasmas, vol. 20, p. 123103, 2013. https://doi.org/10.1063/1.4838195.Suche in Google Scholar

[13] M. Singh and D. N. Gupta, “Laser-absorption effect on pulse-compression under Ohmic and weak-relativistic ponderomotive nonlinearity in plasmas,” Laser Phys. Lett., vol. 15, p. 016001, 2018. https://doi.org/10.1088/1612-202x/aa930f.Suche in Google Scholar

[14] P. Volfbeyn, E. Esarey, and W. P. Leemans, “Guiding of laser pulses in plasma channels created by the ignitor-heater technique,” Phys. Plasmas, vol. 6, p. 2269, 1999. https://doi.org/10.1063/1.873503.Suche in Google Scholar

[15] Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of high intensity laser pulses in straight and curved plasma channel experiments,” Phys. Rev. Lett., vol. 77, p. 4186, 1996. https://doi.org/10.1103/physrevlett.77.4186.Suche in Google Scholar PubMed

[16] M. Singh, D. N. Gupta, and H. Suk, “Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions,” Phys. Plasmas, vol. 22, p. 063303, 2015. https://doi.org/10.1063/1.4922435.Suche in Google Scholar

[17] N. Singh and A. Singh, “The effect of plasma channel on the self-distortion of laser pulse propagating through the collisionless plasma channel,” J. Nonlinear Opt. Phys. Mater., vol. 23, p. 1450027, 2014. https://doi.org/10.1142/s0218863514500271.Suche in Google Scholar

[18] N. Gupta, “Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique,” Laser Part. Beams, vol. 37, p. 184, 2019. https://doi.org/10.1017/s0263034619000193.Suche in Google Scholar

[19] L. Wang, H. Xue-Ren, J.-A. Sun, et al., “Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel,” Phys. Lett. A, vol. 381, p. 2065, 2017.10.1016/j.physleta.2017.04.033Suche in Google Scholar

[20] V. Sharma, V. Thakur, and N. Kant, “Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma,” Opt. Quant. Electron., vol. 52, p. 444, 2020. https://doi.org/10.1007/s11082-020-02559-3.Suche in Google Scholar

[21] N. Gupta and S. Kumar, “Generation of second harmonics of q-Gaussian laser beams in collisional plasma with upward density ramp,” Laser Phys., vol. 30, p. 066003, 2020. https://doi.org/10.1088/1555-6611/ab84df.Suche in Google Scholar

[22] J. F. Lam, B. Lippmann, and F. Tappert, “Self-trapped laser beams in plasma,” Phys. Fluids, vol. 20, p. 1176, 1977. https://doi.org/10.1063/1.861679.Suche in Google Scholar

Received: 2021-04-20
Accepted: 2021-07-04
Published Online: 2021-07-29
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0104/pdf?lang=de
Button zum nach oben scrollen