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Abstract: We consider a situation where an N-level system
(NLS) is coupled to a heat bath without being neces-
sarily thermalized. For this situation, we derive general
Jarzynski-type equations and conclude that heat and
entropy is flowing from the hot bath to the cold NLS and,
vice versa, from the hot NLS to the cold bath. The Clau-
sius relation between increase of entropy and transfer of
heat divided by a suitable temperature assumes the form
of two inequalities which have already been considered in
the literature. Our approach is illustrated by an analytical
example.

Keywords: Clausius inequalities; Jarzynski equations; sec-
ond law.

1 Introduction
The study of nonequilibrium thermodynamics of systems
in contact with a thermal reservoir (“heat bath”) of dif-
ferent temperatures has a long history. As an example of
the approach via a Master equation and its weak coupling
limit, we mention the work of Lebowitz and Spohn [1],
which actually considers a finite number of reservoirs. Dur-
ing the last decades, new methods have been devised, in
particular, the approach via fluctuation theorems [2]. The
famous Jarzynski equation represents one of the rare exact
results of nonequilibrium statistical mechanics. It is a state-
ment about the expectation value of the exponential of the
work

⟨
e−𝛽 𝑤

⟩
performed on a system initially in thermal

equilibrium with inverse temperature 𝛽, but possibly far
from equilibrium after the work process. This equation was
first formulated for classical systems [3] and subsequently
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proved for quantum systems [4–6]. Extensions for systems
that are initially in local thermal equilibrium [5], micro-
canonical ensembles [7], and grand-canonical ensembles
[8–14] have been published. The literature on the Jarzyn-
ski equation and its applications is rich; a concise review is
given in [14], focusing on the connection with other fluctua-
tion theorems. The most common approach to the quantum
Jarzynski equation is to consider sequential measure-
ments. This approach is also followed in the present work.
The general framework for such an approach was outlined
in [15] and [16]. It is per se neither quantum mechan-
ical nor classical and will be referred to as “stochastic
thermodynamics” in the present work. At the end of
Appendix C, we sketch realizations of the general frame-
work in quantum mechanics and classical mechanics.

Interestingly, one can derive from the Jarzynski
equation certain inequalities that resemble the second law,
see, e.g., [14]. However, a closer inspection shows that
these inequalities are not exactly statements about the
non-decrease of entropy. But the entropy balance is not
the problem: the total von Neumann entropy is constant
during unitary time evolution and non-decreasing during
projective measurements, see [17] or Theorem 11.9 in [18].
The problem is rather that in the quantum case, the entropy
balance is not sufficient to cover all aspects of the second
law.

To explain the latter, consider classical thermody-
namics where there are several equivalent formulations
of the second law. For example, from the non-decrease in
total entropy, it can be deduced that heat (and entropy)
always flows from the hotter to the colder body. The ele-
mentary argument goes as follows: If the hotter body with
inverse temperature 𝛽 transfers the infinitesimal heat 𝛿Q
(of whatever sign) to the colder body with inverse temper-
ature 𝛽0 > 𝛽, then its entropy decrease will be dS1 = 𝛽𝛿Q,
according to the Clausius equality. On the other hand,
the colder body receives the heat 𝛿Q and its entropy
increases by dS2 = 𝛽0𝛿Q. The total entropy increase will
be dS = dS2 − dS1 = (𝛽0 − 𝛽)𝛿Q. Since (𝛽0 − 𝛽) > 0, we
obtain dS ≥ 0 ⇔ 𝛿Q ≥ 0.

In the quantum case, this elementary argument breaks
down. Between the two sequential measurements, the
transferred heatΔQ and entropyΔS can no longer be con-
sidered as infinitesimal and the Clausius equality has to be
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replaced by two inequalities. Moreover, the energy increase
of the first system is not exactly equal to the energy decrease
of the second system. This holds only approximately if
the interaction Hamiltonian can be neglected, which will
not be the case for small ΔQ. (Strictly speaking, the latter
objection already applies to the classical case.)

We will try here to modify the classical argument for
the “correct” heat flow for quantum mechanics. To this
end, we will adopt another approach to the problem of
the direction of the heat flow that focuses on the N-level
quantum system and describes the influence of the heat
bath solely in terms of a transition matrix T. T is only
a (left) stochastic matrix and can no longer be assumed
to be bi-stochastic (in the strict or modified sense) and
hence, the usual assumptions leading to a Jarzynski-type
equation, see [15], are no longer satisfied. But it is possible
to derive a more general J-equation that is only based on
(left) stochasticity of T. Thus, we can find arguments for
the “correct” flow of heat and entropy that only rely on the
assumption that T leaves invariant some Gibbs state with
inverse temperature 𝛽0, see Section 2. 𝛽0 is interpreted as
the inverse temperature of the heat bath. In this sense,
we derive the second law of thermodynamics from a form
of the zeroth law. For this derivation, we combine known
results that appear in various places in the literature, see
[19–23], but are sometimes only proved under assumptions
that are stronger than those we will assume in the present
work. We will present the relationship of these references
to our results in more detail in Section 4.

The structure of the paper is as follows. The general
definitions and main results on the heat flow between the
system and the heat bath are given in Section 2. These
results are based on a Jarzynski-type equation (19), which
is proved in a more general setting in Appendix C. Here,
we also comment on the possibility to relax the usual
assumption of an initial product state. Close to the equi-
librium point, the entropy increase ΔS and the absorbed
heat over temperature 𝛽ΔQ have a common tangent, see
Figure 1, with a positive slope, as proved in Appendix B.
The analogous result on the entropy flow is formulated in
Section 3. It depends on two “Clausius inequalities”, see
Eq. (67), the second one of which again follows from the
Jarzynski-type equation. The bi-stochastic limit is shortly
considered in Section 4. The next Section 5 contains an
analytically solvable example. We close with a summary
and outlook in Section 6.

Figure 1: Typical plot of the two ‘‘Clausius heat terms’’ 𝛽0ΔQ, 𝛽ΔQ,
and the ‘‘entropy increase’’ΔS as functions of the inverse
temperature 𝛽 of the NLS calculated for a randomly chosen
transition matrix T and N = 4. Note that 𝛽0ΔQ ≤ ΔS ≤ 𝛽ΔQ holds in
accordance with (67). The inverse temperature of the heat bath is
𝛽0, where all three functions vanish and have a common tangent
(dashed black line) with the slope a according to (56).

2 Main results on heat flow
We consider an N-level system (NLS) described by a finite
index set , energies En, and degeneracies dn for n ∈ .
The NLS is assumed to be initially in a Gibbs state with
probabilities

pn =
dn
Z

exp (−𝛽 En) , (1)

where the partition function Z is defined by

Z =
∑

n
dn exp (−𝛽 En) , (2)

and 𝛽 = 1
𝜏

is the inverse temperature of the NLS. After an
interaction with a heat bath a subsequent measurement of
energy finds the NLS in the level m ∈ with probability

qm =
∑

n
P(m ← n) pn ≡

∑

n
Tm n pn. (3)

Here, the “transition matrix” T is an N × N (left) stochastic
matrix, i.e., satisfying

Tmn ≥ 0 for all m, n ∈ , (4)

∑

m
Tmn = 1 for all n ∈ . (5)

The entries of T will be sometimes written as condi-
tional probabilities Tmn = P(m ← n) with self-explaining
notation. We do not make any assumptions concerning
thermalization and hence, the final probabilities qm will,
in general, not be of Gibbs type.
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The usual Jarzynski equation is based on the property
of T being a bi-stochastic matrix, i.e., additionally satisfy-
ing, in the non-degenerate case of dn ≡ 1,

∑

n
Tmn = 1 for all m ∈ , (6)

or, in the general case,
∑

n
Tmndn = dm for all m ∈ , (7)

see Eq. (25) in [15]. This property holds if the system is
closed and only subject to external forces performing work
upon the system. But bi-stochasticity is no longer guar-
anteed for systems coupled to other ones (heat baths).
However, if this is the case and if no external forces are
applied, we may relax the (modified) bi-stochasticity of T
to the following:

Assumption 1. There exists a Gibbs state with probabilities

p(0)
n = dn

Z0
exp (−𝛽0 En) , (8)

and
Z0 =

∑

n
dn exp (−𝛽0 En) , (9)

that is left fixed by T, i.e.,
∑

n
Tmn p(0)

n = p(0)
m for all m ∈ . (10)

In this case, the transition matrix T, satisfying (4), (5)
and (10), will be called a “Gibbs matrix” with temperature
𝜏0 =

1
𝛽0

. We will also refer to 𝜏0 as the “temperature of the
heat bath”.

Recall that every (left) stochastic matrix T has an
eigenvector p(0) with non-negative entries corresponding
to the eigenvalue 1, although p(0) is generally not unique.
If the entries p(0)

n are different and positive, one can always
define suitable energies En := − log p(0)

n such that (8)
holds with 𝛽0 = 1 and dn ≡ 1. This has been used to gen-
erate numerical examples of Gibbs matrices, see Figures 1
and 2. Mathematically, T being bi-stochastic is a special
case of being a Gibbs matrix, since (6) follows from (10)
for 𝛽0 = 0 and dn = 1 for all n ∈  . However, according to
the above remarks, being a Gibbs matrix should rather be
considered as a property of T relative to a given family of
energies En, not as a property of T alone.

Physically, the property (10) appears plausible if T rep-
resents the transition matrix due to the interaction with a
heat bath of temperature 𝜏0. If the NLS already has the
same temperature 𝜏0, its state should not change. This is
not trivial since, in general, the Gibbs state of the combined

Figure 2: The same plot as in Figure 1 but for the extended range of
inverse temperatures−10𝛽0 ≤ 𝛽 ≤ 10𝛽0 of the NLS. Note that also
in this extended range 𝛽0ΔQ ≤ ΔS ≤ 𝛽ΔQ holds in accordance with
(67). For negative temperatures, these ‘‘Clausius inequalities’’ are
less restrictive since here 𝛽0ΔQ and 𝛽ΔQ have different signs.ΔS
has a second zero for negative inverse temperatures that, in contrast
to the first zero at 𝛽 = 𝛽0, does not correspond to a fixed point of
the transition matrix T . For 𝛽 →±∞, the Gibbs state probability p(𝛽)
is concentrated on the level with the lowest/highest energy,
respectively, and hence 𝛽0ΔQ as well asΔS approach constant
values. Therefore, 𝛽ΔQ is asymptotically linear at these limits.

system, NLS plus heat bath, with temperature 𝜏0 does not
commute with the interaction Hamiltonian. However, it
can be shown that (10) holds exactly for some analyti-
cally solvable examples [24], and in other cases, the real
situation can be expected to be represented by (10) to an
excellent approximation.

Next, we will recall some probabilistic framework con-
cepts for the Jarzynski-type equation, see [15]. Let ×
be the set of “elementary events” such that one event
(m, n) ∈ × represents the outcome of a sequential
energy measurement at the NLS in the sense that the initial
measurement yields the result En, and, after the interac-
tion with the heat bath, the final measurement yields Em.
The probability function

P : × → [0, 1] (11)

defined for elementary events is given by

P(m, n) = P(m ← n) pn = Tmn
dn
Z

exp (−𝛽En) . (12)

Analogously to the case of the ordinary Jarzynski equation,
we consider random variables Y: × →ℝ and their
expectation value denoted by

⟨Y⟩ :=
∑

mn
P(m, n) Y(m, n) =

∑

mn
Tmn pn Y(m, n). (13)
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An example is
ΔQ : × → ℝ (14)

defined by
ΔQ(m, n) :=Em − En. (15)

This can be interpreted as the “heat” transferred to the
NLS during the interaction with the heat bath since we
have assumed that no external forces are active that could
perform work on the NLS.

Another example is the random variable “entropy
increase”

ΔS : × → ℝ (16)

defined by

ΔS(m, n) := log pn
dn
− log qm

dm
. (17)

Its expectation value agrees with the familiar expression
for entropy decrease, as will be shown in Section 3, see
Eqs. (35)–(37).

Sometimes, instead of (13), we will also use the sloppy
notation ⟨Y(m, n)⟩ for the expectation value.

Then we can state the following Jarzynski-type
equation that follows from the general “J-equation” con-
sidered in Appendix C.

Theorem 1. If T is a Gibbs matrix with inverse tempera-
ture 𝛽0 and p̃ an arbitrary probability distribution, hence
satisfying ∑

n∈
p̃n = 1, (18)

then, under the preceding conditions, the following holds:
⟨

p(0)
n p̃m

p(0)
m pn

⟩

= 1. (19)

For the proof see Appendix C, where (19) is obtained
as a special case.

The Jarzynski-type equation (19) is more of a template
that can be used to generate further equations by choosing
a special form of the general probability distribution p̃. As
a particular choice, we will consider p̃ = p. This yields

⟨
p(0)

n pm

p(0)
m pn

⟩

= 1, (20)

and further, using

pm
pn
= dm

dn
exp (−𝛽 (Em − En)) , (21)

p(0)
n

p(0)
m
= dn

dm
exp (−𝛽0 (En − Em)) , (22)

and (15), the following equation:
⟨

e−(𝛽−𝛽0)ΔQ⟩ = 1. (23)

This equation was also derived in [19] under stronger
assumptions. As pointed out in [19], Eq. (23) implies that
the probability of events where heat flows in the “wrong”
direction, i.e., where (𝛽 − 𝛽0)ΔQ < 0, must be exponen-
tially suppressed. The reason is that in the case of a
Jarzynski-type equation of the form

⟨
eX⟩ = 1 the contri-

butions to the expectation value from large positive values
of X must be counterbalanced by a large number of contri-
butions from negative values of X in order to maintain the
expectation value at 1.

As for the original Jarzynski equation, we may derive
an inequality by invoking Jensen’s inequality (JI). Note that
x ↦ −log x is a convex function. Hence

0 = − log 1
(23)
= − log ⟨exp (− (𝛽 − 𝛽0)ΔQ)⟩ (24)

(JI)
≤ ⟨− log exp (− (𝛽 − 𝛽0)ΔQ)⟩ = (𝛽 − 𝛽0) ⟨ΔQ⟩ . (25)

Thus, we have proven:

Theorem 2.
(𝛽 − 𝛽0) ⟨ΔQ⟩ ≥ 0. (26)

If the temperature 𝜏 of the NLS is lower than the tem-
perature 𝜏0 of the heat bath, then 𝛽 − 𝛽0 ≥ 0 and hence,
by means of (26), ⟨ΔQ⟩ ≥ 0. It means that in this case the
expectation value of the heat flowing into the NLS will be
positive, and vice versa. In other words, heat will flow from
the hotter body to the colder one, analogously to the result
in classical thermodynamics, see Section 1.

3 Clausius inequalities
We adopt the notation of Section 2 but for the next steps will
not need Assumption 1. Further define (sometimes skip-
ping the expectation brackets ⟨…⟩ if no misunderstanding
can occur):

E(p) :=
∑

n
pn En, (27)

E2(p) :=
∑

n
pn E2

n, (28)

E(q) :=
∑

n
qn En, (29)

ΔE :=E(q)− E(p), (30)

S(p) := −
∑

n
pn log pn

dn
, (31)
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S(q) := −
∑

n
qn log qn

dn
, (32)

ΔS := S(q)− S(p). (33)

Note that (1) implies the familiar identity

S(p)
(1)
=
∑

n
pn (𝛽En + log Z)

(27)
= 𝛽E(p)+ log Z. (34)

To show the consistency of (33) with the definition (17),
we calculate the expectation value of the corresponding
random variable

⟨ΔS⟩
(13)
=
∑

mn
Tmn pn

(
log pn

dn
− log qm

dm

)
(35)

(3,5)
=
∑

n
pn log pn

dn
−
∑

m
qm log qm

dm
(36)

(31,32)
= S(q)− S(p), (37)

which agrees with (33).
Then, we can show the following:

Theorem 3. Under the preceding conditions, the “first Clau-
sius inequality”

𝛽⟨ΔE⟩ ≥ ⟨ΔS⟩ (38)

holds.

This inequality has also be obtained in [20] by consid-
ering two systems with weak interaction and using the fact
that the Gibbs state minimizes the free energy. This state-
ment, in turn, can also be proven by the Gibbs inequality
used below.

Proof of Theorem 3. For any two probability distributions
p, q: → [0, 1] there holds the Gibbs inequality or non-
negativity of the KL-divergence

S(q‖p) :=
∑

n
qn log qn

pn
≥ 0, (39)

see, e.g., Theorem 11.1 in [18]. From this, we obtain

−S(q)
(32)
=
∑

n
qn log qn

dn
(40)

(39)
≥

∑

n
qn log pn

dn

(1,29)
= − 𝛽E(q)− log Z, (41)

and further
𝛽ΔE

(30)
= 𝛽
(

E(q)− E(p)
)

(42)

(34)
= 𝛽E(q)− S(p)+ log Z (43)

(41)
≥ S(q)− S(p)

(33)
=ΔS, (44)

which concludes the Proof of Theorem 3. □

Interestingly, the first Clausius inequality can be
sharpened to a Clausius equality in the weak coupling limit.

Proposition 1. If the transition matrix T is of the form

T = 𝟙+ 𝜀 t + O
(
𝜀2) , (45)

where t denotes some N × N-matrix with necessarily vanish-
ing column sums, then

ΔS = 𝛽ΔE + O
(
𝜀2) . (46)

The proof can be found in Appendix A.
Next, we assume the situation of a “heat process” as

in Section 2 together with Assumption 1 and hence, can
interpret the energy difference ⟨ΔE⟩ as the heat ⟨ΔQ⟩ trans-
ferred to the NLS. We consider both sides of (38), 𝛽⟨ΔQ⟩
and ⟨ΔS⟩, as functions of the inverse temperature 𝛽. Both
functions vanish at the inverse temperature 𝛽0 of the heat
bath and, due to (38), must have a common tangent at
𝛽 = 𝛽0, see Figure 1. We will calculate its slope a using the
intermediate results

𝜕pn
𝜕𝛽

(1,2)
= pn

(
E(p)− En

)
(47)

𝜕E(p)
𝜕𝛽

(27,47)
=
∑

n
pn
(

E(p)− En
)

En (48)

(28)
= E(p)2 − E2(p) (49)

𝜕qn
𝜕𝛽

(3)
=
∑

m
Tnm

𝜕pm
𝜕𝛽

(50)

(47)
=
∑

m
Tnm pm

(
E(p)− Em

)
(51)

= qn E(p)−
∑

m
Tnm pm Em (52)

𝜕E(q)
𝜕𝛽

(29)
=
∑

n

𝜕qn
𝜕𝛽

En (53)

(50)
=
∑

n

(

qn E(p)−
∑

m
Tnm pm Em

)

En (54)

= E(q)E(p)−
∑

nm
Tnm pm Em En. (55)

This yields

a := 𝜕

𝜕𝛽
𝛽⟨ΔQ⟩

||||𝛽=𝛽0

(56)

= ⟨ΔQ⟩|𝛽=𝛽0
⏟⏞⏞⏟⏞⏞⏟

=0

+ 𝛽0
𝜕

𝜕𝛽
⟨ΔQ⟩

||||𝛽=𝛽0

(57)
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(30,48,53)
= 𝛽0

(

E(q)E(p)−
∑

nm
Tnm pm Em En

− E(p)2 + E2(p)|||𝛽=𝛽0

)
(58)

= 𝛽0

(

E2(p(0))−
∑

nm
Tnm p(0)

m Em En

)

(59)

= 𝛽0

(
∑

nm
Tnm p(0)

m Em (Em − En)

)

, (60)

using Eq. (5) in (60). According to Theorem 1, it is clear
that the slope of the tangent cannot be negative, a ≥ 0.
Nevertheless, this will be checked independently, see
Appendix B.

The linear part of the Taylor series of 𝛽⟨ΔQ⟩ w.r.t.
(𝛽 − 𝛽0) can be used to re-write ⟨ΔQ⟩ as a function of the
dimensionless temperature 𝜏 = 1

𝛽
such that the zero of

⟨ΔQ⟩ at 𝛽 = 𝛽0 corresponds to the temperature 𝜏0 =
1
𝛽0

.
The result

⟨ΔQ⟩ = −a 𝛽0 (𝜏 − 𝜏0)+ O (𝜏 − 𝜏0)2 (61)

resembles the Fourier law or its precursor, Newton’s law
of cooling [25], stating that the rate of heat loss of a body
is directly proportional to the difference in the tempera-
tures between the body and its surroundings. We further
remark that the explicit form (60) of the “heat conduc-
tion coefficient” a 𝛽0 in (61) is reminiscent of the fluctua-
tion–dissipation theorems mentioned in [7] in connection
with the Jarzynski equation, see also Appendix B.2.

The above result that 𝛽ΔQ = ΔS+ O(𝛽 − 𝛽0)2 can be
viewed as a confirmation of the Clausius identity in linear
stochastic thermodynamics. The fact that the deviation
to the Clausius identity is non-negative in the sense of
Theorem 3 can be made plausible in the following way.
Consider a state change of an NLS with a slightly lower
temperature than the heat bath, 𝜏 < 𝜏0, consisting of two
steps. In the first step, there is a limited contact with the
heat bath such that only the heat Δ1Q is flowing into the
TLS leading, in linear approximation, to an increase of
its entropy by Δ1S = Δ1Q

𝜏
. After this first step, the sys-

tem, while being kept isolated, thermalizes and approx-
imately assumes a Gibbs state with temperature 𝜏 1 such
that 𝜏 < 𝜏1 < 𝜏0. This can be reasonably expected if N is
large enough (or if N = 2). In a second step, there is another
contact with the heat bath leading to a further heat trans-
fer of Δ2Q and, in linear approximation, to an increase of
its entropy by Δ2S = Δ2Q

𝜏1
<

Δ2Q
𝜏

. The total heat transfer is
ΔQ = Δ1Q+Δ2Q and the total increase of entropy isΔS =
Δ1S +Δ2S which is less than ΔQ

𝜏
. An analogous reasoning

applies to the case of 𝜏 > 𝜏0 and a cooling of the NLS in
two steps. The “first Clausius inequality” 𝛽⟨ΔQ⟩ ≥ ⟨ΔS⟩
thus reflects the fact that 𝛽 is the fixed initial inverse tem-
perature of the NLS and possible changes of the NLS’s
temperature during the interaction with the heat bath are
ignored in the term 𝛽⟨ΔQ⟩ but would be relevant for the
term ⟨ΔS⟩. On the other hand, the term 𝛽⟨ΔQ⟩ cannot be
improved in a simple way, because after the interaction
with the heat bath, the NLS may no longer be in a Gibbs
state and thus has no temperature at all.

Next, we turn to a second Clausius inequality that
can be obtained from the Jarzynski-type equation (19) by
choosing p̃m = qm :=∑nTmn pn for all m ∈ . This yields

⟨
p(0)

n qm

p(0)
m pn

⟩

= 1. (62)

As above, we may invoke Jensen’s inequality (JI) and the
fact that x ↦ −log x is a convex function:

0 = − log 1
(62)
= − log

⟨
p(0)

n qm

p(0)
m pn

⟩

(63)

(JI)
≤

⟨

− log p(0)
n

dn
+ log p(0)

m
dm

− log qm
dm
+ log pn

dn

⟩

(64)

(8)
= ⟨𝛽0En + log Z0 − 𝛽0Em − log Z0⟩−

∑

m
qm log qm

dm

+
∑

n
pn log pn

dn
(65)

= ⟨ΔS⟩− 𝛽0 ⟨ΔQ⟩, (66)

where we have suitably expanded the fraction (63) with the
factors dn and dm. Together with (38), we have thus proven
the following

Theorem 4.

𝛽0 ⟨ΔQ⟩ ≤ ⟨ΔS⟩ ≤ 𝛽 ⟨ΔQ⟩. (67)

The second Clausius inequality 𝛽0⟨ΔQ⟩ ≤ ⟨ΔS⟩ has
also been obtained in [21], Eq. (4.4), under the same con-
ditions corresponding to our Assumption 1 and using the
“monotonicity of the Kullback–Leibler (KL) divergence”.
This proof is closely related to ours, since the said mono-
tonicity is also a consequence of the general J-equation,
see Appendix C.

Recall that according to Theorem 2, heat is always
flowing from the hotter body to the colder one. Accord-
ing to the first Clausius inequality (38), the analogous
statement for the entropy flow can only be shown in the
case of 0 ≤ 𝛽 ≤ 𝛽0, i.e., where the NLS has initially a



H.-J. Schmidt et al.: Stochastic thermodynamics of a finite quantum system | 737

larger temperature than the heat bath. This follows since
𝛽 − 𝛽0 ≤ 0 implies ⟨ΔQ⟩ ≤ 0 by Theorem 2 and hence,

⟨ΔS⟩
(67)
≤ 𝛽⟨ΔQ⟩ ≤ 0. The second Clausius inequality in (67)

can now be used to extend the statement about the entropy
flow to the case of 𝛽 > 𝛽0, i.e., where the NLS has ini-
tially a lower temperature than the heat bath. In this
case, we always have ⟨ΔQ⟩ ≥ 0 by Theorem 2 and hence,

⟨ΔS⟩
(67)
≥ 𝛽0 ⟨ΔQ⟩ ≥ 0. We thus have proven the following

Theorem 5. Under the preceding conditions and for non-
negative inverse temperatures of the NLS, i.e., 𝛽 ≥ 0 there
holds

(𝛽 − 𝛽0) ⟨ΔS⟩ ≥ 0. (68)

4 Bi-stochastic limit case
As remarked in Section 2, in the limit case 𝛽0 = 0 and if
dn = 1 for all n ∈ , we obtain the special case of a bi-
stochastic transition matrix T satisfying (6). For dn ≡ 1, the
entropy (31) can be identified with the Shannon entropy
[26], up to the choice of units. Physically, this case can
be realized by an NLS subject to external time-dependent
forces but not coupled to a heat bath. Although this special
case is actually outside the thematic scope of this article,
it will be instructive to investigate it closer. The mathemat-
ics we used does not presuppose 𝛽0 ≠ 0 and hence, this
special case should be included in the preceding sections.
According to the mentioned physical realization of the bi-
stochastic limit case, we will refer to the random variable
ΔE as “work” and denote it by the variable𝑤.

In particular, we consider the “Clausius inequalities”
(67) and re-write them as

0 ≤ ⟨ΔS⟩ ≤ 𝛽⟨𝑤⟩. (69)

For 𝛽 ≥ 0, it implies ⟨𝑤⟩ ≥ 0, a result that could also have
been derived from the usual Jarzynski equation, see, e.g.,
[27].

Another consequence of (69) is ⟨ΔS⟩ ≥ 0 (in contrast
to ⟨ΔS⟩ = 0 for classical adiabatic work processes). This
result can be independently proven as follows: every bi-
stochastic matrix T can be written as a convex sum of per-
mutational matrices. This is the Birkhoff–von Neumann
theorem, see [28, 29]. The Shannon entropy is invariant
under permutations, but increases under a convex sum of
probability distributions. The latter is due to the concavity
of the Shannon entropy, see, e.g., Ex. 11.21 in [18].

5 Analytical example
As an example where the transition matrix T can be exactly
calculated, we consider a single spin with spin quantum
number s = 1 coupled to a harmonic oscillator that serves
as a heat bath. Hence, we have a three-level system, =
{1,0,−1} and N = || || = 3. The total Hamiltonian is

H = H1 + H2 + H12, (70)

where
H1 = s

∼z ⊗ 𝟙HO (71)

H2 = 𝟙spin ⊗

∞∑

n=0

(
n+ 1

2

)
|n⟩ ⟨n| (72)

H12 = 𝜆
(

s
∼
+⊗ A+ s

∼
−⊗ A∗

)
. (73)

Here s
∼x, s

∼y, s
∼z are the three spin operators and s

∼
± =

s
∼x ± is

∼y the two corresponding ladder operators. Simi-
larly, A and A∗ are the lowering and raising operators,
respectively, for the harmonic oscillator, such that H2 =
𝟙spin ⊗

(
A∗ A + 1

2𝟙HO

)
and (|n⟩)n=0,1,2,… denotes the eigen-

basis of A∗A. 𝜆 is a real parameter. Further, let (|m⟩)m=1,0,−1
be the eigenbasis of s

∼z such that (|m, n⟩)m∈ ,n∈ℕ is an
orthonormal basis of the total Hilbert space.

The Hamiltonian (70)–(73) strongly resembles the
Jaynes–Cummings model [30], which describes the inter-
action of a two-level system with a quantized radiation
field. The extension to three-level systems has also been
considered [31–33], but always assumes non-uniform level
spacings and two radiation modes.

This system is analytically solvable since H12 com-
mutes with H1 + H2. The eigenspaces of H1 + H2 are,
hence, left invariant under H. They are of the following
form: either the singlet spanned by |−1,0⟩, or the dou-
blet spanned by |0,0⟩ and |−1, 1⟩, or an infinite number of
triplets spanned by |1, n− 1⟩, |0, n⟩, and |−1, n+ 1⟩, where
n = 1, 2, 3,…. Within the triplets H has the form

H(n) =

⎛
⎜
⎜
⎜
⎜
⎝

n+ 1
2

𝜆
√

2n 0

𝜆
√

2n n+ 1
2

𝜆
√

2n+ 2

0 𝜆
√

2n+ 2 n+ 1
2

⎞
⎟
⎟
⎟
⎟
⎠

, (74)

and the corresponding eigenvalues

E(n)
i ∈

{
n+ 1

2
, n+ 1

2
± 𝜆
√

4n+ 2
}
. (75)

Let 𝜋 denote a Gibbs state of the harmonic oscillator,
such that

𝜋n =
1
Z

e−𝛽0(n+ 1
2 ) (76)
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Z =
∑

n∈ℕ
e−𝛽0(n+ 1

2 ) = e−
𝛽0
2

1 − e−𝛽0
. (77)

We choose as an initial mixed state

𝜌 =
∑

mn
pm𝜋n |mn⟩ ⟨mn| , (78)

with an arbitrary probability distribution p. After the time
t, this state will evolve into

𝜌′ = e−iHt 𝜌 eiHt. (79)

To simplify the following calculation, we will consider
the time average

𝜌′′ = 𝜌′ = e−iHt 𝜌 eiHt . (80)

The time averaged probability of finally occupying the state
r ∈ will be

qr =
∑

k
⟨rk| 𝜌′′ |rk⟩ =:

∑

m
Trm pm. (81)

The latter equation follows since qr is a linear function of
p and defines the transition matrix T. From what has been
said above it is clear that T will be obtained by a summation
over all eigenspaces of H 1 + H2. It proves to be independent
of 𝜆 due to time averaging. After some computer-algebraic
calculations, we obtain

T1,1 = 1
32
(

e𝛽0 − 1
) ( 12

e𝛽0 − 1
+ 8 e

𝛽0
2 coth−1

(
e
𝛽0
2

)

+ 3 e−𝛽0Φ
(

e−𝛽0 , 2, 3
2

)
− 8
)
, (82)

T1,0 =
1
4

(
1 − 2 sinh

(
𝛽0
2

)
tanh−1

(
e−

𝛽0
2

))
, (83)

T1,−1 =
3

32
e−3𝛽0

(
4e𝛽0 −

(
e𝛽0 − 1

)
Φ
(

e−𝛽0 , 2, 3
2

))
, (84)

T0,1 =
1
4

e𝛽0

(
1− 2 sinh

(
𝛽0
2

)
tanh−1

(
e−

𝛽0
2

))
, (85)

T0,0 =
1
2
, (86)

T0,−1 =
1
4

e−
3𝛽0

2

(
e
𝛽0
2 +
(

e𝛽0 − 1
)

tanh−1
(

e−
𝛽0
2

))
, (87)

T−1,1 =
3

32
e−𝛽0

(
4 e𝛽0 −

(
e𝛽0 − 1

)
Φ
(

e−𝛽0 , 2, 3
2

))
, (88)

T−1,0 =
1
4

(
2 sinh

(
𝛽0
2

)
tanh−1

(
e−

𝛽0
2

)
+ 1
)
, (89)

T−1,−1 = 1
32

e−3𝛽0
(

4 e2𝛽0 (11 sinh (𝛽0)+ 5 cosh (𝛽0)

− 4 sinh
(
𝛽0
2

)
coth−1

(
e
𝛽0
2

)
− 2
)

+ 3
(

e𝛽0 − 1
)
Φ
(

e−𝛽0 , 2, 3
2

))
.

(90)

HereΦ(z, s, a) :=∑k∈ℕ
zk

(k+a)s denotes the Lerch’s tran-
scendent, see Section 25.14 in [34]. It can be shown that
T is a left stochastic matrix and leaves the probability
distribution

p(0) = 1
e−𝛽0 + e𝛽0 + 1

(
e−𝛽0 , 1, e𝛽0

)
(91)

invariant that corresponds to a Gibbs state with inverse
temperature 𝛽0. It follows that Assumption 1 is satisfied
and hence the results derived in Sections 2 and 3 hold for
our example. We illustrate this by showing the three func-
tions 𝛽ΔQ, ΔS, and 𝛽0ΔQ for −5𝛽0 ≤ 𝛽 ≤ 5𝛽0 in Figure 3
satisfying the Clausius inequalities (67). For this example,
we make the following observation, which seems to be typ-
ical for NLS coupled to a heat bath: If the three-level system
is initially hotter than the heat bath, 0 < 𝛽 < 𝛽0, the max-
imal heat transfer |ΔQ| results for 𝛽 → 0, as expected. In
contrast, the entropy transfer |ΔS| takes its maximum at
a positive inverse temperature 𝛽max, see Figure 3. This is
remarkable in the sense that one might naively think that in
nonequilibrium thermodynamics the identityΔS = 𝛽0ΔQ,

Figure 3: Plot of the two ‘‘Clausius heat terms’’ 𝛽0ΔQ, 𝛽ΔQ, and the
‘‘entropy increase’’ ΔS as functions of the inverse temperature 𝛽 of
the three-level system considered in Section 5 and the
corresponding transition matrix T according to (82)–(90). The range
of the inverse temperature 𝛽 is chosen as −5𝛽0 ≤ 𝛽 ≤ 5𝛽0 and the
calculations have been done for 𝛽0 = 1. It is remarkable that for
0 < 𝛽 < 𝛽0, the absolute value |ΔS| has its maximum not for 𝛽 = 0,
as it is the case for |𝛽0ΔQ|, but for some positive inverse
temperature of 𝛽max ≈ 0.279896.
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which holds for linear thermodynamics, could be weak-
ened to a monotonic relation between ΔS and 𝛽0ΔQ.
However, this is not correct: if one increases the tempera-
ture above 1∕𝛽max, the reduced heat transfer ||𝛽0ΔQ|| also
increases, while the entropy transfer |ΔS| decreases.

6 Summary and outlook
In this paper, we have presented an approach to the time-
honored problem of the second law for a finite quantum
system coupled to a heat bath. We have re-derived several
known partial results, in part under weaker assumptions,
and integrated them into a theory based on general J-
equations. These resemble the famous Jarzynski equation
and imply certain second law-like inequalities. It will be in
order to provide a general survey that shows their logical
dependencies, see Figure 4.

The most general J-equation is (C5), the central (red)
equation of Figure 4. It holds for two sequential measure-
ments under rather general assumptions, see Theorem 6,
and contains two undetermined probability distributions
p̃ and p(0). There are two principal specialization paths that
physically correspond to “work processes” (upward direc-
tion in Figure 4) and “heat processes” (downward direction
in Figure 4).

For “work processes” performed on closed systems
that are only marginally touched in this paper, the tran-
sition matrix T is bi-stochastic in the modified sense of
Eq. (7). This entails the J-equation (27) in [15] (the upper
blue equation in Figure 4) that can be further specialized
according to the choice of p̃. The usual Jarzynski equations
are derived for the choice of p̃ = p, whereas the alternative
p̃ = q :=T p leads to a scenario reminiscent of earlier work
of W. Pauli and F. Klein, see [15, 16].

By contrast, the “heat processes” performed on sys-
tems without external forces but under contact with a
heat bath are characterized by T p(0) = p(0) and lead to
another special J-equation (19) (the lower green equation
in Figure 4) that is of central importance for this work.
Again, there are two further options. The choice p̃ = p and
the restriction to probability distribution given by Gibbs
states leads to (23) and, by means of Jensen’s inequality
(JI), to the relation (26). The latter states that, on statistical
average, heat always flows from the hot system to the cold
bath and vice versa.

For the analogous statement (68) about the average
flow of entropy, we additionally required the two Clau-
sius inequalities. The first one, ΔS ≤ 𝛽ΔQ, is a simple
consequence of the Gibbs inequality (GI). The second

one, 𝛽0ΔQ ≤ ΔS, follows via (JI) from the mentioned J-
equation (19) and the choice p̃ = q :=T p.

In the following, we will relate our results to similar
statements found in the relevant literature.

Jarzynski and Wójcik [19] consider two systems which
initially have different temperatures, then interact weakly
and finally (in the quantum case) are subjected to a sepa-
rate energy measurement for both systems. They derive
a Crooks-like equality, and from this a Jarzynski-type
equation, Eq. (18) in [19] that corresponds to our Eq. (23).
Important assumptions are: neglect of the interaction
between both systems for the heat balance and microre-
versibility. In contrast, we will focus on the 1st system
and describe the second one only in a general way by the
transition matrix T. Our assumptions are weaker: T leaves
invariant some Gibbs state without neglecting the interac-
tion; time reversal invariance is not needed (and actually
will be violated for the example presented in Section 5).

Jennings and Rudolph [20] also consider two systems,
which, however, can also be initially entangled. The special
case, which is interesting for our purposes, is that both sys-
tems are uncorrelated at the beginning and have different
temperatures. A first Clausius inequality, corresponding to
our (38), is derived from the property that the Gibbs state
minimizes the free energy. From this directly, without using
a Jarzynski-type equation, the heat flow inequality, Eq. (3)
in [20], follows, which corresponds to our Eq. (26), but
again assuming, as in [19], that the amount of heat emitted
by the first system is exactly absorbed by the second one.

The second Clausius inequality that appears in our
(67), can also be found in Chapter 4.1 of [21], and is proved
there via the “monotonicity of the KL divergence”. This
proof is closely related to ours, since the said monotonicity
follows from the general J-equation, see Appendix C. The
following statements in [21] interpreting the second Clau-
sius inequality as a form of the second law of stochastic
thermodynamics should be taken with some caution, see
the discussion above.

Another related result has been proven already in 1978
by Spohn [22]: for an open quantum mechanical system
described by a quantum dynamical semigroup that leaves
invariant a certain state 𝜌0, the entropy production is non-
negative. The latter is defined as the time derivative of the
KL divergence between 𝜌t and 𝜌0. This result has been
recently reformulated in [23] in a way compatible with our
approach; Eqs. (16) and (17) of that reference immediately
imply the second Clausius inequality.

Summarizing the state of research, partial formula-
tions of the second law for the coupling of an NLS to a heat
bath can be found to a sufficient extent in recent years,
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Figure 4: Schematic representation of various
forms of J-equations and inequalities and their
logical dependencies. Detailed explanations
are given in Section 4.
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but they have to be integrated into a unified theory and
proved under conditions as weak as possible. This has
been attempted in the present work.

Moreover, we have presented an analytically solvable
example illustrating our approach. It consists of a three-
level system (a spin with s = 1) coupled to a harmonic
oscillator. For this example, our central Assumption 1, say-
ing that the transition matrix has a fixed point of Gibbs
type, is exactly satisfied. It would be a task for the future
to investigate the conditions under which this assumption
holds exactly or approximately.
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Appendix A: Proof of Proposition 1
First, we will calculate the energy increase in the weak
coupling limit:

ΔE = E(T p)− E(p) =
∑

mn
Tmn pn Em −

∑

n
pn En (A1)

(45)
= 𝜀
∑

mn
tmn pn Em + O

(
𝜀2) . (A2)

Recall that the (left) stochasticity of T implies
∑

m
tmn = 0. (A3)

Further,

𝜕

𝜕qm
S(q)
||||q=p

= − 𝜕

𝜕qm

∑

n
qn log qn

dn

|||||q=p

−
(

1 + log pm
dm

)
(A4)

and hence,

𝜀
𝜕

𝜕𝜀
S(q)
||||𝜀=0

= 𝜀
∑

m

𝜕qm
𝜕𝜀

𝜕

𝜕qm
S(q)
||||q=p

(A5)

(45,A4)
= − 𝜀

∑

m

(
∑

n
tmn pn

)(
1 + log pm

dm

)
(A6)

(A3)
= − 𝜀

∑

m

(
∑

n
tmn pn

)

log pm
dm

(A7)

(1)
=𝜀
∑

mn
tmn pn (𝛽Em + log Z) (A8)

(A3)
= 𝜀 𝛽

∑

mn
tmn pn Em (A9)

(A1)
= 𝛽ΔE + O

(
𝜀2) . (A10)

Finally,

ΔS = 𝜀 𝜕

𝜕𝜀
S(q)
||||𝜀=0

+ O
(
𝜀2) = 𝛽 ΔE + O

(
𝜀2) , (A11)

which completes the proof of Proposition 1. □

Appendix B: Proof of a ≥ 0
We will present two proofs of the fact that the slope a of
𝛽0⟨ΔQ⟩ considered as a function of 𝛽 will be non-negative
at 𝛽 = 𝛽0.

B.1 First proof

We write a as double sum according to (60) and add the
same sum but with n and m interchanged. This yields

a = 𝛽0
2
∑

nm

(
Tnm p(0)

m Em − Tmn p(0)
n En

)
(Em − En) . (B1)

Using

Tnm p(0)
m = 1

2

(
Tnm p(0)

m + Tmn p(0)
n

)

+ 1
2

(
Tnm p(0)

m − Tmn p(0)
n

)
, (B2)

and the analogous expression for Tmn p(0)
n , we obtain

a = 𝛽0
4
∑

nm

((
Tnm p(0)

m + Tmn p(0)
n

)
Em (Em − En)

+
(

Tnm p(0)
m − Tmn p(0)

n

)
Em (Em − En)

−
(

Tmn p(0)
n + Tnm p(0)

m

)
En (Em − En)

−
(

Tmn p(0)
n − Tnm p(0)

m

)
En (Em − En)

)
(B3)

= 𝛽0
4
∑

nm

((
Tnm p(0)

m + Tmn p(0)
n

)
(Em − En)2

+
(

Tnm p(0)
m − Tmn p(0)

n

) (
E2

m − E2
n
))

(B4)
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The first term in (B4) is non-negative and the second
one vanishes according to

∑

nm

(
Tnm p(0)

m − Tmn p(0)
n

)
E2

m

=
∑

m

(
p(0)

m E2
m − p(0)

m E2
m

)
= 0, (B5)

and
∑

nm

(
Tnm p(0)

m − Tmn p(0)
n

)
E2

n

=
∑

n

(
p(0)

n E2
n − p(0)

n E2
n

)
= 0. (B6)

Here, we have used T that is left stochastic,
see (5), and leaves p(0) fixed, see (10), according to
Assumption 1. □

B.2 Second proof

The second proof is based on the cumulant expansion for
a random variable X, see, e.g., 26.1.12 in [35],

log
⟨

et X⟩ =
∞∑

n=1
𝜅n

tn

n! = ⟨X⟩ t + 1
2
𝜎2(X)t2 + · · · , (B7)

defining the cumulants

𝜅1 = ⟨X⟩ , 𝜅2 = 𝜎2(X) :=
⟨

X2⟩− ⟨X⟩2 , (B8)

𝜅3 =
⟨

(X − ⟨X⟩)3⟩ ,… . (B9)

In our case, we set X = ΔQ and t = −(𝛽 − 𝛽0) and use
Eq. (23) to obtain

0 = log 1
(23)
= log

⟨
e−(𝛽−𝛽0)ΔQ

⟩ (B7)
= − ⟨ΔQ⟩ (𝛽 − 𝛽0)

+ 1
2
𝜎2(ΔQ)(𝛽 − 𝛽0)2 + O(𝛽 − 𝛽0)3. (B10)

Hence,

𝛽0 ⟨ΔQ⟩ = 𝛽0
2
𝜎2(ΔQ)(𝛽 − 𝛽0)+ O(𝛽 − 𝛽0)2. (B11)

This proves that a = 𝛽0
2 𝜎

2(ΔQ) ≥ 0 since the variance
𝜎2(…) of every random variable is non-negative. □

Appendix C: General J-equation
We will sketch the general probabilistic framework, anal-
ogous to that in [15] and already used in Section 2 for a
special case. It deals with two sequential measurements
and the corresponding general J-equation. We have two

sets of outcomes,  for the first and  for the second mea-
surement. Further, there exists a probability distribution

P: ×  → [0, 1] (C1)

of the form

P(i, j) = T ji pi, i ∈  and j ∈  , (C2)

where T is a (left) stochastic matrix and p: → [0, 1]a prob-
ability distribution. P will be used to calculate expectation
values ⟨Y⟩ for random variables Y: ×  → ℝ.

For simplicity, we assume that  and  are finite and
pi > 0 for all i ∈ . Let p̃: → [0, 1] and p(0): → (0, 1) be
two further probability distributions and define

q j :=
∑

i
T ji pi, j ∈  (C3)

q(0)
j :=

∑

i
T ji p(0)

i , j ∈  . (C4)

Then, the following holds.

Theorem 6. (General J-equation)

⟨
p(0)

i p̃ j

q(0)
j pi

⟩

= 1. (C5)

Proof. ⟨
p(0)

i p̃ j

q(0)
j pi

⟩

=
∑

i j
P(i, j)

p(0)
i p̃ j

q(0)
j pi

(C6)

(C2)
=
∑

i j
T ji i

p(0)
i p̃ j

q(0)
j i

(C7)

(C4)
=
∑

j

(0)
j

p̃ j
(0)
j

=
∑

j
p̃ j = 1. (C8)

□

The general J-equation (C5) is more of a template that
can be used to generate further equations by choosing a
special form of the general probability distribution p̃. Note
that it is not required that the probability distribution p(0)

is invariant under T; if this is the case and, moreover,
 =  ≡  then the special form of Eq. (19) results.

The J-equation (27) in [15] follows for the choice of
p(0)

i = d(i)
d for all i ∈ , where d := ∑i d(i) that leads to a

modified bi-stochasticity of T in the sense of Eq. (25) in [15].
As for every Jarzynski-type equation, the applica-

tion of Jensen’s inequality (JI) using the concave function
x ↦ log x yields a second law-like inequality. In the case
of (C5), this inequality turns out to be equivalent to the
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“monotonicity of the KL divergence”, see [21], if we set
p̃ j = q j for all j ∈  . This will be shown in the following.

0 = log 1
(C5)
= log

⟨
p(0)

i q j

q(0)
j pi

⟩

(C9)

(JI)
≥

⟨

log
p(0)

i q j

q(0)
j pi

⟩

(C10)

=
(⟨

log q j
⟩
−
⟨

log q(0)
j

⟩)

−
(
⟨log pi⟩−

⟨
log p(0)

i

⟩)
. (C11)

We further obtain
⟨

log q j
⟩
=
∑

i j
T ji pi log q j =

∑

j
q j log q j, (C12)

and
⟨

log q(0)
j

⟩
=
∑

i j
T ji pi log q(0)

j =
∑

j
q j log q(0)

j , (C13)

hence,
⟨

log q j
⟩
−
⟨

log q(0)
j

⟩
=
∑

j
q j log

q j

q(0)
j

= S
(

q‖q(0)
)
.

(C14)
Analogously,

⟨log pi⟩−
⟨

log p(0)
i

⟩
=
∑

i
pi log pi

p(0)
i

= S
(

p‖p(0)
)
,

(C15)
and hence, (C10) is equivalent to the monotonicity of the
KL-divergence written as

S
(

q‖q(0)
)
≤ S
(

p‖p(0)
)
. (C16)

As mentioned in Section 1, the general J-equation
belongs to the framework of stochastic thermodynamics
and is as such neither quantum nor classical. Nevertheless,
it will be instructive to sketch realizations of the framework
in these two domains.

We begin with the quantum domain. Consider a finite-
dimensional system Σ1 initially described by a statistical
operator with spectral decomposition 𝜌1 =

∑
i xiPi such

that

1 = Tr 𝜌1 =
∑

i
xi Tr Pi =:

∑

i
xi di =:

∑

i
pi. (C17)

In the example studied in this paper, the Pi would be
the eigenprojections of the Hamiltonian H and the xi the
corresponding eigenvalues of 1

Z exp (−𝛽H).
A first projective measurement corresponding to the

complete family of mutually orthogonal projections (Pi)i∈

leaves 𝜌1 invariant. The system is then coupled to some
auxiliary system Σ2 with initially mixed state 𝜌2 and the
total system undergoes a finite time evolution described
by some unitary operator U defined in the total Hilbert
space. Finally, a quantum measurement atΣ1 is performed
corresponding to a complete family of mutually orthogonal
projections

(
Q j
)

j∈ . The probability qj of the outcome j ∈
 of the final measurement is given by

q j = Tr
((

Q j ⊗ 𝟙
)

U (𝜌1 ⊗𝜌2) U∗) (C18)

=
∑

i
pi Tr

((
Q j ⊗ 𝟙

)
U
(

Pi
di
⊗𝜌2

)
U∗
)

(C19)

=:
∑

i
T ji pi. (C20)

It is straightforward to check that the matrix T defined by
(C20) is (left) stochastic using

∑
jQ j = 𝟙.

We note that it is not necessary to take the total initial
state as a product state 𝜌1 ⊗𝜌2, although this is usually
assumed in the literature on the second law, e.g., in p. 113
of [1], or pp. 230602−3 of [19], and also in this paper, see
Section 2. But if we assume an arbitrary total initial state
𝜌 and perform the first projective measurement according
to the family (Pi ⊗ 𝟙)i∈ , then the resulting state will be
𝜌′ = ∑i∈ (Pi ⊗ 𝟙) 𝜌 (Pi ⊗ 𝟙), which is not entangled but
may, nevertheless, have some “classical” correlation. It
yields the initial probabilities pi = Tr (Pi ⊗ 𝟙) 𝜌 and

q j = Tr
(
(

Q j ⊗ 𝟙
)

U
(
∑

i
pi

(Pi ⊗ 𝟙) 𝜌 (Pi ⊗ 𝟙)
Tr (Pi ⊗ 𝟙) 𝜌

)

U∗

)

(C21)

=:
∑

i
T ji pi, (C22)

analogously to (C20).
In the classical case, we work with a phase space

( ,d𝜇) and an initial probability density 𝜌 satisfying

∫



𝜌d𝜇 = 1. (C23)

The phase space is decomposed according to the finite
partition  =⨄i∈i and 𝜌 is correspondingly written as

𝜌 =
∑

i
𝜒i 𝜌 =

∑

i
pi 𝜌i, (C24)

where
pi :=

∫
i

𝜌d𝜇 , 𝜌i := 𝜒i 𝜌

pi
, (C25)

and 𝜒 i is the characteristic function of i for all i ∈ .
The time evolution of the classical system is described by
a measure-preserving map U : →  , such that 𝜌 will be
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transformed into 𝜌′ = 𝜌 ⚬U−1. Finally, a discrete measure-
ment is performed according to another finite partition
 =⨄ j∈  j. The probability qj of finding the system in
the subset j is given by

q j =
∫
 j

𝜌′ d𝜇 =
∑

i
pi
∫
 j

𝜌i ⚬U−1 d𝜇 =:
∑

i
T ji pi. (C26)

It is straightforward to check that the matrix T defined by
(C26) is (left) stochastic.
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