Startseite Remarks on axion-electrodynamics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Remarks on axion-electrodynamics

  • Stanley A. Bruce ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2021

Abstract

We propose a simple generalization of axion-electrodynamics (A-ED) for the general case in which both scalar and pseudoscalar axion-like fields are present in the (scalar) Lagrangian of the system. We make some remarks on the problem of finding solutions to the differential equations of motion characterizing the propagation of coupled axion fields and electromagnetic (EM) waves. Our primary goal (which is not explored here) is to understand and predict novel phenomena that have no counterpart in pseudoscalar A-ED. With this end in view, we discuss on very general grounds possible processes related to scalar (and pseudoscalar) axions, e.g., the Primakoff effect; the Compton scattering; and, notably, the EM two-photon axion decay.


Corresponding author: Stanley A. Bruce, Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de Los Andes, Santiago, Chile, E-mail:

Award Identifier / Grant number: FAI 12.17

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Universidad de Los Andes, Santiago, Chile, through grant FAI 12.17.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. Peccei and H. R. Quinn, “CP conservation in the presence of pseudoparticles,” Phys. Rev. Lett., vol. 38, p. 1440, 1977, https://doi.org/10.1103/physrevlett.38.1440.Suche in Google Scholar

[2] R. Peccei, “The strong CP problem and axions, in axions,” in Lecture Notes in Physics, M. Kuster, G. Raffelt, and B. Beltrán, Eds., Berlin, Springer-Verlag, 2008, p. 741.10.1007/978-3-540-73518-2_1Suche in Google Scholar

[3] J. E. Kim and G. Carosi, “Axions and the strong CP problem,” Rev. Mod. Phys., vol. 82, p. 557, 2010, https://doi.org/10.1103/revmodphys.82.557.Suche in Google Scholar

[4] J. Preskill, M. B. Wise, and W. Frank, “Cosmology of the invisible axion,” Phys. Lett. B, vol. 120, p. 127, 1983, https://doi.org/10.1016/0370-2693(83)90637-8.Suche in Google Scholar

[5] S. Weinberg, “A new light boson?,” Phys. Rev. Lett., vol. 40, p. 223, 1978, https://doi.org/10.1103/physrevlett.40.223.Suche in Google Scholar

[6] F. Wilczek, “Problem of strong and invariance in the presence of instantons,” Phys. Rev. Lett., vol. 40, p. 279, 1978, https://doi.org/10.1103/physrevlett.40.279.Suche in Google Scholar

[7] P. Sikivie, “Axion cosmology, in axions,” in Lecture Notes in Physics, M. Kuster, G. Raffelt, and B. Beltrán, Eds., Berlin, Springer-Verlag, 2008, p. 741.10.1007/978-3-540-73518-2_2Suche in Google Scholar

[8] R. Hlozek, D. Grin, P. G. Ferreira, and D. J. E. Marsh, “A search for ultralight axions using precision cosmological data,” Phys. Rev. D, vol. 91, p. 103512, 2015, https://doi.org/10.1103/physrevd.91.103512.Suche in Google Scholar

[9] D. J. E. Marsh, “Axion cosmology,” Phys. Rep., vol. 643, pp. 1–79, 2016, https://doi.org/10.1016/j.physrep.2016.06.005.Suche in Google Scholar

[10] J. B. Bauer, D. J. E. Marsh, R. Hlozek, et al.., Intensity Mapping as a Probe of Axion Dark Matter, MNRAS, 2020, Accepted Manuscript [arXiv:2003.09655v1].10.1093/mnras/staa3300Suche in Google Scholar

[11] P. Svrcek and E. Witten, “Axions in string theory,” JHEP, vol. 6, p. 51, 2006.10.2172/883239Suche in Google Scholar

[12] J. E. Kim, “Light pseudoscalars, particle physics and cosmology,” Phys. Rep., vol. 150, pp. 1–177, 1987, https://doi.org/10.1016/0370-1573(87)90017-2.Suche in Google Scholar

[13] G. G. Raffelt, “Astrophysical axion bounds, in axions,” in Lecture Notes in Physics, M. Kuster, G. Raffelt, and B. Beltrán, Eds., Berlin, Springer-Verlag, 2008, p. 741.Suche in Google Scholar

[14] E. Pajer and M. Peloso, “A review of axion inflation in the era of planck, class,” Quantum Grav, vol. 30, p. 214002, 2013, https://doi.org/10.1088/0264-9381/30/21/214002.Suche in Google Scholar

[15] L. Rosenberg and K. van Bibber, “Searches for invisible axions,” Phys. Rep., vol. 325, p. 1, 2000, https://doi.org/10.1016/s0370-1573(99)00045-9.Suche in Google Scholar

[16] R. Bradley, J. Clarke, D. Kinion, et al.., “Microwave cavity searches for dark-matter axions,” Rev. Mod. Phys., vol. 75, p. 777, 2003, https://doi.org/10.1103/revmodphys.75.777.Suche in Google Scholar

[17] S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, “Searches for astrophysical and cosmological axions,” Annu. Rev. Nucl. Part Sci., vol. 56, p. 293, 2006, https://doi.org/10.1146/annurev.nucl.56.080805.140513.Suche in Google Scholar

[18] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental searches for the axion and axion-like particles,” Annu. Rev. Nucl. Part Sci., vol. 65, p. 485, 2015, https://doi.org/10.1146/annurev-nucl-102014-022120.Suche in Google Scholar

[19] A. Karch, “Electric-magnetic duality and topological insulators,” Phys. Rev. Lett., vol. 103, p. 171601, 2009, https://doi.org/10.1103/physrevlett.103.171601.Suche in Google Scholar

[20] N. Anderson and A. M. Arthurs, “A variational principle for Maxwell’s equations,” Int. J. Electron., vol. 45, p. 333, 1978, https://doi.org/10.1080/00207217808900916.Suche in Google Scholar

[21] J. Rosen, “Redundancy and superfluity for electromagnetic fields and potentials,” Am. J. Phys., vol. 48, p. 1071, 1980, https://doi.org/10.1119/1.12289.Suche in Google Scholar

[22] P. Sikivie, “On the interaction of magnetic monopoles with axionic domain walls,” Phys. Lett. B, vol. 137, p. 353, 1984, https://doi.org/10.1016/0370-2693(84)91731-3.Suche in Google Scholar

[23] W. Frank, “Quantum field theory,” Rev. Mod. Phys., vol. 71, p. S85, 1999.10.1103/RevModPhys.71.S85Suche in Google Scholar

[24] M. Gasperini, “Axion production by electromagnetic fields,” Phys. Rev. Lett., vol. 59, p. 396, 1987, https://doi.org/10.1103/physrevlett.59.396.Suche in Google Scholar

[25] L. Jacobs, “Axion-packed superconductors,” Physica B, vol. 152, p. 288, 1998.10.1016/0921-4526(88)90102-0Suche in Google Scholar

[26] X. L. Qi, T. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B, vol. 78, p. 19542, 2008, Erratum Phys. Rev. B 81, 159901 (2010), https://doi.org/10.1103/physrevb.78.195424.Suche in Google Scholar

[27] A. A. Burkov, “Chiral anomaly and transport in Weyl metals,” J. Phys. Condens. Matter, vol. 27, p. 113201, 2015, https://doi.org/10.1088/0953-8984/27/11/113201.Suche in Google Scholar

[28] R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, “Dynamical axion field in topological magnetic insulators,” Nat. Phys., vol. 6, p. 284, 2010, https://doi.org/10.1038/nphys1534.Suche in Google Scholar

[29] W. Frank, “Two applications of axion electrodynamics,” Phys. Rev. Lett., vol. 58, p. 1799, 1987.10.1103/PhysRevLett.58.1799Suche in Google Scholar

[30] E. Witten, “Dyons of charge,” Phys. Lett. B, vol. 86, p. 283, 1979, https://doi.org/10.1016/0370-2693(79)90838-4.Suche in Google Scholar

[31] M. C. Huang and P. Sikivie, “Structure of axionic domain walls,” Phys. Rev. D, vol. 32, p. 1560, 1985, https://doi.org/10.1103/physrevd.32.1560.Suche in Google Scholar

[32] Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electro-dynamics,” Phys. Lett. A, vol. 341, p. 357, 2005, https://doi.org/10.1016/j.physleta.2005.05.006.Suche in Google Scholar

[33] Y. Semertzidis, R. Cameron, G. Cantatore, et al.., “Limits on the production of light scalar and pseudoscaIar particles,” Phys. Rev. Lett., vol. 64, p. 2988, 1990, https://doi.org/10.1103/physrevlett.64.2988.Suche in Google Scholar

[34] K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, “Search for ultralight scalar dark matter with atomic spectroscopy,” Phys. Rev. Lett., vol. 115, p. 011802, 2015, https://doi.org/10.1103/physrevlett.115.011802.Suche in Google Scholar

[35] G. Kopp, G. Lawrence, and R. Gary, “The total irradiance monitor (TIM): science results,” Sol. Phys., vol. 230, p. 129, 2005, https://doi.org/10.1007/s11207-005-7433-9.Suche in Google Scholar

[36] M. Yamada, H. Ji, S. Hsu, et al.., “Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma,” Phys. Rev. Lett., vol. 78, p. 3117, 1997, https://doi.org/10.1103/physrevlett.78.3117.Suche in Google Scholar

[37] Y. Itin, “Wave propagation in axion electrodynamics,” Gen. Relativ. Gravit., vol. 40, p. 1219, 2008, https://doi.org/10.1007/s10714-007-0599-8.Suche in Google Scholar

[38] C. Herdeiro and J. Oliveira, “Electromagnetic dual Einstein–Maxwell-scalar models,” JHEP, vol. 07, p. 130, 2020.10.1007/JHEP07(2020)130Suche in Google Scholar

[39] C. Herdeiro and J. Oliveira, “On the inexistence of self-gravitating solitons in generalised axion electrodynamics,” Phys. Lett. B, vol. 800, p. 135076, 2020, https://doi.org/10.1016/j.physletb.2019.135076.Suche in Google Scholar

[40] G. G. Raffelt, “Astrophysical axion bounds diminished by screening effects,” Phys. Rev. D, vol. 33, p. 897, 1986, https://doi.org/10.1103/physrevd.33.897.Suche in Google Scholar

[41] D. A. Dicus, E. W. Kolb, V. L. Teplitz, and R. V. Wagoner, “Astrophysical bounds on the masses of axions and Higgs particles,” Phys. Rev. D, vol. 18, p. 1829, 1978, https://doi.org/10.1103/physrevd.18.1829.Suche in Google Scholar

[42] N. V. Mikheev, A. Y. Parkhomenko, and L. A. Vassilevskaya, “Axion decay of a photon in an external electromagnetic field,” Mod. Phys. Lett. A, vol. 13, p. 1899, 1998, https://doi.org/10.1142/s021773239800200x.Suche in Google Scholar

[43] L. A. Vassilevskaya, N. V. Mikheev, and A. Y. Parkhomenko, “Magnetic-field influence on radiative axion decay into photons of the same polarization,” Phys. At. Nucl., vol. 60, p. 2041, 1997.Suche in Google Scholar

[44] M. Fukugita, S. Watamura, and M. Yoshimura, “Astrophysical constraints on a new light axion and other weakly interacting particles,” Phys. Rev. D, vol. 26, p. 1840, 1982, https://doi.org/10.1103/physrevd.26.1840.Suche in Google Scholar

[45] L. M. Krauss, J. E. Moody, and F. Wilczek, “A stellar energy loss mechanism involving axions,” Phys. Lett. B, vol. 144, p. 391, 1984, https://doi.org/10.1016/0370-2693(84)91285-1.Suche in Google Scholar

[46] G. G. Raffelt, Stars as Laboratories for Fundamental Physics, Chicago, University of Chicago Press, 1996.Suche in Google Scholar

[47] J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., vol. 82, p. 664, 1951, https://doi.org/10.1103/physrev.82.664.Suche in Google Scholar

[48] P. Sikivie, N. Sullivan, and D. B. Tanner, “Proposal for axion dark matter detection using an LC circuit,” Phys. Rev. Lett., vol. 112, p. 131301, 2014, https://doi.org/10.1103/physrevlett.112.131301.Suche in Google Scholar

[49] Y. Kahn, B. R. Safdi, and J. Thaler, “Broadband and resonant approaches to axion dark matter detection,” Phys. Rev. Lett., vol. 117, p. 141801, 2016, https://doi.org/10.1103/physrevlett.117.141801.Suche in Google Scholar

[50] N. Du, N. Force, R. Khatiwada, et al.., “Search for invisible axion dark matter with the axion dark matter experiment,” Phys. Rev. Lett., vol. 120, p. 151301, 2018, https://doi.org/10.1103/PhysRevLett.120.151301.Suche in Google Scholar

[51] C. Woohyun, “The coldest axion experiment at CAPP/IBS in Korea,” PoS ICHEP, p. 197, 2016.10.22323/1.282.0197Suche in Google Scholar

[52] L. Zhong, S. Al Kenany, K. M. Backes, et al.., “The HAYSTAC microwave cavity axion experiment,” Phys. Rev. D, vol. 97, p. 092001, 2018, https://doi.org/10.1103/physrevd.97.092001.Suche in Google Scholar

[53] E. Aprile, J. Aalbers, F. Agostini, et al.., “The XENON1T (solar) dark-mater experiment”, 2020 [arXiv:2006.09721v1].Suche in Google Scholar

[54] R. Cameron, G. Cantatore, A. C. Melissinos, et al.., “Search for nearly massless, weakly coupled particles by optical techniques,” Phys. Rev. D, vol. 47, p. 3707, 1993, https://doi.org/10.1103/physrevd.47.3707.Suche in Google Scholar

[55] C. Robilliard, R. Battesti, M. Fouche, et al.., “No “light shining through a wall”: results from a photoregeneration experiment,” Phys. Rev. Lett., vol. 99, p. 190403, 2007, https://doi.org/10.1103/physrevlett.99.190403.Suche in Google Scholar

[56] A. S. Chou, W. Wester, A. Baumbaugh, et al.., “Search for axionlike particles using a variable-baseline photon-regeneration technique,” Phys. Rev. Lett., vol. 100, p. 080402, 2008, https://doi.org/10.1103/physrevlett.100.080402.Suche in Google Scholar

[57] M. S. Turner, “Coherent scalar-field oscillations in an expanding universe,” Phys. Rev. D, vol. 28, p. 1243, 1983, https://doi.org/10.1103/physrevd.28.1243.Suche in Google Scholar

[58] W. Hu, R. Barkana, and A. Gruzinov, “Fuzzy cold dark matter: the wave properties of ultralight particles,” Phys. Rev. Lett., vol. 85, p. 1158, 2000, https://doi.org/10.1103/physrevlett.85.1158.Suche in Google Scholar

[59] D. J. E. Marsh and A.-R. Pop, “Axion dark matter, solitons, and the cusp-core problem,” MNRAS, vol. 451, p. 2479, 2015, https://doi.org/10.1093/mnras/stv1050.Suche in Google Scholar

Received: 2020-10-22
Accepted: 2020-12-18
Published Online: 2021-01-11
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0304/html?lang=de
Button zum nach oben scrollen