Home Remarks on axion-electrodynamics
Article
Licensed
Unlicensed Requires Authentication

Remarks on axion-electrodynamics

  • Stanley A. Bruce ORCID logo EMAIL logo
Published/Copyright: January 11, 2021

Abstract

We propose a simple generalization of axion-electrodynamics (A-ED) for the general case in which both scalar and pseudoscalar axion-like fields are present in the (scalar) Lagrangian of the system. We make some remarks on the problem of finding solutions to the differential equations of motion characterizing the propagation of coupled axion fields and electromagnetic (EM) waves. Our primary goal (which is not explored here) is to understand and predict novel phenomena that have no counterpart in pseudoscalar A-ED. With this end in view, we discuss on very general grounds possible processes related to scalar (and pseudoscalar) axions, e.g., the Primakoff effect; the Compton scattering; and, notably, the EM two-photon axion decay.


Corresponding author: Stanley A. Bruce, Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de Los Andes, Santiago, Chile, E-mail:

Award Identifier / Grant number: FAI 12.17

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Universidad de Los Andes, Santiago, Chile, through grant FAI 12.17.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. Peccei and H. R. Quinn, “CP conservation in the presence of pseudoparticles,” Phys. Rev. Lett., vol. 38, p. 1440, 1977, https://doi.org/10.1103/physrevlett.38.1440.Search in Google Scholar

[2] R. Peccei, “The strong CP problem and axions, in axions,” in Lecture Notes in Physics, M. Kuster, G. Raffelt, and B. Beltrán, Eds., Berlin, Springer-Verlag, 2008, p. 741.10.1007/978-3-540-73518-2_1Search in Google Scholar

[3] J. E. Kim and G. Carosi, “Axions and the strong CP problem,” Rev. Mod. Phys., vol. 82, p. 557, 2010, https://doi.org/10.1103/revmodphys.82.557.Search in Google Scholar

[4] J. Preskill, M. B. Wise, and W. Frank, “Cosmology of the invisible axion,” Phys. Lett. B, vol. 120, p. 127, 1983, https://doi.org/10.1016/0370-2693(83)90637-8.Search in Google Scholar

[5] S. Weinberg, “A new light boson?,” Phys. Rev. Lett., vol. 40, p. 223, 1978, https://doi.org/10.1103/physrevlett.40.223.Search in Google Scholar

[6] F. Wilczek, “Problem of strong and invariance in the presence of instantons,” Phys. Rev. Lett., vol. 40, p. 279, 1978, https://doi.org/10.1103/physrevlett.40.279.Search in Google Scholar

[7] P. Sikivie, “Axion cosmology, in axions,” in Lecture Notes in Physics, M. Kuster, G. Raffelt, and B. Beltrán, Eds., Berlin, Springer-Verlag, 2008, p. 741.10.1007/978-3-540-73518-2_2Search in Google Scholar

[8] R. Hlozek, D. Grin, P. G. Ferreira, and D. J. E. Marsh, “A search for ultralight axions using precision cosmological data,” Phys. Rev. D, vol. 91, p. 103512, 2015, https://doi.org/10.1103/physrevd.91.103512.Search in Google Scholar

[9] D. J. E. Marsh, “Axion cosmology,” Phys. Rep., vol. 643, pp. 1–79, 2016, https://doi.org/10.1016/j.physrep.2016.06.005.Search in Google Scholar

[10] J. B. Bauer, D. J. E. Marsh, R. Hlozek, et al.., Intensity Mapping as a Probe of Axion Dark Matter, MNRAS, 2020, Accepted Manuscript [arXiv:2003.09655v1].10.1093/mnras/staa3300Search in Google Scholar

[11] P. Svrcek and E. Witten, “Axions in string theory,” JHEP, vol. 6, p. 51, 2006.10.2172/883239Search in Google Scholar

[12] J. E. Kim, “Light pseudoscalars, particle physics and cosmology,” Phys. Rep., vol. 150, pp. 1–177, 1987, https://doi.org/10.1016/0370-1573(87)90017-2.Search in Google Scholar

[13] G. G. Raffelt, “Astrophysical axion bounds, in axions,” in Lecture Notes in Physics, M. Kuster, G. Raffelt, and B. Beltrán, Eds., Berlin, Springer-Verlag, 2008, p. 741.Search in Google Scholar

[14] E. Pajer and M. Peloso, “A review of axion inflation in the era of planck, class,” Quantum Grav, vol. 30, p. 214002, 2013, https://doi.org/10.1088/0264-9381/30/21/214002.Search in Google Scholar

[15] L. Rosenberg and K. van Bibber, “Searches for invisible axions,” Phys. Rep., vol. 325, p. 1, 2000, https://doi.org/10.1016/s0370-1573(99)00045-9.Search in Google Scholar

[16] R. Bradley, J. Clarke, D. Kinion, et al.., “Microwave cavity searches for dark-matter axions,” Rev. Mod. Phys., vol. 75, p. 777, 2003, https://doi.org/10.1103/revmodphys.75.777.Search in Google Scholar

[17] S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, “Searches for astrophysical and cosmological axions,” Annu. Rev. Nucl. Part Sci., vol. 56, p. 293, 2006, https://doi.org/10.1146/annurev.nucl.56.080805.140513.Search in Google Scholar

[18] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, “Experimental searches for the axion and axion-like particles,” Annu. Rev. Nucl. Part Sci., vol. 65, p. 485, 2015, https://doi.org/10.1146/annurev-nucl-102014-022120.Search in Google Scholar

[19] A. Karch, “Electric-magnetic duality and topological insulators,” Phys. Rev. Lett., vol. 103, p. 171601, 2009, https://doi.org/10.1103/physrevlett.103.171601.Search in Google Scholar

[20] N. Anderson and A. M. Arthurs, “A variational principle for Maxwell’s equations,” Int. J. Electron., vol. 45, p. 333, 1978, https://doi.org/10.1080/00207217808900916.Search in Google Scholar

[21] J. Rosen, “Redundancy and superfluity for electromagnetic fields and potentials,” Am. J. Phys., vol. 48, p. 1071, 1980, https://doi.org/10.1119/1.12289.Search in Google Scholar

[22] P. Sikivie, “On the interaction of magnetic monopoles with axionic domain walls,” Phys. Lett. B, vol. 137, p. 353, 1984, https://doi.org/10.1016/0370-2693(84)91731-3.Search in Google Scholar

[23] W. Frank, “Quantum field theory,” Rev. Mod. Phys., vol. 71, p. S85, 1999.10.1103/RevModPhys.71.S85Search in Google Scholar

[24] M. Gasperini, “Axion production by electromagnetic fields,” Phys. Rev. Lett., vol. 59, p. 396, 1987, https://doi.org/10.1103/physrevlett.59.396.Search in Google Scholar

[25] L. Jacobs, “Axion-packed superconductors,” Physica B, vol. 152, p. 288, 1998.10.1016/0921-4526(88)90102-0Search in Google Scholar

[26] X. L. Qi, T. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B, vol. 78, p. 19542, 2008, Erratum Phys. Rev. B 81, 159901 (2010), https://doi.org/10.1103/physrevb.78.195424.Search in Google Scholar

[27] A. A. Burkov, “Chiral anomaly and transport in Weyl metals,” J. Phys. Condens. Matter, vol. 27, p. 113201, 2015, https://doi.org/10.1088/0953-8984/27/11/113201.Search in Google Scholar

[28] R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, “Dynamical axion field in topological magnetic insulators,” Nat. Phys., vol. 6, p. 284, 2010, https://doi.org/10.1038/nphys1534.Search in Google Scholar

[29] W. Frank, “Two applications of axion electrodynamics,” Phys. Rev. Lett., vol. 58, p. 1799, 1987.10.1103/PhysRevLett.58.1799Search in Google Scholar

[30] E. Witten, “Dyons of charge,” Phys. Lett. B, vol. 86, p. 283, 1979, https://doi.org/10.1016/0370-2693(79)90838-4.Search in Google Scholar

[31] M. C. Huang and P. Sikivie, “Structure of axionic domain walls,” Phys. Rev. D, vol. 32, p. 1560, 1985, https://doi.org/10.1103/physrevd.32.1560.Search in Google Scholar

[32] Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electro-dynamics,” Phys. Lett. A, vol. 341, p. 357, 2005, https://doi.org/10.1016/j.physleta.2005.05.006.Search in Google Scholar

[33] Y. Semertzidis, R. Cameron, G. Cantatore, et al.., “Limits on the production of light scalar and pseudoscaIar particles,” Phys. Rev. Lett., vol. 64, p. 2988, 1990, https://doi.org/10.1103/physrevlett.64.2988.Search in Google Scholar

[34] K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, “Search for ultralight scalar dark matter with atomic spectroscopy,” Phys. Rev. Lett., vol. 115, p. 011802, 2015, https://doi.org/10.1103/physrevlett.115.011802.Search in Google Scholar

[35] G. Kopp, G. Lawrence, and R. Gary, “The total irradiance monitor (TIM): science results,” Sol. Phys., vol. 230, p. 129, 2005, https://doi.org/10.1007/s11207-005-7433-9.Search in Google Scholar

[36] M. Yamada, H. Ji, S. Hsu, et al.., “Identification of Y-shaped and O-shaped diffusion regions during magnetic reconnection in a laboratory plasma,” Phys. Rev. Lett., vol. 78, p. 3117, 1997, https://doi.org/10.1103/physrevlett.78.3117.Search in Google Scholar

[37] Y. Itin, “Wave propagation in axion electrodynamics,” Gen. Relativ. Gravit., vol. 40, p. 1219, 2008, https://doi.org/10.1007/s10714-007-0599-8.Search in Google Scholar

[38] C. Herdeiro and J. Oliveira, “Electromagnetic dual Einstein–Maxwell-scalar models,” JHEP, vol. 07, p. 130, 2020.10.1007/JHEP07(2020)130Search in Google Scholar

[39] C. Herdeiro and J. Oliveira, “On the inexistence of self-gravitating solitons in generalised axion electrodynamics,” Phys. Lett. B, vol. 800, p. 135076, 2020, https://doi.org/10.1016/j.physletb.2019.135076.Search in Google Scholar

[40] G. G. Raffelt, “Astrophysical axion bounds diminished by screening effects,” Phys. Rev. D, vol. 33, p. 897, 1986, https://doi.org/10.1103/physrevd.33.897.Search in Google Scholar

[41] D. A. Dicus, E. W. Kolb, V. L. Teplitz, and R. V. Wagoner, “Astrophysical bounds on the masses of axions and Higgs particles,” Phys. Rev. D, vol. 18, p. 1829, 1978, https://doi.org/10.1103/physrevd.18.1829.Search in Google Scholar

[42] N. V. Mikheev, A. Y. Parkhomenko, and L. A. Vassilevskaya, “Axion decay of a photon in an external electromagnetic field,” Mod. Phys. Lett. A, vol. 13, p. 1899, 1998, https://doi.org/10.1142/s021773239800200x.Search in Google Scholar

[43] L. A. Vassilevskaya, N. V. Mikheev, and A. Y. Parkhomenko, “Magnetic-field influence on radiative axion decay into photons of the same polarization,” Phys. At. Nucl., vol. 60, p. 2041, 1997.Search in Google Scholar

[44] M. Fukugita, S. Watamura, and M. Yoshimura, “Astrophysical constraints on a new light axion and other weakly interacting particles,” Phys. Rev. D, vol. 26, p. 1840, 1982, https://doi.org/10.1103/physrevd.26.1840.Search in Google Scholar

[45] L. M. Krauss, J. E. Moody, and F. Wilczek, “A stellar energy loss mechanism involving axions,” Phys. Lett. B, vol. 144, p. 391, 1984, https://doi.org/10.1016/0370-2693(84)91285-1.Search in Google Scholar

[46] G. G. Raffelt, Stars as Laboratories for Fundamental Physics, Chicago, University of Chicago Press, 1996.Search in Google Scholar

[47] J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., vol. 82, p. 664, 1951, https://doi.org/10.1103/physrev.82.664.Search in Google Scholar

[48] P. Sikivie, N. Sullivan, and D. B. Tanner, “Proposal for axion dark matter detection using an LC circuit,” Phys. Rev. Lett., vol. 112, p. 131301, 2014, https://doi.org/10.1103/physrevlett.112.131301.Search in Google Scholar

[49] Y. Kahn, B. R. Safdi, and J. Thaler, “Broadband and resonant approaches to axion dark matter detection,” Phys. Rev. Lett., vol. 117, p. 141801, 2016, https://doi.org/10.1103/physrevlett.117.141801.Search in Google Scholar

[50] N. Du, N. Force, R. Khatiwada, et al.., “Search for invisible axion dark matter with the axion dark matter experiment,” Phys. Rev. Lett., vol. 120, p. 151301, 2018, https://doi.org/10.1103/PhysRevLett.120.151301.Search in Google Scholar

[51] C. Woohyun, “The coldest axion experiment at CAPP/IBS in Korea,” PoS ICHEP, p. 197, 2016.10.22323/1.282.0197Search in Google Scholar

[52] L. Zhong, S. Al Kenany, K. M. Backes, et al.., “The HAYSTAC microwave cavity axion experiment,” Phys. Rev. D, vol. 97, p. 092001, 2018, https://doi.org/10.1103/physrevd.97.092001.Search in Google Scholar

[53] E. Aprile, J. Aalbers, F. Agostini, et al.., “The XENON1T (solar) dark-mater experiment”, 2020 [arXiv:2006.09721v1].Search in Google Scholar

[54] R. Cameron, G. Cantatore, A. C. Melissinos, et al.., “Search for nearly massless, weakly coupled particles by optical techniques,” Phys. Rev. D, vol. 47, p. 3707, 1993, https://doi.org/10.1103/physrevd.47.3707.Search in Google Scholar

[55] C. Robilliard, R. Battesti, M. Fouche, et al.., “No “light shining through a wall”: results from a photoregeneration experiment,” Phys. Rev. Lett., vol. 99, p. 190403, 2007, https://doi.org/10.1103/physrevlett.99.190403.Search in Google Scholar

[56] A. S. Chou, W. Wester, A. Baumbaugh, et al.., “Search for axionlike particles using a variable-baseline photon-regeneration technique,” Phys. Rev. Lett., vol. 100, p. 080402, 2008, https://doi.org/10.1103/physrevlett.100.080402.Search in Google Scholar

[57] M. S. Turner, “Coherent scalar-field oscillations in an expanding universe,” Phys. Rev. D, vol. 28, p. 1243, 1983, https://doi.org/10.1103/physrevd.28.1243.Search in Google Scholar

[58] W. Hu, R. Barkana, and A. Gruzinov, “Fuzzy cold dark matter: the wave properties of ultralight particles,” Phys. Rev. Lett., vol. 85, p. 1158, 2000, https://doi.org/10.1103/physrevlett.85.1158.Search in Google Scholar

[59] D. J. E. Marsh and A.-R. Pop, “Axion dark matter, solitons, and the cusp-core problem,” MNRAS, vol. 451, p. 2479, 2015, https://doi.org/10.1093/mnras/stv1050.Search in Google Scholar

Received: 2020-10-22
Accepted: 2020-12-18
Published Online: 2021-01-11
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0304/html
Scroll to top button