Startseite Nonreciprocal transmission in a parity-time symmetry system with two types of defects
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nonreciprocal transmission in a parity-time symmetry system with two types of defects

  • Min Luo , Xiaomeng Zhang und Guanxia Yu EMAIL logo
Veröffentlicht/Copyright: 24. März 2021

Abstract

In this paper, we have studied two different mechanisms of nonreciprocal and asymmetric transmission in the one-dimensional asymmetric optical system composed of parity-time (PT) and magneto-optical materials with different defect layers. It is shown that there are three pairs of nonreciprocal dispersive curves with the perfect transmission in the three different band gaps, when the defect layer is filled with normal material. When the defect layer is filled with magneto-optical material, the transmittivity of two nonreciprocal frequencies can be modulated by the magnitude and direction of the defect layer’s external magnetic field and appears to be asymmetric nonreciprocal transmission. One-way frequency corresponding to one direction has extraordinary transmission, and the other one-way frequency corresponding to the opposite direction is suppressed. When the defect layer is filled with loss or gain material, the transmittivity of two nonreciprocal frequencies can be amplificated or attenuated simultaneously, respectively. The nonreciprocal propagation is originated from the resonant modes in the system due to the defect layer, and the nonreciprocal and asymmetric transmission is determined by the broken PT system due to magneto-optical and gain/loss material in the defect layer. Such controllable and asymmetric nonreciprocal propagation in the composite system may have broad potential applications in nonreciprocal communication and integration devices.


Corresponding author: Guanxia Yu, College of Science, Nanjing Forestry University, Nanjing210037, PR China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. Min Luo and Xiaomeng Zhang contributed equally to this article.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett., vol. 80, pp. 5243–5246, 1998. https://doi.org/10.1103/physrevlett.80.5243.Suche in Google Scholar

[2] C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys., vol. 40, pp. 2201–2229, 1999. https://doi.org/10.1063/1.532860.Suche in Google Scholar

[3] Z. Ahmed, “Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential,” Phys. Lett. A, vol. 282, pp. 343–348, 2001. https://doi.org/10.1016/s0375-9601(01)00218-3.Suche in Google Scholar

[4] C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, “Observation of PT phase transition in a simple mechanical system,” Am. J. Phys., vol. 81, pp. 173–179, 2013. https://doi.org/10.1119/1.4789549.Suche in Google Scholar

[5] V. Achilleos, G. Theocharis, O. Richoux, and V. Pagneux, “Non-Hermitian acoustic metamaterials: role of exceptional points in sound absorption,” Phys. Rev. B, vol. 95, p. 144303, 2017. https://doi.org/10.1103/physrevb.95.144303.Suche in Google Scholar

[6] K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett., vol. 100, p. 103904, 2008. https://doi.org/10.1103/physrevlett.100.103904.Suche in Google Scholar

[7] Y. T. Fang, Y. C. Zhang, and J. J. Wang, “Resonance-dependent extraordinary reflection and transmission in PC-symmetric layered structure,” Optic Commun., vol. 407, pp. 255–261, 2018. https://doi.org/10.1016/j.optcom.2017.09.049.Suche in Google Scholar

[8] L. Feng, Y. L. Xu, W. S. Fegadolli, et al.., “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater., vol. 12, no. 2, pp. 108–113, 2013. https://doi.org/10.1038/nmat3495.Suche in Google Scholar PubMed

[9] J. Zhang, B. Peng, S. K. Ozdemir, et al.., “A phonon laser operating at an exceptional point,” Nat. Photon., vol. 12, pp. 479–484, 2018. https://doi.org/10.1038/s41566-018-0213-5.Suche in Google Scholar

[10] S. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater., vol. 18, pp. 783–798, 2019. https://doi.org/10.1038/s41563-019-0304-9.Suche in Google Scholar PubMed

[11] J. Gear, Y. Sun, S. Y. Xiao, et al.., “Unidirectional zero reflection as gauged parity-time symmetry,” New J. Phys., vol. 19, p. 123041, 2017. https://doi.org/10.1088/1367-2630/aa9b56.Suche in Google Scholar

[12] Y. T. Fang, Y. C. Zhang, and J. Xia, “Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation,” Optic Commun., vol. 416, pp. 25–31, 2018. https://doi.org/10.1016/j.optcom.2018.01.059.Suche in Google Scholar

[13] Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett., vol. 112, p. 143903, 2014. https://doi.org/10.1103/physrevlett.112.143903.Suche in Google Scholar

[14] K. G. Makris, R. El-Ganainy, D. N. Christodoulidesand, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett., vol. 100, no. 10, p. 103904, 2008. https://doi.org/10.1103/physrevlett.100.103904.Suche in Google Scholar PubMed

[15] S. Longhi, “Invisibility in PT-symmetric complex crystals,” J. Phys. Math. Theor., vol. 44, p. 485302, 2011. https://doi.org/10.1088/1751-8113/44/48/485302.Suche in Google Scholar

[16] H. Ramezani, T. Kotto, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A, vol. 82, p. 043803, 2010. https://doi.org/10.1103/physreva.82.043803.Suche in Google Scholar

[17] S. L. Ding and G. P. Wang, “Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers,” J. Appl. Phys., vol. 117, p. 023104, 2015. https://doi.org/10.1063/1.4905319.Suche in Google Scholar

[18] B. K. Alexander, V. B. Alexander, I. Mitsuteru, and S. K. Yuri, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett., vol. 95, p. 011101, 2009. https://doi.org/10.1063/1.3167356.Suche in Google Scholar

[19] H. Y. Dong, J. Wang, and K. H. Fung, “One-way optical tunneling induced by nonreciprocal dispersion of Tamm states in magnetophotonic crystals,” Opt. Lett., vol. 38, no. 24, pp. 5232–5235, 2013. https://doi.org/10.1364/ol.38.005232.Suche in Google Scholar

[20] J. Y. Wu, X. H. Wu, X. B. Yang, and H. Y. Li, “Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios,” Chin. Phys. B, vol. 28, nos 1–9, p. 104208, 2019. https://doi.org/10.1088/1674-1056/ab3f92.Suche in Google Scholar

[21] M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, et al.., “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett., vol. 92, p. 251112, 2008. https://doi.org/10.1063/1.2952486.Suche in Google Scholar

[22] G. X. Yu, H. Z. Yang, J. J. Fu, X. M. Zhang, and R. Y. Cao, “Nonreciprocal transmission using a multilayer magneto-optical dispersive material with defect,” J. Electromagn. Waves, vol. 34, pp. 1400–1409, 2020. https://doi.org/10.1080/09205071.2019.1696712.Suche in Google Scholar

[23] G. X. Yu, J. J. Fu, X. M. Zhang, and R. Y. Cao, “Nonreciprocal transmission of electromagnetic waves using an electric–gyrotropic dispersive medium,” Z.  Naturforsch., vol. 75, no. 1a, pp. 81–88, 2020. https://doi.org/10.1515/zna-2019-0120.Suche in Google Scholar

Received: 2020-10-20
Revised: 2021-02-22
Accepted: 2021-02-23
Published Online: 2021-03-24
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0301/pdf?lang=de
Button zum nach oben scrollen