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Abstract: We have calculated and analyzed the surface-
state energies and wave functions in quasi-two dimen-
sional (Q2D) organic conductors in a magnetic field parallel
to the surface. Two different forms for the electron energy
spectrum are used in order to obtain more information on
the elementary properties of surface states in these con-
ductors. In addition, two mathematical approaches are
implemented that include the eigenvalue and eigenstate
problem as well as the quantization rule. We find signifi-
cant differences in calculations of the surface-state en-
ergies arising from the specific form of the energy
dispersion law. This is correlated with the different con-
ditions needed to calculate the surface-state energies,
magnetic field resonant values and the surface wave
functions. The calculations reveal that the value of the
coordinate of the electron orbit must be different for each
state in order to numerically calculate the surface energies
for one energy dispersion law, but it has the same value for
each state for the other energy dispersion law. This allows
to determine more accurately the geometric characteristics
of the electron skipping trajectories in Q2D organic con-
ductors. The possible reasons for differences associated
with implementation of two distinct energy spectra are
discussed. By comparing and analyzing the results we find
that, when the energy dispersion law obtained within the
tight-binding approximation is used the results are more
relevant and reflect the Q2D nature of the organic con-
ductors. This might be very important for studying the
unique properties of these conductors and their wider
application in organic electronics.
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1 Introduction

Surface states are important class of quantum states
localized near the surface of a solid. These states are not
present in the bulk, and their presence is correlated to the
change in periodicity of the crystal lattice near the surface.
The presence of a boundary significantly changes the
character of the motion of the conduction electrons and
leads to the appearance of a discrete spectrum of surface
states if the electrons are almost specularly reflected from
the surface of the sample [1-6]. These states have proper-
ties which are quite different from the bulk electronic
structure of the material. The quantum mechanical surface
states are formed by the surface electrons that move along
the surface on skipping trajectories by periodic specular
reflection. In the presence of a magnetic field, due to action
of the Lorentz force, the electrons are impelled toward the
surface and hence are bound to the surface region. The
oscillations of the surface impedance of metals in weak
fields, discovered by M. Khaikin [7], occur due to resonant
transitions between discrete magnetic surface levels of
skipping electrons. Nee and Prange [1-3] have made use of
the surface levels, by quantizing the periodic motion of the
skipping electrons specularly reflected from the surface of
the metal, to explain the oscillations of the impedance and
shown that they can be treated as a cyclotron resonance
due to the transitions between different magnetic surface
levels. In contrast to the Landau levels that represent the
electrons in the cyclotron electron orbits, the surface en-
ergy levels that represent the surface skipping electrons
depend on the coordinate of the rotation center since the
period of the skipping electrons depend on the coordinate
of the center of rotation. The experimental studies of the
surface impedance oscillations in metals [8-11] have
shown that there is a group of surface electrons that makes
a significant contribution to the oscillations of the metal as
a function of the magnetic field. Moreover, all the metals in
which this effect is observed have almost cylindrical Fermi
surface parts. Therefore, knowing the local geometry of the
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Fermi surface is important for studying the surface states
and phenomena related to them.

Layered organic conductors are very attractive for re-
searchers due to their unique properties including a sen-
sitive response to weak structural changes and a large
number of phase transformations under an external mag-
netic field [12]. A characteristic feature of the electronic
properties of organic metals is a pronounced quasi-one
(Q1D) or quasi-two (Q2D) anisotropy arising due to their
crystal structure. The Fermi surface of most of the layered
organic conductors is known as obtained from the trans-
port experiments and has a form of slightly corrugated
sheets for the Q1D and slightly corrugated cylinders for the
Q2D organic conductors. On the other hand, high-
frequency phenomena strongly suggest that in some fam-
ilies of organic conductors the Fermi surface is a union of
Q2D cylinders and quasi-one dimensional sheets. All these
properties make layered organic conductors excellent
candidates for studding the surface states properties and
the effects that occur as a result of the electronic transitions
between the discrete surface levels.

In a previous work on the elementary properties of
magnetic surface levels in layered organic conductors, the
studies were conducted in the simplest case with respect to
the geometry of the problem and the form of the energy
spectrum [13]. However, due to the simplifications made for
the electron energy spectrum, some of the characteristics of
the Fermi surface concerning the number of electron orbits
involved in the formation of the surface states are dis-
regarded. Therefore, it is recommended that the surface
states are also studied using the most general assumptions
concerning the form of Q2D electron energy spectrum
derived within the tight-binding approximation which is
usually used for theoretical studies of the electron prop-
erties of organic conductors [12].

As a continuation of the previous work, in the present
paper, we consider the surface states and their properties
in organic conductors under the most general assumptions
concerning the form of Q2D electron energy spectrum ob-
tained in the frame of the tight-binding theory which as-
sumes a weak coupling within the plane of the layers and a
strong coupling approximation for the electrons belonging
to adjacent layers. In addition, we are also considering the
surface-state energies and wave functions obtained by
using another form for the Q2D electron energy spectrum,
previously used to investigate the nonmagneto—oscillatory
surface effects in these conductors in order to reveal the
differences that arise by implementation of different forms
of the electron energy spectrum and how it reflects on the
elementary properties of the surface states in organic
conductors.
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2 Formulation of the problem:
numerical calculation of the
magnetic surface levels

The usual approach in theoretical studies of the electronic

properties of layered organic conductors is by using the
energy spectrum of the form

_ had anp,
s(p)—ngosn(px,py)605< . ) 6

or if the anisotropy of the energy spectrum in the plane of

the layers is neglected, then it is given by the equation

pi+Dp,
2m*

e(p) = + nzl Sn(Px’py)C05<a’;lp2) o)

A simplified form of the above equation obtained
within the tight-binding approximation when only the first
term in the sum over n is taken into account is widely used
to describe the transport properties of layered organic
conductors.

pi+p; p.
e(p) =5 2 tecos| ©

Here p, and p, are the in-plane momentum of the electron,
m” is the electron effective mass in the plane of the layers,
t. = ner is the interlayer transfer integral, ny is the parameter
of quasi-two dimensionality, & is the Fermi energy,
Do = h/c, cis the distance between the layers, and # is the
Planck constant divided by 2m.

Previously, the non magneto—oscillatory surface
resistance in Q2D organic conductors was studied by
applying a different approach which involves a simpler
form for the electron energy spectrum which corresponds
to a corrugated Fermi surface with different profiles [14].
Here, we shall also consider this form for the electron en-
ergy spectrum in order to calculate the magnetic surface
levels and compare them with those obtained by using the
more general form of the energy spectrum derived within
the tight-binding approximation. For the purpose of the
investigation of the magnetic surface-state energies, we
represent it in the following form

ey BBt (1 ()Y @
P=5m 4 Do '

The above equation corresponds to a Fermi surface with a
slightly corrugated cylinder open along the p, axis similar
to that represented by Eq. (3).

In order to compare the energies of the surface levels
obtained using the two different forms for the electron
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energy spectrum as well as to emphasize the differences
due to applying a different approach in the calculations of
the magnetic surface levels in organic conductors, we shall
consider the simplest geometry for the problem that in-
cludes a magnetic field applied strictly parallel to the
surface of the conductor along the y-axis, By, and a
smooth surface parallel to the conducting layer planes.
Since in layered organic conductors, the ratio of the ve-
locity along the least conducting axis z of the conductor
and the Fermi velocity, v,/vp, is small and of order of the
parameter of two-dimensionality 7 ~1072, we can limit
ourselves to a specular reflection of the electrons from the
conductor’s surface. The z-axis is along the interior normal
to the surface z = 0 of the organic conductor which occupies
the half-space z > 0.

2.1 The eigenvalue and eigenstate problem

To determine the surface-state energies and the corre-
sponding wave functions, the Schrédinger equation for the
problem must be solved. This involves the following
Hamiltonian

—eB 2 2
M + p—y —t. cos(?) +V(2), (5)

H =
2m* 2m o

where the potential V(z) is zero in the region z > 0 and an
infinite surface potential barrier for z < 0. Using the Landau

Pz
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gauge, the magnetic field is described by the vector po-
tential A = (Bz, 0, 0). The surface-state wave function in
the Landau gauge has the form

1 .
\II(X7Y)Z) :mexp%(pxx-'_pyy)q)(z)’ (6)

and vanishes for z = 0,00; ¥ (0) = ¥(oo) = 0. The corre-
sponding Schrédinger equation is taking the following
form

2

2 2 2
d—+ 1Arccos<—1<e—w— by )) D(z)=0.
2m* 2m*

dz? 2

@

We consider the most important group among the
surface electrons, the skipping electrons, in which the
center of the classical orbit is located outside the
conductor at a distance approximately equal to the radius
of the electron trajectory r; = pr/eB. In momentum space,
these are the electrons that move along closed orbits in
the vicinity of the Fermi surface that are extremal cross-
sections of the Fermi surface by the plane e(p) = ¢, p, =
const is shown in Figure 1a. The transitions of the skip-
ping electrons between these closed orbits account for
observation of the magnetic quantum oscillations of the
surface resistance in a similar way as the transitions of

Figure 1: a) The closed orbits in the

a) Py

momentum space. The electrons on these
orbits contribute to the surface states in the
Q2D organic conductors. They are always
perpendicular to the magnetic field, i.e., in
our case to the p, axis as B || p,. When they
are rotated for 90° clockwise, one obtains
the electron trajectory in the coordinate
space, i.e., the skipping electron trajectory.
b) The open skipping electron orbit (1) in the
surface region with a depth d and the closed
cyclotron orbits (2 and 3) into the depth of
the conductor. c¢) The Fermi surface of a Q2D
organic conductor. d) Possible electron or-
bits for magnetic field along the y-axis ob-
tained as cross-sections by the plane

£(p) = &r, p, = const at the belly of the
Fermi surface.
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electrons belonging to cyclotron orbits between the
Landau levels, leading to magnetic quantum oscillations
of the bulk resistance [15]. In the coordinate space, the
corresponding orbit is obtained with rotation of the orbit
in momentum space by /2. Thus, in coordinate space,
these electrons are moving along trajectories that are
bound to the surface region by periodic specular reflec-
tion known as skipping trajectories. Due to the multiple
reflections from the surface, the trajectories are open and
electrons drift in the x direction along orbit 1 in Figure 1b.
The electron motion is confined in the surface skin layer
with a depth 6. The corresponding closed cyclotron orbits
for the bulk electrons are also shown in Figure 1b for
comparison (orbits 2 and 3). Orbits 2 are known as skim-
ming cyclotron orbits due to their proximity to the con-
ductor’s surface.

To better understand what orbits are involved in for-
mation of the magnetic surface levels, we present in
Figure 1 the Fermi surface of a Q2D organic conductor and
the possible electron orbits when the magnetic field is
along the y direction. The Fermi surface is an open and
slightly corrugated along the p,-axis cylinder (Figure 1c)
and the closed orbits which are cross-sections of the Fermi
surface by the plane £(p) = &r, p, = const are located on
the sides or at the belly of the Fermi surface perpendicu-
larly to the magnetic field as show in Figure 1d. The pre-
vious work on magnetic surface levels in Q2D organic
conductors [13] considers the contributions of the electrons
that belong to the closed orbits for which p, < p,,
i.e., only the electrons on small closed orbits located in the
most inner part of the Fermi surface belly contribute in the
surface states. However, the energy spectra given by Egs.
(3) and (4) allow existence of closed orbits for p, in the
interval —p, < p, <py, meaning that a larger number of
closed orbits on sides of the Fermi surface and conse-
quently larger number of conduction electrons are
involved in the formation of the surface states.

In the following, we shall make some justified
assumption in an attempt to find the eigenvalues and
eigenstates, i.e., the surface-state levels and wave func-
tions of the problem. First, since the motion of skipping
electrons is in the proximity of the surface, in the skin layer
with a depth &, their z coordinate is small (z <« §), and
therefore, it is enough to take into account only the linear in
z term in the argument of Arccos. Thus the Schrédinger
equation assumes the following form

2 2
[%+ éArccos( - <q - hﬁ?z)) :|d>(z) =0, (8

where z. = |Z|/I5, |Z| = £ is the coordinate of the center of
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electron rotation which is negative, |Z| = -Z, because

the center of orbit is outside the conductor,
q=4 (e~ 2{’75, - %), Q = £ is the cyclotron frequency and
Iz = \/% is the magnetic length.

Second, an expansion in power series of
Arccos(-(q - %z))2 up to the linear in z term transforms

Eg. (8) into the final form suitable for obtaining the surface-
state energies and wave functions of Q2D organic
conductors

& 1 , 2hQz.(m— Arccos(q)) N
[@ + C—2<n — (Arccos (q))” - Wz)](b(z) =0. (9)

The solution of Eq. (9) is given by the Airy function
[16]

cteA1-q?
(z T (n- Arccos(q))))

®(2) - CAi((chlé hQoB (1 — Arccos (q)))m

(10)

lg 2z.hQoB

where Qp = e/m* and the normalization constant C is
determined as

1/2
< 225112; hQoB (m—Arccos (q)) ) 13

2 —a?
C= sl o B
Ai/z < _ (lBtC\/l—qz (rr—Arccos(q))Z) >

2z.chQoB

The surface-state energy levels are obtained from the
boundary condition ¥ (0) = 0 which reduces to determi-
nation of the roots of the following equation

Ai( . <(lBtc\/1 —)" (n- Arccos(q))‘”) 0. @

(2z.hcQoB)?

This yields the following relation for the quantity g that
allows to calculate the surface-state energies &, of the Q2D
organic conductors in a magnetic field

<lgtc\/T—_qz(n—Arcc05(q))2>2/3 _ (3_"(n 1))2/3. (13)

22.chQ,B 2\ 4

The above identity does not allow to analytically derive
arelation for the surface-state energies, and therefore, they
are calculated numerically by evaluating g and then using

the expression &, (p,, p,, Z) = 2’,’3 +% +qgt.. In Q2D
organic conductors, the plane of the layers is the most
conducting plane where electrons move with average ve-
locities close to the Fermi velocity, v, ~ v, Vx ~ Vf, that
allows the energy of a surface state with a quantum number

n to be expressed in terms of the Fermi momentum pg,

en(Pp.Z) = % + gt.. Hence, the following relation suitable
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for numerical calculation of the surface-state energies is
2
DPr
*

obtained
2 5 2
1- <l<sn - >> <n —Arccos<l<£n —pF>>>
t m tc m*
_ 3nz:hQoBc (n B 1)
bbb Z)
In a similar way, by using the energy dispersion law

Igt,
defined by Eq. (4) and keeping only the linear in z term in

1/2
— 1o Bz BZCZ) one
B tc

(14)

the expansion in power series of <q

obtains the following Schrédinger equation for the

problem
_2 + i 2
dz? ¢? t.ls\/q

which yields the surface wave functions of the form

2.2hQoB\ " [ z te(29-4q)
(%) (- oaa™) oo

z:hQyB
with a normalization constant C
(zcl§h003>l/ 3
CteT
A~ (22)7 (v - 1)

The corresponding magnetic surface levels in terms of the
Fermi momentum are determined numerically from the
following relation

z—l)]x(z):o, (15)

x(z) = CAi

1/2

1)

23
p
btcy (- ) NN
z.chQoB t\" m
3n 1\\%3
-(5(-2) (18)

2.2 The quantization condition

For the purpose of this study as well as for comparison, we
shall explore all the possible ways available for determi-
nation of the surface-state energies in Q2D organic con-
ductors. The motion of the skipping electrons along the z
direction is periodic and therefore quantized. This allows
us to determine the surface energy levels from the Bohr—
Sommerfeld quantization condition by taking into account
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that in a magnetic field the quantities p, and Z are canon-
ically conjugate variables. The quantization rule reads as

S(s, 2 zc) = [p,dp, = 2n(n-y)heB, (19)

and can be applied within the quasi-classical approxima-
tion, which for the Q2D organic conductors is applicable
when the condition #Q « t. is satisfied. The quantization
rule for closed orbits is also valid for open periodic skip-
ping orbits [17]. In the case of energy spectrum defined by
Eq. (3), it can be written as

> )dz

(20)

Dy

(p, - eBz)’ ~
m*

2m*

1(
£ —
t

S(s, Py 2c)=po | Arccos(

=2mh(n-vy).

The value of y is determined by the boundary conditions.
For a complete cyclotron orbit, y =1/2 and for skipping
orhit is y = 1/2 if Ai(0) = 0 [1] or y = 3/4 if Ai (0) = O [6].
S(& py, z.) is the area bounded by the curve £(p) = &,
p, = const, Z = const in momentum space between two
neighboring turning points. In an unbounded metal, the
area S does not depend on Z and equals the area bounded
by the entire curve £(p) = &r, p, = const. For the electrons
that collide with the surface, such are the skipping surface
electrons, the area S depends on Z.

Here, we make use of the boundary condition ¥ (0) = 0
or Ai(0) = 0, and therefore, y = 1/4. We will integrate Eq.
(17) in z while keeping only the term proportional to z in the
expansion in power series of Arccos(—-(q - %z)). This

yields the following integral

2hQoBz, ¢ 1
P2 | (zn - 2)dz = 2n<n - —). (21)
tdge1-¢? 4
where z, = tCh[BQOV ;;qu (m — Arccos(q)) is the maximum dis-

tance of electrons from the surface. By solving it, one ob-
tains the following relation to calculate the surface-state

energies g,
1 2\\’
te m
(-2)
n--—)».
4

2nz hQyBc
Ipt,

Evidently, Eq. (22) is similar to the one that we derived from

solving the eigenvalue and eigenstate problem (Eq. (14)).

(22)
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Hence, it is reasonable to expect similar values for the
magnetic surface-state energies.

Similarly, applying the quantization rule in the case of
energy spectrum defined by Eq. (4), the surface-state en-
ergies are obtained from the relation

2
1 2 1 2
(2 —<en—pF>—l> —<£n—pF>
t. m* t. m*

B anchQOBc< 1)
- lBtc

. 23
2 @)

The equations derived in this section for the surface-
state energies and wave functions are valid in the limiting
case g <1 or equivalently &, < t. + 2¢F.

3 Discussion

In the following, we shall present the surface-state energies
evaluated by implementing different energy dispersion law
in a magnetic field parallel to the surface. In addition, we
shall also calculate the resonance values of the magnetic
field at which the surface electron excitation occurs. Due to
the resonance transitions between the surface states, there
appear peaks in the quantum oscillations of surface resis-
tance at certain magnetic field values B = B;,. It is
important to obtain these values for the magnetic field for
the purpose of fitting with the ones experimentally deter-
mined. This will allow to evaluate accurately the resonance
magnetic field values from experimental curves. To deter-
mine the surface-state energy levels and wave functions,
we are using the following values for the characteristic
parameters [18]: m" = 4.2m,, (m, is the free electron mass),
vp = 1.5 x 10° m/s, t, = 0.35 meV, Qg = 0.042 x 102 Hz,
l=2x10%mand ¢ = 1.5 nm.

Table 1: Surface-state energies for n = 1 to n = 6 in quasi-two
dimensional (Q2D) organic conductors as obtained by applying
different models for the energy dispersion law and different math-
ematical approach involving the eigenvalue problem and quantiza-
tion rule.

n en(eV) eq(eV) eq(eV) en(eV)

Eq. (14) Eq. (18) Eq. (22) Eq. (23)
1 0.53679 0.53691 0.53679 0.53695
2 0.53683 0.53695 0.53684 0.53700
3 0.53686 0.53699 0.53688 0.53703
4 0.53688 0.53702 0.53690 0.53706
5 0.53690 0.53704 0.53693 0.53709
6 0.53692 0.53707 0.53695 0.53711
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3.1 The surface-state energies

In Table 1, we present the surface-state energies forn=1to
n = 6 calculated for B = 3 T from the corresponding equa-
tions derived in the previous section. We shall analyze and
compare the results in order to obtain information about
the elementary properties of the magnetic surface states
that can be of great significance for accurate experimental
estimation of the values of the relevant quantities for the
magnetic surface oscillations.

We find that there is a slight difference in the values of
the surface-state energies obtained by applying different
energy dispersion law and different approach in the cal-
culations. Comparing the surface-state energies from the
eigenvalue and eigenstate problem, we find that Eq. (18)
yields slightly larger values than Eq. (14). The difference
between them is of order of 10 eV and is slightly
increasing while going from lower to higher surface states
from 1.2 x 10 “ eV forn=1to0 1.5 x 10 “ eV for n = 6. On the
other hand, the quantization rule yields slightly higher
values for the surface-state energies for both energy
dispersion laws than those obtained by solving the
Schrodinger equation. Apart from that, in this case, the
difference in energy of a surface state with a quantum
number n, obtained from Egs. (22) and (23), is constant of
order of 1.6 x 107 eV. The increasing difference in the
surface-state energies obtained from the eigenvalue
problem is correlated with the change of the value of the
coordinate of the electron orbit in case when calculations
are performed by using the energy dispersion law (3).
Indeed, the energies are calculated numerically with
each mathematical approach used but under different
conditions. These conditions involve different allowed
values for the coordinate of the electron orbit from the
surface when using Eq. (14), i.e., in order to obtain the
energies from Eq. (14) one has to apply different values
for z.. The values for z. are the highest for the lowest
state and decrease for higher states. The allowed skip-
ping trajectories are determined from the expression

telp

Zn =it - (G (&~ 2er))’ (m — Arccos (¢ (en — 2¢p))).
We obtain the following values: z. = 21, 10, 7, 5.3, 4.5, 3.8
for n = 1 to n = 6, respectively. This signifies that the tra-
jectories of the skipping electrons that take place in the
formation of quantum surface states differ in their di-
mensions depending on the number of the state. In com-
parison, by using the quantization rule, we obtain higher
values for z.: z. = 32, 16, 11, 8.5, 7, 6 for n =1 to n = 6. Since
z. decreases with increasing n it follows that the trajec-
tories of the electrons in the higher quantum surface states
have correspondingly larger dimensions. This allows to
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numerically calculate the electron trajectories for each
surface state. For example, we find the following values
for the first to sixth surface state: z; = 6.5 nm, z, = 14 nm,
z3 = 21 nm, z, = 28 nm, z; = 34 nm and z; = 40 nm,
respectively.

On the other hand, this is not the case when
the other energy dispersion law (Eq. (4)) is used. On con-
trary, here the surface-state energies might be calcu-
lated by using one value for z. = 1.5 for both the eigenvalue
problem and quantization rule. However, the expres-

sion z, = #’gzc tl (&n — 2¢F) (2\/é (€n —2er) —1) for the

allowed electron trajectories also yields larger trajectories
with increasing number of the surface state. In compari-
son, the following values are obtained: z; = 9.3 nm
2z,=17 nm, z3 =26 nm, z, = 32 nm, z; = 37 nm and zg = 44 nm,
respectively. In this case, the maximum distance of elec-
trons from the surface z, is slightly larger due to the larger
surface-state energies. We find that the reason for the
observed differences between the values for the surface-
state energies obtained from Egs. (14) and (18) arises from
the different velocity of periodic motion of electrons along
the z direction. This, in turn, gives a different v**/vr ratio,
signifying that the conditions for specular reflection of the
electrons from the surface are not the same in both cases.
The specular electron reflection is necessary for the for-
mation of surface states and this implies that they are not
obtained under same conditions. While the electron ve-
locity along the x direction is close to the Fermi velocity vg,
vy ~ Vg due to the isotropic nature of the energy dispersion
laws in the plane of the layers, the electron velocity along
the periodic z direction is much less than the Fermi velocity
due to the strong anisotropy along this direction. It is
evident that Eqs. (3) and (4) yield different maximum
electron velocity along z, v =nvg and v = 2nvp,
respectively. Obviously, the latter is twice larger than the
former meaning that one obtains larger v;"**/vr ratio in case
of the energy dispersion law (4). The lower vJ"®*/vr ratio
provides better specular reflection of the electrons from the
surface and hence, more favorable conditions for forma-
tion of the surface states in Q2D organic conductors. Thus,
we find the surface-state energies calculated from Eq. (14)
are more reliable compared to those obtained from Eq. (18),
although they differ only in order of 10~ eV.

Using the values for the surface-state energies given
in the second and third column in Table 1, we present the
magnetic surface levels in Figure 2 for B = 3 T with the
possible transitions between them indicated by arrows. It
is evident by comparison of Figures 2a and 2b that
there are apparent differences in the ordering of the
magnetic surface levels in the Q2D organic conductors
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obtained with different models for the energy dispersion
law. We find that the surface quantum levels of the skip-
ping electrons are not equidistant as expected.

b) n=1

Figure 2: Schematic representation of the magnetic surface energy
levels (n = 1to n = 6) with the resonant transitions between them
indicated by arrows obtained by using the a) Eq. (14) and b) Eq. (18).
The different ordering of the magnetic surface levels is evident.

Table 2: Magnetic field resonant values for the transitions between
the surface states obtained from the eigenvalue problem (ep) and
the quantization rule (gr) for both energy dispersion laws.

n m B (1) B (T) B (T) By (T)
1 2 0.3 0.3 1.4 1.6
1 3 0.15 0.15 0.7 0.8
1 4 0.1 0.1 0.5 0.5
1 5 0.07 0.07 0.4 0.4
1 6 0.06 0.06 0.3 0.3
2 3 0.6 0.6 1.4 1.6
2 4 0.3 0.3 0.7 0.8
2 5 0.2 0.2 0.5 0.6
2 6 0.16 0.15 0.4 0.4
3 4 0.9 0.85 1.4 1.6
3 5 0.4 0.4 0.7 0.8
3 6 0.3 0.3 0.5 0.6
4 5 1.2 1.1 1.4 1.6
4 6 0.6 0.6 0.7 0.8
5 6 1.4 1.3 1.4 1.6
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Consequently, the distance between the neighboring
surface levels Ac = g, — &, is not the same. The general
trend is that it is larger between the states with small nand
smaller for the states with higher n. The different values
for Ae are affecting the resonant transitions between the
surface levels and the magnetic field at which those
transitions occur. The resonant transitions between the
surface levels are observed at certain magnetic fields
known as resonant magnetic fields that can be determined
from Ae = hwy,, at fixed transition frequency wp, = w. At
these fields, the peaks in the surface resistance magnetic
oscillations are observed. The resonant magnetic fields
are also determined numerically since we can not obtain
an explicit expression for Ae. Although for the magnetic
surface levels presented in Figures 2a and 2b, Ae is similar
in value, we find a significant discrepancy in the magnetic
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field resonant values. They are shown in Table 2 and
represent guiding values that can help in accurate esti-
mation of the corresponding resonant values from the
experimental measurements of surface oscillations as
well as to calibrate the obtained experimental curves.

The resonant magnetic fields are obtained for a fixed
frequency w = 60 GHz that corresponds to the transition
between the second and first magnetic surface level, 2 — 1,
for which the difference between the corresponding levels
is the same and of order of Ac¢ = 4 x 10~* eV in each case. It
follows that, in Q2D organic conductors, the surface
quantum oscillations should be observed in the millimeter
frequency range. We note that the fields B}, are obtained
by using the corresponding z, value for each state and the
fields B;,, are obtained for z. = 1.5.

Figure 3: The dependence of the

wave functions of the surface states of
skipping electrons W, (x, y, 2) =

ﬁ expi (px + p,y)®, (z) with a quantum
number n on the distance from the surface
z/lg and the magnetic field B obtained by
using the corresponding value of z. for each
state.
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It is evident that the resonant magnetic fields ob-
tained in the frame of a given energy dispersion law are
similarly calculated by both the eigenvalue problem and
quantization rule (the first and second column are ob-
tained by using Eqgs. (14) and (22) (B;,,) while the third and

*x

fourth column are obtained from Egs. (18) and (23)) (B;,,)-
In comparison, we find that the resonant magnetic fields
B, are far larger than Bj,, for the transitions that take
place to lower surface states whereas for the transitions
between the higher states we observe similar resonant
magnetic fields values. As the resonant values in Table 2
were calculated for same fixed transition frequency, we
ascribe this difference to the specific characteristics of the
electron skipping trajectories obtained from Egs. (14) and
(22), i.e., it is correlated to the change of z. with the
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Figure 4: The dependence of the wave functions
of the surface states of skipping electrons

Wy (XY, 2) = o &P L (DX + Py YX, (2)

with a quantum number n on the distance from
the surface z/lz and the magnetic field B for

Z. =15.

quantum surface state. As discussed above, these equa-
tions yield larger z. for lower surface states and smaller z,
for higher surface states. The larger z. yields smaller
resonant magnetic field Bj,. On the other hand, the
magnetic field resonant values B;, determined from Egs.
(18) and (23) are larger as they are obtained by using only
one value for z. that is much smaller than those used for
calculating Bj,. The smaller z. for the higher surface
states leads to increasing values for B:,m, and therefore, for
higher states, the resonant fields B}, and B;,, are similar.
As suggested above, the surface-state energies obtained
from Eq. (14) are more relevant results than those ob-
tained from Eq. (18). Consequently, the values obtained
for B}, are more valid magnetic field resonant values than

those obtained for Bj,,.
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Figure5: The probability density for electrons in the n-th state (n=1
to n = 6) as a function of the a) distance from the surface z// at

B =3 Tand b) the magnetic field B at z/Iz = 1.5. The same color is
used to represent the probability density for a given state as used for
the energy levels in Figure 2a.

3.2 The surface-state wave functions

The corresponding wave functions for the surface states,
¥, (z, B), are obtained by solving the Schrédinger equation
for the problem. They are defined by the Airy functions
(Egs. (11) and (16)) and depend on the distance from the
surface, the magnetic field magnitude as well as on the
characteristic parameters of the Q2D organic conductor.
The corresponding normalized surface-state wave func-
Wn (X, ¥, 2) = o €XP | (DX + Dyy) D (2)

1
(2mh)

both the distance from the surface z/Iz and the magnetic
field B are presented in Figure 3 and Figure 4, respectively.
The wave functions in Figure 3 are obtained by using the
corresponding value of z. for each state while those in
Figure 4 are obtained for z. = 1.5. This allows to follow the
evolution of the wave function of each surface state with a
quantum number n. Obviously, they are satisfying the
corresponding boundary conditions (Eq. (7)) and are
oscillatory functions of both z/Iz and B. Figures 3 and 4
allow to determine the distance from the surface and

tions, and

Y, (x, ¥, 2) = exp% (DX + DyY)Xn (2), as a function of

DE GRUYTER

magnetic field where the wave functions are attenuated,
which in turn enables to obtain additional information on
the surface states properties. The general trend is that the
wave functions of higher surface states are attenuated at
larger distance from the surface and at higher magnetic
field. From Figure 3, we find that the wave function forn=1
is attenuated at z ~ 0.5 Iz ~ 0.5 x 10" m whereas for n = 6 it
attenuates at z ~ 1.5 Iz ~ 1.5 x 10"® m. The magnetic field
interval where the surface-state wave functions are atten-
uated is B ~0.1-2 T. On the other hand, the wave functions
shown in Figure 4 are attenuated in the intervals z ~ 1.5-3
Iz ~ 1.5-3 x 108 m and B ~ 1-2 T for the distance from the
surface and the magnetic field, respectively.

Thus, in Q2D organic conductors in general, the wave
functions oscillate at relatively small distance from the
conductor’s surface of order of 10 m and at low mag-
netic fields up to 2 T. The period of oscillations depends
on the organic conductor characteristics, on the magnetic
field magnitude and the number of the state. The distance
z at which the surface wave functions are attenuated into
the conductor is less than the allowed values for the
maximal depth of penetration z, of the electrons and is
also much smaller that the corresponding depth of the
skin layer §. In Q2D organic conductors, § ~ 1 pm [18],
indicating that the oscillations of the wave function are
confined only in the proximity of the surface. In addition,
the lower values for the magnetic field at which the wave
functions decay signify that in Q2D organic conductors a
smaller Lorentz force F; = ev,B ~ evpB is necessary for the
electrons to be pulled toward the surface. Hence, their
drift velocity along the skipping trajectory (orbit 1 in
Figure 1b), vy, is almost constant (the electrons are
moving essentially parallel to the surface) and of order of
the Fermi velocity vg. Thus, even a low magnetic field can
cause a change in the electron distribution in the con-
ductor’s skin layer while leading to an increased specular
electron reflection from the surface. All these observa-
tions indicate that in Q2D organic conductors there are
more favorable conditions for formation of the surface
states than in the ordinary metals.

In addition, as the electron motion is restricted in the
proximity to the surface, they are less exposed to the
influence of the bulk electrons that are situated on the so
called skimming cyclotron orbits (orbit 2 in Figure 1b) and
therefore are less scattered from them. In that regards,
the electronic transitions take place only between the
closed electron orbits in the immediate vicinity of the
Fermi surface €(p) = er. Consequently, the peaks in the
magnetic field dependence of the surface resistance (that
correspond to the resonant transitions between the
magnetic surface levels) are expected to be observed in



DE GRUYTER

17’

a)B=3T

100 (-

80

60

M’ \\\V\'l N
Wil

il

a) 0

"7
}o

N

1.0

40

20

20 75 2l

b)z/lp=1.5

Figure 6: The probability density for electrons in the n-th state (n=1
to n = 6) as a function of the a) distance from the surface z/lp at

B =3 Tand b) the magnetic field B at z/Ig = 1.5. The same color is
used to represent the probability density for a given state as used for
the energy levels in Figure 2b.

weak magnetic fields in the millimeter range of fre-
quencies at distance of order of z ~ 0.5-2 x 10°® m from
the surface depending on the number of the quantum
surface state n.

A similar trend is also apparent in the corresponding
distribution of the probability density for electrons situated
in the n-th state with the distance z and the magnetic field
B, |¥.(z,B)?, shown in Figures 5 and 6, respectively.
However, some features that distinguish the both distri-
butions have to be addressed. We find that at a fixed
magnetic field B = 3 T the probability density [¥, (z, B)|* is
higher in Figure 5a, but it attenuates at smaller distance
from the surface compared to the one in Figure 6a. On the
contrary, the magnetic field dependence of the probability
densities obtained at a fixed distance from the surface
z = 1.5 m reveal that although they are of the same
magnitude, the probability densities shown in Figure 6b
are attenuated at far larger magnetic fields than those
shown in Figure 5b. The values for z/Ig and B at which there
are peaks in the probability density correspond to the
distance where the skipping electrons are mostly located
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from the surface as well as to the field at which resonant
electron transitions between the electron orbits near the
Fermi surface occur. The smaller values for the distance
from the surface and the magnetic field in Figure 5 indicate
that in this case the electrons are moving along skipping
trajectories that are much closer to the surface and there-
fore are less exposed to the influence of the bulk electrons
situated near the surface especially those on the skimming
cyclotron orbits. In that way the conditions for specular
reflection of the electrons from the surface are more easily
achieved. This, however, confirms the above discussed that
the results obtained for the surface-state energies and wave
functions would be more reliable if one makes use of the
energy dispersion law derived in the frame of the tight-
binding theory.

4 Conclusions

The energies and wave functions of the surface states in
Q2D organic conductors are obtained by using two
different forms for the Q2D electron energy spectrum. The
first one derived within the tight-binding theory is usually
used in studying the properties of the Q2D organic con-
ductors, and the second one is the form previously used to
investigate the surface effects in the Q2D organic con-
ductors. The two different forms are used in order to
investigate in detail the surface states in organic con-
ductors and extract more information on their elementary
properties. We also make use of both the Schrodinger
equation and the quantization rule to calculate and
compare the surface-state energies. We find that the en-
ergies differ in order of 10™ and more importantly are
obtained under different conditions when a different form
of the energy dispersion law is used. When the energy
dispersion law obtained in the frame of the tight-binding
theory is applied, the surface-state energies (Egs. (14))
and Egs. (22)) are determined for different values for the
coordinate of the electron orbit z.. On the other hand, with
the second form for the energy dispersion law the surface-
state energies (Egs. (18)) and Egs. (23)) and wave func-
tions are obtained by using only one value for z.. This, in
turn, allows to determine the geometric characteristics of
the electron skipping trajectories in Q2D organic con-
ductors. We ascribe the differences in the values for the
surface energies to the different maximum electron ve-
locity along the direction of periodic motion of the elec-
trons. The lower ratio of the maximum velocity along the z
direction and the Fermi velocity is obtained in the case of
the first energy dispersion law, indicating that in this case
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the conditions for formation of the surface states in Q2D
organic conductors are more favorable and therefore the
values for the surface-state energies are more reliable
than those obtained with the other form for the energy
dispersion law. In this case, the resonant magnetic field
values show that the electron transitions in Q2D organic
conductors occur at weak magnetic fields. In addition, the
analyzes of the corresponding surface wave functions
further confirm that the more reliable results should be
obtained if one makes use of the energy dispersion law
derived in the frame of the tight-binding theory. We
expect here presented results and observations to be of
great significance for further studies of the surface states
properties in Q2D organic conductors. Although by far
there is no experimental evidence of the surface quantum
oscillations in Q2D organic conductors, yet we believe
that our results would provide necessary basics for future
experimental studies. This would be very useful as the
organic conductors are interesting for applications in the
organic electronics.
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