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Abstract: A variational principle enabling one to compute
individual Floquet states of a periodically time-dependent
quantum system is formulated, and successfully tested
against the benchmark system provided by the analytically
solvable model of a linearly driven harmonic oscillator.
The principle is particularly well suited for tracing indi-
vidual Floquet states through parameter space, and may
allow one to obtain Floquet states even for very high-
dimensional systems which cannot be treated by the
known standard numerical methods.
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1 Introduction

The Rayleigh-Ritz variational principle has proven to be of
outstanding practical value for the approximate determi-
nation of a quantum system’s ground state. For any trial

state
∣∣∣∣ψ〉 one has the inequality

R[∣∣∣∣ψ〉] ≡ 〈ψ|H|ψ〉
〈ψ

∣∣∣∣ψ〉 ≥ E0, (1)

where H denotes the system’s Hamiltonian, assumed to be
time-independent, and E0 is its ground-state energy.
Hence, inserting an appropriate ansatz for the ground
state, which should embody its key features on the one
hand, and depend on convenient variational parameters
on the other, one obtains an upper bound on E0; mini-
mizingRwith respect to the parameters, this bound often is
found to be fairly tight. As has been concluded by Griffiths,
“the variational principle is extaordinarily powerful, and
embarrassingly easy to use” [1].

The purpose of the present paper is to point out that
there is also a variational principle which enables one to
compute Floquet states of a periodically time-dependent

quantum system. Such Floquet states have met with
considerable interest recently; among others, they have
been invoked for investigating the dynamics of atomic
quantum gases in periodically driven optical lattices [2],
and they lead to a natural explanation of the spontaneous
breaking of time-translation symmetry occurring in so-
called Floquet time cystals [3–6]. Since their quasienergies
constitute infinite, ladder-like classes of equally spaced
representatives, the Floquet states do generally not possess
a natural order; in particular, in most cases there is no
“Floquet ground state”. Thus, the idea of the Rayleigh-Ritz
principle (1) cannot be transferred one-by-one to Floquet
systems. Nonetheless, it will be shown that there exists a
similar variational principle which may allow one to
compute Floquet states even for systemswhich are so large
that they are no longer amenable to any other technique
available so far.

The paper is organized as follows: For the convenience
of the reader, the salient features of the Floquet picture are
summarized in the subsequent Section 2. The new varia-
tional principle for Floquet states then is formulated in
Section 3, and tested numerically with the help of an
analytically solvable model system in Section 4. An
outlook towards future applications of the principle is
given in the concluding Secrion 5.

2 The Floquet concept

Consider a quantum system governed by a Hamiltonian
which depends periodically on time t with period T,

H(t) � H(t + T), (2)

acting on the system’s Hilbert space H. The Floquet theo-
rem asserts that the associated time-evolution operator
U(t,0), mapping any initial state

∣∣∣∣ψ(0)〉 to the state
∣∣∣∣ψ(t)〉

which evolves from the former after time t,∣∣∣∣ψ(t)〉 � U(t,0)∣∣∣∣ψ(0)〉, (3)

can be factorized to read [7–10]

U(t,0) � P(t) exp(−iGt/ℏ), (4)

where P(t) � P(t + T) is periodic in time and unitary, while
the time-independent operator G is self-adjoint. With
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P(0) � P(T) � 1, the one-cycle evolution operator then
takes the form

U(T ,0) � exp(−iGT/ℏ). (5)

Generally, the spectral problem posed by U(T ,0) on H
may be quite involved [11–14]; here we simply assume
that U(T ,0) possesses a pure point spectrum of eigen-
values exp( −iεnT/ℏ) accompanied by normalized eigen-
states |n〉,

U(T ,0)|n〉 � exp( − iεnT/ℏ) |n〉. (6)

This is not a trivial proposition; of course, this is always the
case ifH is of finite dimension. The so-called quasienergies
εn then constitute the eigenvalues of G. Due to the multi-
valuedness of the complex logarithm they are defined only
up to an integer multiple of ℏω, where ω � 2π/T is the
angular frequency implied by the period T.

The “stroboscopic” eigenvalue problem (6) already
leads to one of the decisive benefits of the Floquet picture.
Expanding an initial statewith respect to the eigenstates |n〉
of U(T ,0), ∣∣∣∣ψ(0)〉 � ∑

n
|n 〉 〈n|ψ(0) 〉 , (7)

the combination of Eqs. (3) and (4) gives, for any time t,∣∣∣∣ψ(t)〉 � ∑
n
〈 n|ψ(0) 〉 P(t) exp(−iGt/ℏ)|n〉

� ∑
n
〈 n|ψ(0) 〉 |un(t) 〉 exp( − iεnt/ℏ), (8)

where the Floquet functions

|un(t)〉 � P(t)|n〉 (9)

inherit the T-periodicity of H(t) and P(t), so that

|un(t)〉 � |un(t + T) 〉 . (10)

Thus, when expanded with respect to the Floquet states∣∣∣∣ψn(t)〉 � |un(t) 〉 exp( − iεnt/ℏ), (11)

the time evolution (8) of
∣∣∣∣ψ(t)〉 proceeds with constant

amplitudes 〈n
∣∣∣∣ψ(0)〉. In other words, the Floquet states

carry time-independent occupation probabilities, despite
the periodic time-dependence of their Hamiltonian, dras-
tically simplifying the determination of the system’s long-
time behavior.

While the above stroboscopic approach is often found
useful for numerical purposes, there also exists another,
“extended” viewpoint which is particularly helpful for
conceptual considerations. Inserting a Floquet state (11)
into the time-dependent Schrödinger equation

iℏ
d
dt

∣∣∣∣∣∣∣ψ(t)〉 � H(t)
∣∣∣∣∣∣∣ψ(t) 〉 , (12)

one immediately finds

(H(t) + ℏ
i
d
dt
)∣∣∣∣∣∣∣un(t)〉 � εn

∣∣∣∣∣∣∣un(t) 〉 . (13)

Augmented by the periodic boundary condition (10) to be
satisfied by the Floquet functions, this is an eigenvalue
problem which does not pose itself on the system’s actual
Hilbert space H, but instead on an extended Hilbert space
consisting of T-periodic functions [15]; this extended space is
often denoted by L2[0,T] ⊗H in the mathematical literature.
Here the time t isno longer regardedasanevolutionparameter
in the sense of Eq. (3), but rather as an additional coordinate;
hence, the scalar product in this extended space is given by

〈〈 u
∣∣∣∣∣∣∣v 〉〉 � 1

T
∫
​T

0
dt  〈 u(t)∣∣∣∣∣∣∣v(t) 〉 , (14)

with 〈  ⋅  |  ⋅  〉 indicating the given scalar product on H.
Although it may seem strange from the viewpoint of con-
ventional quantum physics on H, the operator

pt � ℏ
i
d
dt

(15)

acting on L2[0,T] ⊗H now represents the momentum
operatorwhich is canonically conjugate to the coordinate t;
the periodic boundary condition (10) makes sure that this
operator is Hermitian. Observe that the quasienergy
operator

K � H(t) + pt (16)

which appears on the left-hand side of Eq. (13) depends
only linearly on this momentum. As a consequence, its
quasienergy spectrum is unbounded both from above and
from below: Assume that

∣∣∣∣un(t) 〉 ≡ 
∣∣∣∣un,0(t)〉 is a solution to

the eigenvalue problem (13), so that

K|un(t)〉 � εn|un(t) 〉 . (17)

Then for any integer m � ±1,±2,±3,… the functions∣∣∣∣un,m(t)〉 �
∣∣∣∣un(t)eimωt〉 (18)

likewise are T-periodic eigensolutions,

K
∣∣∣∣un,m(t)〉 � (εn +mℏ ω)∣∣∣∣un,m(t) 〉 . (19)

Thus, from the perspective of the extended Hilbert space
each Floquet state (11) evolving in H is associated with
infinitely many eigensolutions of the eigenvalue problem
(13) in L2[0, T] ⊗H,
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|un(t) 〉 exp( − iεnt/ℏ) � ∣∣∣∣un,m(t) 〉 exp[ − i(εn +mℏω)/ℏ].
(20)

Therefore, within this extended approach a quasie-
nergy should not be regarded as a number εn, but rather as
an infinite class of representatives spaced by ℏω,

εn ≡ {εn +mℏω|m � 0,±1,±2,…}, (21)

reflecting the “ℏω-indeterminacy” of the quasienergies
which stems from taking the complex logarithm of the
Floquet multipliers exp( −iεnT/ℏ) encountered in the stro-
boscopic approach.

The observation that the quasienergy eigenvalue
problem (17) plays a role which is conceptually similar to
that of the stationary Schrödinger equation now allows one
to transfer many notions known from time-independent
quantum mechanics to periodically time-dependent
quantum systems, such as the Hellmann-Feynman theo-
rem, or Rayleigh-Schrödinger perturbation theory [15].
There is, however, a notable exception: The fact that each
Floquet state is equipped with an infinite ladder (21) of
quasienergies implies that these states cannot be ordered
with respect to the magnitude of their quasienergies, and
there is no “lowest” quasienergy. This means that the
Rayleigh-Ritz principle (1) has no immediate counterpart in
the extended Hilbert space, apparently depriving one of an
efficient computational tool. In the follwing section it will
be shown how this deficiency can be cured.

3 Variational principle

While the spectrum of the quasienergy operator (16) is

unbounded from below, that of its square K2 is non-

negative, as is the spectrum of (K − ε)2 for any ε, be it an
actual quasienergy eigenvalue of the system under
consideration or not. Hence, one has the variational
inequality

Fε[|Ψ〉] ≡ 〈〈Ψ|(K − ε)2|Ψ〉〉

〈〈Ψ|Ψ〉〉
≥ 0, (22)

where |Ψ 〉 ∈L2[0,T] ⊗H is a suitably parametrized T-peri-
odic trial function, and double angular brackets indicate
the scalar product (14). Evidently, this functional Fε adopts
its minimum value zero if and only if |Ψ〉 indeed is an
eigenfunction of K with quasienergy eigenvalue ε. There-
fore, the inequality (22) can be exploited in two substan-
tially different ways: (i) Keeping a given value of ε fixed,
and varying |Ψ〉, onemay investigatewhether there exists a

Floquet function with that particular quasienergy. (ii) A
potentiallymore powerful application of the inequality (22)
emerges when ε is regarded as an additional variational
parameter: In that case the optimal value ε � 〈〈 K 〉〉 can be
used to find a minimum without directly specifying the
quasienergy. On top of that, one may “follow” an individ-
ual Floquet state in response to small changes of the sys-
tem’s parameters, as is exemplified in the following
section.

In order to interpret the physical meaning of the nu-
merical values adopted by the functional Fε, consider an
initial state in H at t � t0,∣∣∣∣ψ(t0)〉 � ∑

n
an|un(t0) 〉 , (23)

which evolves in the course of one period T into the state∣∣∣∣ψ(t0 + T)〉 � ∑
n
an|un(t0) 〉 exp( − iεnT/ℏ). (24)

Hence, for any ε the absolute value of the return amplitude
after one period T (“raT”) is given by

raT � ∣∣∣∣exp(−iεT/ℏ) 〈 ψ(t0 + T)∣∣∣∣ψ(t0) 〉 ∣∣∣∣
�
∣∣∣∣∣∣∣∣∑n |an|2exp(i[εn − ε]T/ℏ)∣∣∣∣∣∣∣∣
≥∑

n
|an|2cos([εn − ε]T/ℏ)

≥1 − T2

2ℏ2
∑
n
|an|2(εn − ε)2,

(25)

having used cos(x) ≥ 1 − x2/2, and the normalization of the
state (23). On the other hand, “lifting” that state to the
extended Hilbert space, thus considering∣∣∣∣ψ(t)〉 � ∑

n
an|un(t)〉 (26)

as an element of L2[0,T] ⊗H, one observes

∑
n
|an|2(εn − ε)2 � Fε[∣∣∣∣ψ〉]. (27)

With the estimate (25) holding for any ε, this gives

raT ≥ 1 −min
ε
 2π2 Fε

(ℏω)2 . (28)

In particular, if
∣∣∣∣ψ(t)〉 is a Floquet function, one has

minεFε[
∣∣∣∣ψ〉] � 0, giving raT � 1, as required. Hence, the

value of the minimized functional Fε quantifies the failure
of the variational solution to return to the initial state after
one period, which may be taken as a measure of the
“quality” of the approximate Floquet state obtained in this
manner.
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4 Example

Let us consider a one-dimensional harmonic oscillator
which is subjected to a monochromatic force with angular
frequencyω, as described in the position representation by
the Hamiltonian

H(t) � p2

2M
+ 1
2
Mω2

0x
2 + λxcos(ωt), (29)

where M denotes the mass of the oscillator particle, ω0 is
the oscillator’s angular frequency, and λ specifies the
amplitude of the driving force. This is one of the few
nontrivial Floquet systems which can be solved analyti-
cally [16–18], thus providing a benchmark test for the
variational principle (22).

To begin with, let us asssume that the driving fre-
quency ω differs from the oscillator frequency ω0, because
the quasienergy spectrum of the forced oscillator (29) be-
comes absolutely continuous in the resonant case ω � ω0

[19]. The construction of the Floquet states then is based on
the particular classical trajectory which shares the period
T � 2π/ω of the driving force, that is, on the T-periodic
solution to the classical equation of motion

ξ̈ � −ω2
0ξ −

λ
M

cos(ωt), (30)

which is

ξ(t) � λ
M(ω2 − ω2

0) cos(ωt). (31)

Denoting the familiar eigenfunctions of the unforced
oscillator with energy eigenvalues En � ℏω0(n + 1/2) by
χn(x), where n � 0, 1, 2,… is the usual oscillator quantum
number, the desired Floquet states can be written as

ψn(x, t) � χn(x − ξ(t))exp( i
ℏ
Mξ̇(t)(x − ξ(t)))⋅

⋅exp( − i
ℏ
[Ent − ∫

t

0

dτ L(τ)]), (32)

where

L(t) � 1
2
Mξ̇

2(t) − 1
2
Mω2

0ξ
2(t) − λξ(t) cos(ωt) (33)

is the classical Lagrangian of the system, evaluated along
the trajectory (31). Observing that the integral over this T-
periodic function L(t) contains a secular term which in-
creases linearly with time, and thus contributes to the
respective quasienergy, the quasienergy spectrum of the
non-resonantly forced harmonic oscillator (29) is deduced
to read

εn � En − 1
T
∫
​T

0
dτ L(τ) mod ℏω

� ℏω0(n + 1
2
) + λ2

4M(ω2 − ω2
0) mod ℏω,

(34)

so that all states exhibit exactly the same ac Stark shift. This
is a fairly unusual feature which reflects the integrability of
system (29). Thus, apart from a phase factor the Floquet
states (32) are given by harmonic-oscillator eigenfunctions
which follow the T-periodic oscillations of the classical
trajectory (31).

In order to explore whether these Floquet states are
correctly recovered by the variational principle (22), one
may take

|Ψ〉 � ∑
n0+r

n�max(n0−r,0)
∑
r

m�−r
cn,meimωt|n〉 (35)

as a natural general ansatz, with real coefficients cn,m to be
used as variational parameters, and 〈x

∣∣∣∣n〉 � χn(x). This
ansatz now is employed for “tracing” the Floquet state
which develops from the unperturbed oscillator ground
state |0〉 when the driving amplitude λ is gradually
increased, while the driving frequency ω is kept fixed. The
procedure is as follows: For λ � 0 one has the exact solu-
tion |Ψ〉 �  |0〉 with ε � E0, giving Fε[|Ψ 〉 ] � 0. Then λ is
increased by a small amount δλ, and the variational state is
seeded with the previous |Ψ〉. The variational state then is
propagated by one step in imaginary “time”, allowing the
state to relax towards the ground state of (K − ε)2, and ε is
updated to the value 〈〈 K 〉〉 resulting from the propagated
state; this is repeated until the value of the functional Fε

has numerically converged to the accuracy specified. If,
after convergence, the value of Fε/(ℏω)2 equals zero within
an acceptable tolerance, an approximate Floquet state has
been found; if not, the searched Floquet state is not con-
tained in the selected variational space.

Figure 1 displays data computed according to this
procedure for the driving frequency ω/ω0 � 2/3, while the
parameters n0 and r specifying the variational space have
been chosen as n0 � 0 and r � 20 (dotted lines) or r � 30
(full lines), respectively. Shown here are the absolute value
Δε of the difference between the variationally obtained ε
and the exact quasienergy obtained from Eq. (34) (red),
together with the converged functional Fε (blue) vs. the
driving amplitude, all scaled to be dimensionless. Here the

stepsize δλ/
�����
ℏMω3

√
≈ 0.025 has been employed; the mini-

mization procedure has been stopped when the absolute
value of the difference between the updated value of

Fε/(ℏω)2 and the previous one has become lower than Δ �
10−8. These results are extremely encouraging: Considering
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the data for r � 20 first, one observes a plateau at low
driving amplitudeswhere the variational functional adopts

an almost constant small value, Fε/(ℏ2ω2) ≈ 2 ⋅ 10−4, while
Δε/(ℏω) likewise remains small, clearly signaling that a
good approximation to the exact Floquet state has been

found. But then, at λ/
�����
ℏMω3

√
≈ 4, the variational solution

starts to deviate. This obervation can be understood with
the help of a rough estimate: According to Eq. (32), the
exact Floquet state emanating from the unperturbed
oscillator ground state is given by a Gaussian which
sloshes along the classical trajectory (31). On the other
hand, the basis states χn(x) comprising the variational
space are appreciably large in the classically allowed re-
gion only, that is, between the turning points xtp which
limit the classical motion with energy En in the oscillator

potential, xtp � ±
����������
2En/(Mω2

0)
√

. In order to correctly repre-

sent the exact Floquet state within the variational space,
the amplitude of the sloshing motion should be somewhat
smaller than the largest of these turning points, implying∣∣∣∣∣∣∣∣ λ

M(ω2 − ω2
0)
∣∣∣∣∣∣∣∣ ≤

�����
2Er

Mω2
0

√
(36)

and thus providing an upper bound on the driving ampli-
tude that can be reasonably dealt with in a variational
space made up from the lowest r + 1 oscillator functions,
namely,

λ2

ℏMω3
≤ [1 − (ω0/ω)2]2 ωω0

(2r + 1). (37)

Inserting ω/ω0 � 2/3, and r � 20, one finds λ/
�����
ℏMω3

√
≤ 6.5,

which is in acceptable agreementwith the behavior shownby
the dotted lines in Figure 1, keeping in mind that the actual
“critical” driving amplitude should be somewhat smaller
than the order-of-magnitude estimate (37).

Thus, when the variational space is enlarged, larger
driving amplitudes become admissible. For instance, when
r is increased to r � 30, while ω/ω0 is kept fixed, the esti-

mate (37) gives λ/
�����
ℏMω3

√
≤ 8.0. That is, the range of

manageable driving amplitudes is increased by a factor of
1.2 in comparson with the previous calculation, in fair
agreement with the numerical data displayed in Figure 1.

The numerical strategy suggested in this work for
following an individual Floquet state through parameter
space is not restricted to the Floquet state emanating from
the ground state of the system in the absence of the drive,
but applies the any state. In order to substantiate this
claim, Figure 2 depicts analogous numerical data obtained
when tracing the Floquet state originating from the un-
perturbed oscillator state n � 50, again for ω/ω0 � 2/3,
computed in variational spaces spanned by the ansatz
states (35) with n0 � 50 and r � 20 (dotted lines) or r � 30
(full lines). Once again, the results speak for themselves:
The driving amplitudes above which the exact Floquet
state is no longer adequately represented by the respective
variational ansatz are well discernible; below these
amplitues the variational principle (22) provides excellent
approximations.

Figure 1: Red: Difference Δε (absolute value) of the variationally
computed quasienergy ε0 of the Floquet state which develops
continuously from the ground state n � 0 of the unforced oscillator,
and the exact quasienergy (34), vs. the scaled driving amplitude, as
resulting for ω/ω0 � 2/3 from the ansatz (35) with n0 � 0 and r � 20
(dotted lines) or r � 30 (full lines). Blue: Corresponding values of the
variational functional (22) after minimization.

Figure 2: As Figure 1 for n � n0 � 50, again with r � 20 (dotted lines)
and r � 30 (full lines).
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5 Conclusion

The customary computational strategies for determining
the Floquet states of a periodically time-dependent quan-
tum system rely either on Eq. (6), requiring the computa-
tion and diagonalization of the system’s one-cycle
evolution operator U(T ,0), or on the “extended” eigen-
value problem (13), enforcing the use of a sufficiently large
basis of L2[0,T] ⊗H. While this may be no problem when
dealing with periodically driven single-particle systems,
say, it soon becomes impractical when investigating peri-
odically driven many-body systems. For such high-
dimensional systems the variational principle (22) may
unfold its full power, enabling one to compute individual
Floquet states even for systems so large that the determi-
nation of the full quasienergy spectrum would be neither
feasible nor even desirable.

The particular model system that has been employed
here for testing the new variational principle, the linearly
driven harmonic oscillator, certainly is not typical from the
Floquet point of view: Being explicitly integrable, its qua-
sienergies (34) and Floquet states (32) can be labeled by the
quantum number n of the harmonic-oscillator state to
which they are continuously connected when the driving
amplitude goes to zero. This is no longer the case for more
generic systems, such as periodically forced anharmonic
oscillators which possess a classial conterpart exhibiting
chaotic dynamics. In such systems one encounters a qua-
sienergy spectrum with a dense net of anticrossings [10,
20], thwarting the notion of continuity. Nonetheless, it is
surmised that the idea of “tracing” an individual Floquet
state through parameter spacewill also work for suchmore
realistic systems, helping one to identify those Floquet
states which are most important for understanding a given
system’s experimentally observable properties.

Finally, it needs to be stressed that the far-reaching
progress made recently in the areas of machine learning
and hardware design will allow one to solve variational
problems even with very large numbers of variational pa-
rameters in the near future. Therefore, it is anticipated that
the combined use of the variational principle (22), modern
hardware, and intelligent algorithms will enable one to
investigate truly large Floquet systems which are way
beyond the realm of the previously used standard numer-
ical methods.
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