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Abstract: Blast waves are produced when there is a sud-
den deposition of a substantial amount of energy into a
confined region. It is an area of pressure moving super-
sonically outward from the source of the explosion.
Immediately after the blast, the fore-end of the blast wave
is headed by the shock waves, propagating in the outward
direction. As the considered problem is highly nonlinear,
to find out its solution is a tough task. However, few
techniques are available in literature that may give us an
approximate analytic solution. Here, the blast wave prob-
lem in magnetogasdynamics involving cylindrical shock
waves of moderate strength is considered, and approxi-
mate analytic solutions with the help of the power series
method (or Sakurai’s approach [1]) are found. Themagnetic
field is supposed to be directed orthogonally to the motion
of the gas particles in an ideal medium with infinite elec-
trical conductivity. The density is assumed to be uniform in
the undisturbed medium. Using power series method, we
obtain approximate analytic solutions in the form of a
power series in (a0/U)2, where a0 andU are the velocities of
sound in an undisturbed medium and shock front,
respectively. We construct solutions for the first-order
approximation in closed form. Numerical computations
have been performed to determine the flow-field in an ideal
magnetogasdynamics. The numerical results obtained in
the absence of magnetic field recover the existing results in
the literature. Also, these results are found to be in good
agreement with those obtained by the Runge–Kutta
method of fourth-order. Further, the flow variables are
illustrated through figures behind the shock front under
the effect of the magnetic field. The interesting fact about

the present work is that the solutions to the problem are
obtained in the closed form.

Keywords: blast waves; ideal gas; magnetogasdynamics;
Rankine–Hugoniot conditions.

1 Introduction

The phenomena of blast waves are very common in the
surrounding of Earth. It results from sudden release of an
extensive amount of energy, for example, lightning and
nuclear explosions. It is very well known that after an
explosion the front of the blast waves is headed by the
shock waves that propagate in the outward direction. After
World War II, it becomes quite necessary to enhance the
understanding about the dynamics of explosion, and find
out the way to tackle such kind of problems. Motivated by
this, Sedov [2] gave an idea on the similarity solution for the
explosion problem in an ideal gas. Exact solution of the
equations governing the motion in a gas generated by a
point explosion was obtained by Taylor [3]. Thus, Sedov
and Taylor showed a way to estimate the effects of nuclear
or supernova explosions. Furthermore, Sakurai investi-
gated the point explosion problem in an ideal gas for the
planar and cylindrical symmetries, and obtained the first
[1] and second [4] approximations for the propagation of
the blast wave. Murata [5] applied an analytic approach to
obtain the solution of the blast wave problem in an ideal
gas, which has been further extended by Singh et al. [6] to
the real gas. So, a considerable number of research articles
on the shock wave propagation in gas dynamics are
available in the literature.

Magnetic field is spread throughout the universe,
and has many applications in the field of astrophysics,
oceanography, atmospheric sciences and hypersonic
aerodynamics, etc. Many interesting problems involve
magnetic field. The shock waves in the presence of
magnetic field in conducting perfect gas may be impor-
tant for interpretation of the phenomena encountered in
astrophysics and supernova explosion. Complex fila-
mentary structures in molecular clouds, shapes and the
shaping of planetary nebulae, synchrotron radiation
from supernova remnants, magnetized stellar winds,
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galactic winds, gamma-ray bursts, dynamo effects in
stars, galaxies, and galaxy clusters are some interesting
astrophysical situations that involve magnetic field. The
applications of studying cylindrical shock waves in the
presence of magnetic field may also include explosion of
long thin wire, experiments on pinch effect, exploding
wire, some axially symmetric hypersonic problem such
as the shock envelope behind fast meteor or missile [7],
etc. Among the industrial applications involving applied
external magnetic fields are drag reduction in duct flows,
design of efficient coolant blankets in tokamak fusion
reactors, control of turbulence of immersed jets in the
steel casting process, and advanced propulsion and flow
control schemes for hypersonic vehicles [8, 9]. Many re-
searchers have worked to better understand the dy-
namics of shock waves with magnetic field effects. The
works of Arora et al. [10], Jena [11], Menon and Sharma
[12], Nath and Singh [13, 14], Pandey et al. [15], Siddiqui
et al. [16], Sahu [17], Singh et al. [18], Singh andArora [19],
Bira et al. [20], Kuila and Sekhar [21], Bira and Sekhar [22],
Sekhar and Sharma [23], Singh et al. [24, 25], and
Vishwakarma and Yadav [26] are worth mentioning in
this context.

In this paper, we study the propagation of one-
dimensional, unsteady and adiabatic flow of cylindrical
shock waves produced due to strong explosion in an ideal
gas under the influence of transverse magnetic field. The
magnetic field is either axial or azimuthal in cylindrically
symmetric motion. Using power series method [1], we
obtain the approximate analytic solutions by expanding

the flow variables in the power series of (a0/U)2, where a0
is the sound speed in the undisturbedmedium and U is the
shock velocity. The present work is an extension of
Sakurai’s work [1] in the case of cylindrical shock waves by
considering the effects of themagnetic field in an ideal gas.
As per the authors’ knowledge, the problem under
consideration has not been solved by the power series
method [1]. The benefit of this approach is that we obtain
the solutions in the analytic form so that it can be used to
classify and understand the non-linear phenomena
involved. With the aid of Sakurai’s blast wave analysis [1],
solutions of any desired degree of accuracy can be ob-
tained; however there is a great deal of work involved in
carrying out the required computations. In our problem,
the first-order approximation to the solutions is con-
structed in closed form with the help of the said method,
and distributions of the flow variables are shown

graphically behind the shock. Also, the effect of shock
Cowling number on the flow variables is discussed.

We have summarized the paper as follows: Section 1
includes a brief introduction about the earlier studies of
the topic. Section 2 presents the basic equations govern-
ing the conservation laws together with the R-H jump
conditions across the shock front. Section 3 contains the
transformation of the basic equations in the form of non-
dimensional functions using the similarity analysis. In
Section 4, we obtain the solutions of the considered

problem in the form of power series in (a0/U)2. In Section
5, we construct first-order approximate solutions in closed
form. Further, Section 6 contains the results and discus-
sion. At last, Section 7 is the conclusion about the whole
study of the present work.

2 Fundamental equations with
R-H jump conditions

The fundamental equations governing the one-
dimensional, unsteady and cylindrically symmetric adia-
batic flow of an ideal gas under the influence of magnetic
field can be expressed as [15]

ρt + νρx + ρνx + ρν
x

� 0 ,

νt + ννx + 1
ρ
[px + hx + 2jh

x
] � 0 ,

pt + νpx + a2ρ[νx + ν
x
] � 0 ,

ht + νhx + 2h[νx + (1 − j)ν
x

] � 0 ,

(2.1)

where ρ, v and p are the gas density, velocity and pressure,

respectively, and h � μH2

2 is the magnetic pressure with μ
being the magnetic permeability and H being the trans-
verse magnetic field, which is either axial ( j = 0) or
azimuthal ( j = 1) in the cylindrically symmetric flow; the
independent variables x and t are the distance from the
axis and time, respectively. Also, a is the velocity of sound,

given by a �
��
γp
ρ

√
, where γ is the adiabatic index. Viscosity,

thermal conductivity and electrical resistivity are not
considered in the present problem. For motion in an ideal
gas, the equation of state is taken as follows:

p � ρRT  , (2.2)
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where R and T are the gas constant and temperature,
respectively.

Let χ = χ(t) be the position of the shock front at any
time t. Then, the propagation velocity of the shock front

is given byU � dχ
dt. The flow variables immediately ahead of

the shock front are characterized by

ν � 0, p � p0, ρ � ρ0, h � h0(χ) � hcχ−2  , (2.3)

where p0, ρ0 and hc are the appropriate constants, and
suffix 0 refers to the conditions just ahead of the shock
front. For the self-similar solutions, shock velocity is sup-
posed to vary as [13, 27]

U2 � B2χ−α, (2.4)

where B and α are constants. The R-H conditions across the
shock front (x � χ(t)) can be written as follows [28]:

(ρ)x�χ � γ + 1
γ − 1

ρ0[1 + 2
γ − 1

(a0

U
)2]−1

 ,

(ν)x�χ � 2
γ + 1

U[1 − (a0

U
)2] ,

(p)x�χ � 2
γ + 1

ρ0U
2[1 − γ − 1

2
(a0

U
)2]

− 1
2
(γ + 1
γ − 1

)2

C0ρ0U
2[1 + 2

γ − 1
(a0

U
)2]2

 ,

(2.5)

(h)x�χ � 1
2
(γ + 1
γ − 1

)2

C0ρ0U
2[1 + 2

γ − 1
(a0

U
)2]2

 ,

where C0 � 2h0/(ρ0U2) is the shock Cowling number,

and a2
0 � γp0

ρ0
is the square of sound velocity in the

undisturbed medium. The necessary condition for C0 to
be constant is α= 2. As the total energy E carried by the blast
wave is equal to the energy released by the explosive and
thus assumed to be constant. Therefore, we have

E � ∫
χ

0

[1
2
ν2 + 1

γ − 1
(p
ρ
− p0

ρ0
) + (h

ρ
− h0
ρ0
)]ρxdx , (2.6)

where E denotes the explosion energy per unit area of the
surface of the shock front for cylinder of unit length. From
Lagrangian equation of continuity, we obtain the following
relation [1]:

∫
χ

0

ρ
ρ0

xdx � χ2

2
 . (2.7)

Using (2.3), (2.6) and (2.7), we get the following expression
for E:

E � ∫
χ

0

[1
2
ρν2 + 1

γ − 1
p + h]xdx − p0

γ − 1
χ2

2
− h0

χ2

2
 . (2.8)

3 Transformation of the basic
equations in non-dimensional
functions

We introduce r and s as the new independent variables in
place of x and t, which are defined as follows:

x
χ
� r, (a0

U
)2

� s . (3.1)

Now, we write the unknown functions ρ, v, p and h as
follows:

ρ � ρ0  Λ(r, s) ,
ν � UΦ(r, s) ,

p � p0(U
a0
)2

Ψ(r, s) � p0
Ψ(r, s)

s
 ,

h � p0(U
a0
)2

Ω(r, s) � p0
Ω(r, s)

s
 ,

(3.2)

where Λ,Φ,Ψ and Ω are the non-dimensional functions.
From Eqs. (3.1) and (3.2), we obtain

∂

∂x
� 1
χ

∂

∂r
 , (3.3)

D
Dt

� U
χ
[(Φ − r) ∂

∂r
+ sλ

∂

∂s
] , (3.4)

where λ � χ (ds/dχ)
s is a function of s only. Now substituting

Eqs. (3.1)–(3.4) into the basic equations (2.1), we obtain

(Φ− r)Λr + sλΛs +Λ(Φr +Φr ) � 0 ,

Λ{− λ
2
Φ+(Φ− r)Φr + sλΦs}+ 1

γ
(Ψr +Ωr + 2jΩr ) � 0 ,

−λΨ+(Φ− r)Ψr + sλΨs + γΨ(Φr +Φr ) � 0 ,

−λΩ+(Φ− r)Ωr + sλΩs + 2Ω(Φr +(1− j)Φr
) � 0 .

(3.5)

Now, Eq. (2.8) becomes

s(χ0
χ
)2

� ∫
1

0

(γ
2
ΛΦ2 + Ψ

γ − 1
+Ω)rdr − s

2(γ − 1) − γC0

4
 , (3.6)
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where

χ0 � ( E
p0
)1

2

 . (3.7)

Also, the R-H conditions (2.5) assume the form

Φ(1,s) � 2
γ+ 1(1− s) ,

Λ(1,s) � γ+ 1
γ− 1(1+ 2s

γ− 1)
−1
 ,

Ψ(1,s) � 2γ
γ+ 1{1−(γ− 12 )s}− γC0

2
(γ+ 1
γ− 1)

2{1+( 2
γ− 1)s}

2

 ,

Ω(1,s) � γC0

2
(γ+ 1
γ− 1)

2{1+( 2
γ− 1)s}

2

 .

(3.8)

Nowdifferentiating Eq. (3.6)with respect to s, we obtain the

following expression for λ:

λ � 2J − s
γ−1 − γC0

2

J − s(dJds) − γC0
4

 , (3.9)

where

J � ∫
1

0

(γ
2
ΛΦ2 + 1(γ − 1)Ψ + Ω)rdr . (3.10)

4 Power series formation of the
solutions

For the strong shock waves, the velocity of the shock front
U is larger than a0, so the quantity s is considered to be
very small there. Therefore, we can expand the non-
dimensional functions Φ,Ψ,Λ and Ω in the form of
convergent series in powers of s as follows:

Φ � Φ(0) + sΦ(1) + s2Φ(2) +… ,
Ψ � Ψ(0) + sΨ(1) + s2Ψ(2) +… ,
Λ � Λ(0) + sΛ(1) + s2Λ(2) +… ,
Ω � Ω(0) + sΩ(1) + s2Ω(2) +… ,

(4.1)

where Φ(n),Ψ(n),Λ(n) and Ω(n)(n � 0, 1, 2,…) are the func-
tions of r only. Now, using the power series expansion (4.1)
in Eq. (3.10), we obtain

J � J0(1 + β1s + β2s
2 +…) , (4.2)

where

J0 � ∫
1

0

(γ
2
Λ(0)(Φ(0))2 + 1

γ − 1
Ψ(0) + Ω(0))rdr ,

β1J0 � ∫
1

0

{γ
2
Λ(1)(Φ(0))2 + γΛ(0)Φ(0)Φ(1) + 1

γ − 1
Ψ(1) + Ω(1)}rdr ,

β2J0 � ∫
1

0

{γ
2
Λ(2)(Φ(0))2 + γΛ(0)Φ(0)Φ(2) + 1

γ − 1
Ψ(2) + Ω(2)}rdr

+ γ
2
∫
1

0

{Λ(0)(Φ(1))2 + 2Λ(1)Φ(1)Φ(0)}rdr ,
… .

(4.3)

Using (4.2) in (3.6), we get

s(χ0
χ
)2

� J0{(1 − γC0

4J0
) + (β1 − 1

2(γ − 1)J0)s + β2s
2 +…} .

(4.4)

In view of Eq. (3.1), Eq. (4.4) becomes

(a0

U
)2(χ0

χ
)2

� J0{(1 − γC0

4J0
) + (β1 − 1

2(γ − 1)J0)
(a0

U
)2

+ β2(a0

U
)4

+…} . (4.5)

Eq. (4.5) provides a relation between the position of the
shock front χ and the velocity of the shock front U, if the

quantities J0 and βi are known. Further, we expand λ by
using Eqs. (3.9) and (4.2) as follows:

λ � 2[1 + β′1s + 4β′2s
2 + 6β′3s

3 … ] , (4.6)

where

β′1 �
β1 −

1
2J0(γ − 1)
1 − γC0

4J0

 ,

β′2 �
β2

1 − γC0

4J0

 ,

β′3 �
3β3

1 − γC0

4J0

+
(β1 − 1

2J0(γ − 1))β2
(1 − γC0

4J0
)2  ,

… .

(4.7)
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For simplification, we use the expressions λ1 � β′1,
 λ2 � 4β′2,  λ3 � 6β′3,…, then the Eq. (4.6) becomes

λ � 2[1 + λ1s + λ2s2 +…] . (4.8)

To obtain the ODEs governing the functionsΦ(n),Ψ(n),Λ(n)

and Ω(n)  (n � 0, 1, 2,…), we use the Eqs. (4.1) and (4.8)
in Eq. (3.5) and compare the coefficients of like powers of
s on both the sides. On comparing the terms free from s,
we get

(Φ(0) − r)Λ(0)
r + Λ(0)(Φ(0)

r +Φ(0)

r
) � 0 ,

(Φ(0) − r)Λ(0)Φ(0)
r + 1

γ
(Ψ(0)

r + Ω(0)
r + 2jΩ(0)

r
) − Λ(0)Φ(0) � 0 ,

−2Ψ(0) + (Φ(0) − r)Ψ(0)
r + γΨ(0)(Φ(0)

r +Φ(0)

r
) � 0 ,

−2Ω(0) + (Φ(0) − r)Ω(0)
r + 2Ω(0)(Φ(0)

r + (1 − j)Φ(0)

r
) � 0 .

(4.9)

Now, comparing the coefficients of first power of s, we get

(Φ(0) −r)Λ(1)
r +Φ(1)Λ(0)

r +2Λ(1) +Λ(0)(Φ(1)
r +Φ

(1)

r
)

+Λ(1)(Φ(0)
r +Φ

(0)

r
)�0 ,

−Λ(0)(Φ(1) +λ1Φ(0))−Λ(1)Φ(0) +Λ(0){(Φ(0) −r)Φ(1)
r +Φ(1)Φ(0)

r }
+Λ(1)(Φ(0) −r)Φ(0)

r +2Λ(0)Φ(1) + 1
γ
(Ψ(1)

r +Ω(1)
r +2jΩ

(1)

r
)�0 ,

−2(Ψ(1) +λ1Ψ(0))+(Φ(0) −r)Ψ(1)
r +Φ(1)Ψ(0)

r +2Ψ(1)

+γΨ(0)(Φ(1)
r +Φ

(1)

r
)+γΨ(1)(Φ(0)

r +Φ
(0)

r
)�0 ,

−2λ1Ω(0) +(Φ(0) −r)Ω(1)
r +Φ(1)Ω(0)

r +2Ω(0)(Φ(1)
r +(1− j)Φ

(1)

r
)

+2Ω(1)(Φ(0)
r +(1− j)Φ

(0)

r
)�0 .

(4.10)

From Eqs. (3.8) and (4.1), we obtain

Φ(0)(1) � 2
γ + 1

, Ψ(0)(1) � 2γ
γ + 1

− γC0

2
(γ + 1
γ − 1

)2

 ,

Λ(0)(1) � γ + 1
γ − 1

, Ω(0)(1) � γC0

2
(γ + 1
γ − 1

)2

 ,

(4.11)

and

Φ(1)(1) � − 2
γ + 1

, Ψ(1)(1) � − γ(γ − 1)
γ + 1

− 2C0γ(γ + 1)2(γ − 1)3  ,

Λ(1)(1) � − 2(γ + 1)(γ − 1)2 , Ω(1)(1) � 2γC0
(γ + 1)2(γ − 1)3  .

(4.12)

To obtain the first-order approximation to the solutions of
the problem, we solve the system of non-linear ODEs (4.9)
together with the boundary conditions (4.11) at the shock,

and determine the functions Φ(0),Ψ(0),Λ(0) and Ω(0).
Hence, the first-order approximations to the solutions of the
blast wave problem are obtained in the following form:

ν � UΦ(0)(r) ,

p � p0(U
a0
)2

Ψ(0)(r) ,

ρ � ρ0Λ
(0)(r) ,

h � p0(U
a0
)2

Ω(0)(r) .

(4.13)

Obtaining the second-order approximations to the solu-
tions of the problem is quite complicated. For this we put

the first-order approximations Φ(0),Ψ(0),Λ(0) and Ω(0) in
Eq. (4.10) to obtain the system of linear inhomogeneous
differential equations. These equations contain an unde-

termined parameter λ1 which is related to β1. The solutions
Φ(1),Ψ(1),Λ(1) and Ω(1) to be obtained include the param-

eter λ1 in a linear form. Substituting these solutions in Eq.

(4.3)2, we determine the value of λ1, and hence the second
approximations to the solutions.

5 The first-order approximation

Re-writing Eq. (4.9) as follows:

Λ(0)
r

Λ(0) �
(Φ(0)

r +Φ(0)

r
)

(r −Φ(0))  ,

(Φ(0) − r)Λ(0)Φ(0)
r + 1

γ
(Ψ(0)

r + Ω(0)
r + 2jΩ(0)

r
) − Λ(0)Φ(0) � 0 ,

Ψ(0)
r

Ψ(0) �
(γΦ(0)

r + γΦ(0)

r
− 2)

(r −Φ(0))  ,

Ω(0)
r

Ω(0) �
(2Φ(0)

r + 2(1 − j)Φ(0)

r
− 2)

(r −Φ(0))  .

(5.1)
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Substituting Eqs. (5.1)3 and (5.1)4 in Eq. (5.1)2, we obtain

Φ(0)
r �

[2γ−Φ(0)
r +{2

γ− 2(1−j)Φ(0)
γr } Ω(0)

Ψ(0) +(r−Φ
(0))Φ(0)Λ(0)

Ψ(0) − 2j(r−Φ(0))
γr

Ω(0)
Ψ(0)]

[2Ω(0)
γΨ(0) +1−Λ(0)(r−Φ(0))2

Ψ(0) ]  .

(5.2)

From Eqs. (4.11) and (5.2), we have

Now, we construct the first approximation Φ(0) following
the work of Taylor [3]. That is, the solution of Φ(0) is sup-
posed to be of the following form:

Φ(0)(r) � r
γ
+ Arm  , (5.4)

whereA andm are constants. Using Eqs. (5.4) and (4.11), we
obtain the value of A as follows:

A � γ − 1
γ(γ + 1)  . (5.5)

Using Eqs. (5.3), (5.4) and (5.5) we determine the value of
m as

Substituting the Eqs. (5.4), (5.5) and (5.6) into the Eqs.
(5:1)1; (5:1)3; (5:1)4Eqs. (5:1)1, (5:1)3, (5:1)4 and after inte-
grating it together with boundary conditions (4.11), we

obtain the following expressions for Λ(0),Ψ(0) and Ω(0),
respectively,

Λ(0)(r) � (γ + 1
γ − 1

)[ γ
γ + 1 − rm−1]

[ 2
(m−1)(γ−1)+m+1

m−1]
r

2
γ−1  ,

Ψ(0)(r) � ⎧⎨⎩ 2γ
γ + 1

− γC0

2
(γ + 1
γ − 1

)2⎫⎬⎭[ γ
γ + 1 − rm−1]

[(m+1)γ
(m−1) ]

 ,

(5.7)

Ω(0)(r) � γC0

2
(γ + 1
γ − 1

)2[ γ
γ + 1 − rm−1]

[2(2−j−γ)+2(m+1−j)(γ−1)
(m−1)(γ−1) ]

r
2(2−j−γ)

γ−1  .

6 Results and discussion

For the first-order approximation, the profiles of the flow

variables such as density Λ(0), velocityΦ(0), pressureΨ(0)

andmagnetic pressureΩ(0) are plotted using the Eqs. (5.4)
and(5.7), which are shown graphically in Figures 1–3. We
have calculated numerical values of the functions

Φ(0),Λ(0),Ψ(0) and Ω(0) from the approximate analytic
solutions (5.4) and (5.7) which are depicted in Tables 1 and

2, which also exhibit numerical values of Φ(0),Λ(0),Ψ(0)

and Ω(0) evaluated by integrating Eq. (5.1) numerically
along with boundary conditions (4.11) by Runge–Kutta

method of fourth-order (RK4method). For calculationswe
have taken the values of constant parameters as C0 = 0,
0.02, 0.04, j = 0, 1 and γ = 1.4. It may be noted that the
effects of magnetic field enter through the parameter C0,
and the value C0 = 0 corresponds to the nonmagnetic case.
From Tables 1 and 2, it is found that the obtained results
are in good agreement with those obtained by Runge–
Kutta method of fourth-order. Also, these results recover

Φ(0)
r (1) �

[ 2
γ(γ+1) + { 2(γ+1)−4(1−j)

4γ(γ−1)2−γC0(γ+1)3}C0(γ + 1)2 + 4(γ−1)2
4γ(γ−1)2−γC0(γ+1)3 −

2C0 j(γ−1)(γ+1)2
4γ(γ−1)2−γC0(γ+1)3]

[ 2C0(γ+1)3
4γ(γ−1)2−γC0(γ+1)3 + 1 − 2(γ−1)3

4γ(γ−1)2−γC0(γ+1)3]
 . (5.3)

m �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(γ+1) + { 2(γ+1)−4(1−j)
4(γ−1)2−C0(γ+1)3}C0(γ + 1)2 + 4(γ−1)2

4(γ−1)2−C0(γ+1)3 −
2C0j(γ−1)(γ+1)2
4(γ−1)2−C0(γ+1)3

{ 2C0(γ+1)3
4γ(γ−1)2−γC0(γ+1)3 + 1 − 2(γ−1)3

4γ(γ−1)2−γC0(γ+1)3}
− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(γ + 1
γ − 1

) . (5.6)
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Figure 1: Flowprofilesof (a) velocityΦ(0), (b)densityΛ(0), (c)pressureΨ(0) and (d)magnetic pressureΩ(0) for different valuesofC0, j=0and γ=1.4.

Figure 2: Flowprofilesof (a) velocityΦ(0), (b)densityΛ(0), (c)pressureΨ(0) and (d)magnetic pressureΩ(0) for different valuesofC0, j=1and γ=1.4.
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Sakurai’s results [1] very well in the absence of the mag-
netic field.

Figures 1(a)–(c), 2(a)–(c) and 3(a)–(c) show that
behind the shock front the velocity, density and pressure
decrease monotonically, while Figures 1(d), 2(d) and 3(d)
show that the magnetic pressure decreases for axial mag-
neticfield ( j=0) and increases for azimuthalmagnetic field
( j = 1) monotonically as we move toward the axis of sym-
metry from the shock front. Also, from Figures 1 and 2, we
observe the effect of C0 on the profiles of the flow variables
for γ = 1.4, j = 0 and j = 1. As C0 increases, the density and
pressure decrease (see Figures 1(b) and (c), 2(b) and (c)),
while the velocity and magnetic pressure increase (see
Figures 1(a) and (d), 2(a) and (d)) behind the shock. It is
much expected result as the charged particles will be
transported away very quickly from the shock front with an
increase in C0. It results in the dropping of the density of
the particles after the blast. Further, the decrement in the
pressure with the increased value of C0 enables the gas
particles to move more freely, which causes to increase the
velocity of the flow behind the shock. Figure 3 shows the
behavior of the flow variables in the presence of axial
magnetic field ( j = 0) and azimuthal magnetic field ( j = 1)
for C0 = 0.02 and γ = 1.4. From Figures 3(b)–(d), it is

obtained that under the effect of azimuthal magnetic field
( j = 1) the strength of the density, pressure and magnetic
pressure is greater than that of axial magnetic field ( j = 0).
Figure 3(a) shows the decay of the velocity in the presence
of azimuthal magnetic field ( j = 1) in comparisonwith axial
magnetic field ( j = 0) behind the shock.

7 Conclusion

In the present work, we have studied the propagation of
cylindrical shock waves produced due to strong explosion
in an ideal magnetogasdynamics using power series
method [1]. The first-order approximate analytic solutions
for the flow variables such as velocity, density, pressure
and magnetic pressure are obtained, and shown graphi-
cally to elucidate the effects of varying shock Cowling
number C0. To verify our results, we have compared the

obtained numerical values of Φ(0),Λ(0),Ψ(0) and Ω(0) with
the Sakurai’s results [1] as well as with the results obtained
byRunge–Kuttamethod of fourth-order, which are listed in
Tables 1 and 2. Our results recover the results of Sakurai’s
published work in the absence of magnetic field, and
match well with the results obtained by Runge–Kutta

Figure 3: Flow profiles of (a) velocity Φ(0), (b) density Λ(0), (c) pressure Ψ(0) and (d)magnetic pressure Ω(0) for C0 = 0.02, γ = 1.4 and j = 0,1.
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method of fourth-order. The considered gas dynamical
model for cylindrical geometry under the effects of axial or
azimuthal magnetic field in an ideal medium might
be fruitful for the study of experiments on pinch effect,
exploding wires and so forth. Study of cylindrical shock
waves is not only associated with the explosion of a long
thin wire but also to some axially symmetric hypersonic
flow problems such as the shock envelope behind a fast
meteor or missile. From the present study, the following
can be concluded:
(i) Figures 1–3 depict that the flow variables such as the

velocity, density and pressure decrease mono-
tonically, while the magnetic pressure decreases for
axialmagnetic field ( j=0) and increases for azimuthal
magnetic field ( j = 1) as we move toward the axis of
symmetry from the shock front.

(ii) For axial magnetic field ( j = 0) or azimuthal magnetic
field ( j = 1), increase in the parameter C0 causes
density and pressure to decrease, and velocity and
magnetic pressure to increase behind the shock (see
Figures 1 and 2). It happens because the charged gas
particles are carried away very quickly from the shock
front with the increase in the value of C0. Hence, this
enables the gas particles to move more freely, which
causes an increase in the velocity of the flow behind
the shock.

(iii) Figure 3 shows the behavior of theflowvariables in the
presence of axial magnetic field ( j = 0) and azimuthal
magnetic field ( j = 1) for the fixed value of C0. From
Figure 3, it is observed that under the effect of
azimuthal magnetic field ( j = 1) the strength of the
density, pressure and magnetic pressure is greater
than that of axial magnetic field ( j = 0), whereas the
velocity decreases in the presence of azimuthal mag-
netic field ( j = 1) in comparison with axial magnetic
field ( j = 0) behind the shock.
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