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Abstract: Nonlinear rarefactive isothermal ion-acoustic
periodic travelling waves (RIIAPTWSs) are examined in a
magnetized ultrarelativistic degenerate plasma, contain-
ing warm fluid ions and ultrarelativistic degenerate iner-
tialess electrons as well as positrons and immobile heavy
negative ions. In the linear regime, the excitation of an
isothermal ion-acoustic mode and its evolution are inves-
tigated. The physical behavior of nonlinear rarefactive
isothermal ion-acoustic waves (RIIAWSs) in this plasma
model is governed by a Zakharov-Kuznetsov (ZK) equa-
tion. The analytical solutions for the nonlinear rarefactive
isothermal ion-acoustic solitary waves (RIIASWs) and
RIIAPTWs are performed by the bifurcation analysis. A
careful discussion demonstrates the excitations of
RIIASWs and RIIAPTWs are amplified (i.e., the amplitudes
become deeper), as the chemical potential (or the Fermi
energy at zero temperature) of electrons is decreased. It is
found physically that the presence of the ultrarelativistic
degenerate positrons and stationary heavy negative ions
have strong effects on features of nonlinear RIITASWs and
RIIAPTWs. The implications of the present finding in
compact astrophysical objects, such as white dwarf stars,
have been discussed.
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1 Introduction

The enormous areas of quantum degenerate plasma particles
in astrophysical regions like compact objects (i.e., white
dwarfs, neutron stars and pulsar magnetosphere) and labo-
ratory (such as semiconductor plasma, laser compressed
plasma and nanostructures) have attracted the researchers of
all over the world to study in the field of dense plasmas [1-15].
Indeed, the quantum degeneracy effects in the system start
playing an important role when the de Broglie thermal
wavelengths Ag (= (h/2mikpT;j)"?) for degenerate particles
(e.g., electrons and positrons, where j = e and p for the elec-
tron and for the positron, respectively) are similar to/larger
than the average interfermionic distance nj 13 (i.e., when

nj/lgzl). In such situation, plasma temperature T; (i.e., the
electron and positron temperatures ) approaches the Fermi
temperature Ty (= Eg/kg) (i.e., the electron and positron
Fermi temperatures) and follows the Fermi-Dirac statistical
distribution [16-20], where Egj(= (h*/2m;) (3m°n;)*?) is the
Fermi energy of degenerate particles, n; is the number density
of fermions, 7 is the Planck constant divided by 2, m; is the
rest mass of a degenerate particle and kg is the Boltzmann
constant. A matter of importance in compact objects, in
which the number densities of particles are enormous, is that
when the electron and positron thermal energies become
slight compared to electron and positron Fermi energies, then
the electron and positron degeneracy pressures can be
dominant over the electron and positron thermal pressures.
Therefore, the lower energy state is filled with electrons so
additional electrons can generate degeneracy pressure. In the
case of white dwatrfs, the average density could be changed
from 10°to 10° g.cm>, the degenerate electron number can be
of the order of 10” cm and the average interparticle distance
is in the range of 107° cm. Thus, the light nuclei can be
considered inertial, while both electrons and positrons are
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taken to obey the degeneracy pressure to prevent the gravi-
tational collapse of compact objects. Moreover, the basic
constituents of white dwarfs are mainly positively and
negatively charged heavy elements (such as carbon, oxygen,
helium with an envelope of hydrogen gas). The presence of
heavy elements is found to form in a prestellar stage of the
universe’s evolution when all matter was compressed to
extremely high densities. For white dwarfs, the average
number density of heavy particles is in the range of 10° cm >,
with the distance between heavy particles being in the range
of 107° c¢m [21-23]. It is well known that Chandrasekhar ob-
tained the mathematical standard model for white dwarfs by
using the Fermi-Dirac statistics for fermions [24-26]. In the
last few decades, most previous investigations have been
assumed that degenerate particles are completely degenerate
and cold (i.e., Tj = 0) [27-40]. For example, Mamun and his
research group [29-34] discussed that the modification of
nonlinear waves due to the existence of heavy negative ions
in degenerate plasmas. They [34] found that the existence of
the ultrarelativistic degenerate electrons, as well as positrons
and stationary heavy negative ions, play a significant role in
the basic features of the nonlinear ion-acoustic solitary waves
and double layers. Furthermore, they [34] demonstrated that
the presence of stationary heavy negative ions provides the
possibility of the co-existence of both compressive and rar-
efactive nonlinear ion-acoustic solitary waves. It is important
to mention here that the temperature T; is utilized to define
the energy spread for a classical ideal gas physically. The
energy distribution of a degenerate particle gas is determined
by the Fermi energy Eg; at zero temperature (or the chemical
potentialy;) and temperature T;. As a result, the study of
degenerate particles at nonzero temperature (i.e., T;=0) has
engendered a lot of interest, and several types of research
have recently been made to examine the linear and nonlinear
waves in a degenerate plasma system, which corresponds to
the Fermi gas and provides the possibility of examining how
the nonlinear wave structures depend on the physical
parameters | and T [41-51]. The equation of state for a
degenerate gas in such situation has been discussed analyt-
ically by many investigators. In particular, Dubinov and his
research group applied the analytical formula of the state
equation for degenerate plasmas to investigate the propa-
gation of nonlinear waves [44-49]. Dubinov and Kitaev [49],
for example, examined the Langmuir waves in warm quan-
tum electron-ion plasmas. They [49] demonstrated that the
equation’s numerical solutions reveal the small scale quan-
tum Langmuir oscillations attributed to the Bohm quantum
force. El-Shamy et al. [50] illustrated that the amplitude and
the width of compressive isothermal ion-acoustic solitary
waves increase as the chemical potential of electrons
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increases. El-Shamy et al. [51] stated that the amplitude and
the steepness of the monotonic isothermal ion-acoustic shock
waves slightly decrease due to the increase in the Fermi
temperature ratio of the low temperature of electrons.
Nevertheless, most previous studies [41-51] focused on
studying solitary waves, except for the work done by Dubinov
and Sazonkin [45]. They [45] have determined the domains of
the presence of solitary and periodic ionic sound waves in
unmagnetized nonrelativistic degenerate electron—positron—
ion plasma. They [45] illustrated that these domains do not
intersect. However, the studies of features of nonlinear rar-
efactive isothermal ion-acoustic solitary and periodic travel-
ling waves in magnetized ultrarelativistic degenerate
plasmas are still lacking. In this context, the well-known
bifurcation analysis is important in many theoretical physics
areas for investigating the dynamical behavior; hence, it is
important to study nonlinear acoustic periodic travelling
waves for different plasma models in laboratories and
astrophysical situations [52]. Over the last few years, the
bifurcation theory has been extensively employed to study
nonlinear waves’ physical nature in various plasma models
due to its significant applications in different plasma situa-
tions [53-61]. For example, El-Shamy et al. [57] examined the
features of electrostatic travelling waves in degenerate dense
magnetoplasmas consisting of nondegenerate inertial cold
ions and relativistic degenerate inertialess electrons and
positrons. They [57] found that the amplitude and the width of
the electrostatic periodic travelling wave increase with the
decrease in the concentration of positrons. Very recently,
Mandi et al. [61] investigated the dynamics of ion-acoustic
waves in Thomas—Fermi plasmas with source term, which
consist of electrons and positrons, following zero-
temperature Fermi-gas statistics and ions behave as a clas-
sical fluid. They [61] demonstrated that the concentration of
positrons has a vital role in forming and the transition of
periodic ion-acoustic waves. However, the effects of ultra-
relativistic degenerate inertialess electrons and positrons and
immobile heavy negative ions have been paid less attention.
Therefore, the main objective of this study is to investigate the
influence of chemical potentials of fermions and the con-
centration of heavy negative ions on the nonlinear rarefactive
isothermal ion-acoustic solitary and periodic travelling
waves in ultrarelativistic degenerate magnetoplasmas by
using the bifurcation analysis of the planar dynamical sys-
tems. It is important to mention here that this investigation is
closely related to compact objects, such as white dwarf stars,
where many previous studies have predicted the existence of
acoustic-modes [62,63], in which ions provide the inertia and
degenerate electrons, as well as positrons supply restoring
forces to support ion-acoustic mode.
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The manuscript is structured as follows. In Section 2,
we recall the basic equations and derive then the linear
dispersion relation and the nonlinear Zakharov—-Kuznetsov
(ZK) equation that governs the dynamics of nonlinear
waves propagating in the present model. In Section 3, the
bifurcation analysis is applied to study the possibility of
the existence of the rarefactive isothermal ion-acoustic
solitary wave and periodic travelling wave solutions. Nu-
merical analysis, simulation and results are finally dis-
cussed in Section 4.

2 Model equations

A magnetized ultrarelativistic degenerate plasma system
composed of warm fluid ions and ultrarelativistic degen-
erate inertialess electrons and positrons in the presence of

an external static magnetic field ﬁ = Bo€,, where€, isthe
unit vector along the Z-axis. Propagation of nonlinear
isothermal ion-acoustic waves (IIAWSs) is described by the
following normalized basic equations [36, 50]:

on; =
ﬁw( 1)_0, 1)
ou;

ST +<ﬁi'€)ﬁi=—§¢—a ni_l/3Vni+Q<ﬁi><'éz), 2

Vip=

The number densities of ultrarelativistic degenerate elec-
trons and positrons are given, respectively, by (see
Refs. [50, 51]).

ne = (1+B,d + B, + Bsd’), (4)
n, = (1-o4d + 0ud” - asd’). 5)

The physical quantities n; u i (ux, Wy, ujz) and ¢ are the
number density and the velocity of warm ions, and the
electrostatic wave potential, respectively. Further, T is the
time and 6 (= (0/0X,0/0Y,0/9Z)), where X, Yand Z are
space coordinates. Here ;(=eBy/m;c) is the ion
cyclotron frequency. Now let us consider the following
normahzatlon n; — <, ne — (0), n, — (0,,u _’c -
ei, vV - VAF,T—>Tw1,and Q—> Q n“’) is the unper-
turbed number density of ions, n is the unperturbed
number density of electrons, nff” is the unperturbed
number density of positrons, Cr(= v/€r/m;) is the ion
Fermi acoustic speed, Ag (= /ere/4me? n(”) is the Debye
radius, w;'(= \/my/4me?n”) is the plasma period. It
should be mentioned here that the detailed derivation of
Egs. (3) and (4) is provided in Ref. [50]. Now, we define the

(Bne—ni—an,+y), €)
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following  notations: ¢ ( =3 T—) Q( = %>, Bl = niZ;)
n©® (0) c
a =ﬁ Y Zh (o) ’ Bl( :C_fz> Bz( Cle) Bs( 3C19)
Cyp 0 0, o’ e Ko
(o)l el 8] ol
Hoj\ 3 7],2_5 egl CZI HO} 3012 _Tﬁi and 0; Tj

= (3m? I 0’)3 hc. Here nh is the number density of static
negatlve heavy ions, Zis the charged state of immobile
heavy negative ions, c is the speed of light in vacuum, e is
the magnitude of the electric charge, poe and pop, are the
chemical potentials (or the Fermi energies at zero temper-
atures) of electrons and positrons at ¢ =0, respectively, m;
is the ion mass, T; is the ion temperature. C;; and C; contain
the effect of degeneracy. Later, C;; and Cy will be encoun-
tered as the effect of degeneracy on the nonlinear
structures.

Now, we study the dispersion characteristics of prop-
agating electrostatic mode (w, k) in magnetized ultra-
relativistic degenerate plasmas with static heavy negative
ions for several physical parameters. By utilizing Fourier
transform, one can examine the dispersion law for linear
modes described by Egs. (1)-(5). Thus, the dispersion
relation can be written as

(WK’ - k207)

2+ (BB, +aoy) = (0~ (@ 1 1%0) + K0%0) (6)
Therefore, one can rearrange Eq. (6) to become

w'- Qw'+Q,=0, @)

where Q= (QZ + Ko+ W@) and

Q, = (0 + W)szz. Here, w and k are wave frequency

and wave number,

ki =k = K’cos? (6) = ¢2K%, Kk}

respectively, kK’ =kJ + k7,
12 012 12002 4 p2
=k +k; =k (¢, +¢)), where

£y, £y, and ¢, are the directional cosines of the wave vector k
along the x, y, and z axes, respectively, so that € + € + ¢ = 1.

Qi+ Qr- 40, ®

2

w

H N

Indeed, the upper and lower signs (i.e., w = w, and w._)
correspond to the propagating isothermal ion-cyclotron
and isothermal ion-acoustic waves, respectively. Let us
now focus on the ion-acoustic waves for a dispersion
correction of order k* and small wave numbers (i.e., long
wavelengths); Eq. (8) can be approximated to the lowest
order as an acoustic-like dispersion law [64-69]
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_ 2(0+p) o (04p) P
w=k/(0+p) <1+kI >0 k ( 0 +2(0+p) e
wherep= m , and for the limit of a weak dispersion the
phase velocity V of long-wavelength (low-frequency) ion-
acoustic waves becomes

V=+\0+p, (10)
Finally, we can obtain
w=kV-kB-KKBC+..., 1)

where the coefficients B and C are given by < = ‘VZZV")Z> and

< = (1 + #ﬁ(ﬁ)), respectively. Later, B and C will be

encountered as the coefficients of the dispersive terms in
a nonlinear ZK equation. For numerical illustrations,
[22,70-73] we can take some physical parameters that find
in compact astrophysical objects, such as white dwarfs
n{” =10 cm?, n® =10 cm>, and n/” =10”cm?,
and the average number density of heavy negative parti-
cles is of the order of 10” cm™, which satisfy the quasi-
neutrality condition. Furthermore, the corresponding
Fermi temperatures of the electron and positron are
rewritten as follows: Tre = 6.4x(10° —10%)K, and
Trp = 6% (10° — 10®) K. Furthermore, By = 10° — 10" G and
Te,p = 6x10° K. It is observed here that the electron/positron
Fermi temperature is of the same order as that of the system
temperature T, ,, but Tge,p > Te . Moreover, the ion tem-
perature is given by T;=0.2x(10* -10%) K [72]. The
characteristics of the linear isothermal ion-acoustic waves
(ITAWs) are shown in Figures 1-4. It is clear that the

0.6 0.8 1
k

Figure 1: The w - k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Q = 0.5,
a=0.11,y=0.77, Jop = 0.3,0, = 30, 0, =30, 0 = 0.005, Hpe = 0.4 (red
solid curve) and po. = 0.5 (blue dashed curve).
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k

Figure 2: The w - k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Q = 0.5,
a=0.11,y=0.77, e = 0.5,0. = 30, 0, =30, 0 = 0.005, lp, = 0.3 (red
solid curve) and pop, = 0.4 (blue dashed curve).

chemical potentials of fermions, po. and oy , the thermal
effect of warm ions, o and the concentration of static heavy
negative ions, y, basically modify the angular wave fre-
quency, w. Clearly, when the angular wave frequency, w,
approaches the ion cyclotron frequency, Q, for large
wavenumber k, the modifications are observed signifi-
cantly. As shown in Figures 1-4, the increase in oe, Hop, 0,
and y lead to an increase in the angular wave frequency, w,
respectively. The figures show that the lowest increase in w
occurs with o, while the highest increase occurs with y.
We shall examine the physical nature of nonlinear
isothermal ion acoustic waves in magnetized ultra-
relativistic degenerate plasmas. Based on the characteristic
of the linear dispersion law for small wavenumber k, one
can introduce the following stretched coordinates [64-66].

(¢} 0.2 0.4 0.6 0.8 . 1

Figure 3: The w — krelation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Q = 0.5,
a=0.11,y=0.77, Hoe = 0.5, Yop = 0.3, 0. =30, 0, =30, 0 =0.005 (red
solid curve) and 0 = 0.001 (blue dashed curve).
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0 0.2 0.4 0.6 0.8 Kk 1

Figure 4: The w - k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Q = 0.5,

Moe = 0.5, Jlop = 0.3, 0. =30, 0,=30,0=0.005, =0.33,y=0.77 (red
solid curve) and B = 0.22, y = 0.88 (blue dashed curve).

x =X,y = %Y, z = €/(Z - VT),and t = €°T, (12

where € is a real and small parameter measuring the
strength of nonlinearity and V is the phase velocity
normalized by the ion Fermi acoustic speed. Furthermore,
the dependent variables are expanded as

(O, 3 en g, Y, ) 2.
Y= +n§ls P and ujxy)=€ ui(xly)+s ui(x’y)+...,
(13)
where
P = [, ugz, ] and P [1,0,0]. (14)

Putting Eqgs. (12)-(14) into Egs. (1)-(5), and collecting
the terms in different powers of €, the lowest-order in € gives

n® - ﬁ b (15)
oo
'X Q(V*-0) oy
uy’ = ‘Q(sziz_o) %: , 17)
up, = ﬁ b (18)

Following the same strategy, one can obtain the second-
order in &, and hence, one can eliminate the second-order
terms of the velocities and the number densities, and with
the help of the first order, we finally obtain the ZK equation
as follows:

©)) @ 2 2 2
ai)t :AB¢<”6¢ :BE(a +C<a +a—>>¢(l)20» 19)

dz = 0z\dz2 \ox2 oy

E.F. El-Shamy et al.: Nonlinear rarefactive isothermal ion acoustic waves —— 925

where V, B, and C have the same forms as before

and A < = (3(‘(/\2’;;53)+2(aaz—[3[32) >> is the nonlinear coeffi-

cient. Since B is always positive, the physical nature of the
nonlinear ion-acoustic waves depends on the sign of the
nonlinear coefficient A; the positive and the negative
values of the nonlinear coefficient, A, will be related to
compressive and rarefactive nonlinear ion acoustic waves,
respectively. In the Sections 3 and 4, as mentioned earlier,
we will focus our work on the properties of nonlinear rar-
efactive isothermal ion-acoustic solitary and periodic
travelling waves in magnetized ultrarelativistic degenerate
plasmas (i.e., A < 0). As displayed in Figure 5, the nonlin-
earity coefficient, A, has been varied from a positive sign
(A > 0) to a negative sign (A < 0) due to the variation in o
for different values of physical parameters f3, a, and y.

3 Nonlinear RIIASW and RIIAPTW
solutions of the ZK equation

In this part, we use the bifurcation analysis to discuss the
possibility of the existence of rarefactive isothermal ion
acoustic solitary wave (RITASW) and rarefactive isothermal
ion acoustic periodic travelling wave (RITAPTW) solutions.
Also, we introduce the following independent variables:

n=8&X+4y+8z2-Vot, (20)

where v, denotes the constant speed of the reference frame.
Now, we apply the transformation Eq. (20) to Eq. (19) with
& (x,y,2,t) = ¢ (1), we obtain

35

25f
20fF
15} .

0 =

sr T TTee—ll k
-10f
-15f

293

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Hoe

Figure 5: The change of the nonlinear coefficient, A, against poe for
Mop = 0.3, 0 = 30, 0, =30, 0 = 0.005, Q = 0.5, y = 0.77, a = 0.11,
B = 0.33 (red solid curve) and y = 0.87, o = 0.25, B = 0.37 (blue
dashed curve).
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d¢ d> 5B ) 3 ¢
~Bo g +ABSLD g +08°B an TBCR’e e,(€+2) ap -
1)
integrating Eq. (21) with respect to n, we obtain
dZ
e e @

where the coefficients 8,, 8,, and &; are defined by

A Vo D :
2((82+(1-2)C))  £,B(&2+(1-€2)C) and £,B(82+(1-€2)C) ? respectlvely, and

D is an integration constant. It is crucial to note
that D > v3/2AB ¢,. Putting ® = ¢ (n) and d®/dn = ¥, then
Eq. (22) can be expressed as a dynamical system of first-
order differential equations (i.e., the planar Hamiltonian
system).

w_,

dn

d\I" (23)
d]’l (Slq)z + 62(1) + 83)

It is worth noticing that the Hamiltonian system depends
on the proposed plasma model’s physical parameters.
Furthermore, the dynamical system Eq. (23) is a conser-
vative Hamiltonian system that governs a particle of unit
mass’s motion of under the effect of the potential forces.
The Hamiltonian function (total energy) can be written as

EZ+Q(I)3 82

H(D,¥) = > '3

@ +8;® =h, (24)
where h is an arbitrary constant that determines the value
of the energy. It is instructive at this point to describe all the
possible nonlinear wave solutions for Eq. (19) by applying
the phase portrait (i.e., the (®,¥) phase plane) of the
Hamiltonian system Eq. (23). Of interest is to note that, at
8, # 0, 8, # 0and 85 # 0, Eq. (23) has two equilibrium points
0y (Dy,0) and O; (d;,0) where &, = -8, — VA/28, and
@, = -8, + VA/28, , where A = & - 48,85 > 0. We assume
that M(®;,0) is the coefficient matrix of the linearized
system of Eq. (23) at an equilibrium point ©; (®;, 0), where
i = 0, 1. Applying the concept of dynamical systems, an
equilibrium point 0, (®,,0) of Eq. (23) is a saddle point

when J =detM(®,,0)= W‘M<O On the other
> 0, the

hand, at ©, (®;,0),] = det M(®,,0) = m
planar Hamiltonian system is a center point. The values of
the energy h at the equilibrium points ©,(®,,0)
and ©,(®,,0) are, H(®,,0) =h= (& -
66,0,0; — Va3 )/128f is approximately equal to zero and
H(®;,0) = h = (82 - 65,8,85 + VA’ /1287 = —4v3/6A’B*¢3

((&2+ (1 -¢2)C)) <0. In this situation, where B and ¢,
(i.e., 0 < £, < 1) are always positive, it is crucial to note that

respectively,
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h > 0, except vy < O that corresponds physically to a
nonlinear wave travelling towards negative n. Therefore,
we will focus on analytical solutions and numerical sim-
ulations of the dynamical system for two energy values h,
whenh=0and h<0.

Now, we utilize the energy integral Eq. (24) to find
RIIASW and RIIAPTW solutions. It is given by

=2 Idrl, (25)

I do
VP (D)
where P(®) is a polynomial of degree three in @, and it
takes the following form

61382

P(@) =h- @ -0 -5,0 (26)

P (®) depends on the values of §;, 65, and 85 (i.e., Hoe, Hop, 0,
¢, Y, and Q) and on a particular level of energy h. There-
fore, on a zero level of the energy (i.e., h = 0), there is an
orbit passing through the origin, which is a saddle point,
and returns to it again as demonstrated by blue dashed
curves in Figure 6. Indeed, this kind of orbit is named a
homoclinic orbit, which usually indicates the presence of
an RITASW solution. It is evident from Figure 6 that this
orbit intersects the @ -axis (¥ = 0) in two points, and so an
RIIASW solution of Eq. (19) is written as

8, + \/E—B\/Esech2< “1’3—6r1>

¢(n)= 0] 27)

On the level of the energy h < 0, there is a family of periodic
orbits around the center point ©; (¥, 0) and it is demon-
strated in Figure 6 by red color. A nonlinear RIIAPTW so-
lution to Eq. (19) in terms of Jacobian elliptic functions is
given by [59].

Figure 6: Phase portrait of the dynamical system Eq. (23) with
Moe = 0.3, Hop = 0.3 a=0.11, y=0.77, 0. = 30, 0, = 30,
0=0.005Q=0.5and ¢, =0.7.
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|81|(¢3 _q)l)

¢(n)=¢1+(¢2_¢1)5n2< 6

n,k> , (28)

with the periodic T= Jml((k), where K(k) is a

(dr-d1)
(3=’

which is the measure of nonlinearity, where 0 < k < 1
and ¢, < ¢, < ¢, are the three real roots of the following
equation:h -2 @ -2 @’ - 8;0 =0.

complete elliptic integral with the modulus k =

4 Numerical analysis, simulation
and results

In this section, we will investigate numerically the RIIASW
and RIIAPTW solutions to Eq. (19) in the fluctuations of
physical parameters oe, Hops 0, £, Y and Q. Figure 7(a) and
(b) illustrate the variety of nonlinear rarefactive isothermal

0.1

o)

-0.1

-0.2

-0.3

-0.4

-0.5

055

10 15

0.1

()
0.08

0.06
0.04
0.02

0

-0.02
-0.04

-0.06

-0.0855

-20 -10 0 20 30

Figure 7: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for o, = 0.3 a = 0.11, y = 0.77, 0. = 30, 0, = 30,
0=0.005,Q=0.5,¢ = 0.8, Hoe = 0.4 (red solid curve) and po. = 0.5
(blue dashed curve). (a) RIASW and (b) RIIAPTW.
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ion-acoustic solitary waves (RIIASWs) and rarefactive
isothermal ion-acoustic periodic travelling waves
(RITAPTWS), respectively, in a certain range of the space
coordinate n for two different values o, = 0.4 and 0.5, viz.,
keeping all the other parameters fixed. Obviously, the
electrostatic potentials of RIIASWs and RIIAPTWSs are
amplified (i.e., the amplitude becomes deeper), as the
chemical potential of electrons is decreased (i.e., for lower
Moe)- It is well known physically that an increase in the
chemical potential of electrons/positrons means that the
electrons/positrons’ background density increases. As
shown in Figure 5, an increase in the density of background
electrons manifested through increasing ., leads to an
increase in the absolute value of the nonlinear coefficient,
A, (i.e., |A|) that can physically decrease the excitations of
RIIASWs and RIIAPTWs. The other important parameter in
this plasma system that needs attention is pop,. Figure 8(a)
and (b) explore, respectively, the effects of po, on the
electrostatic potentials of RITASW and RIIAPTW solutions.
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095
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-30

-20 -1l0 0 1l0 ZIO 30
Figure 8: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for pge = 0.5, a = 0.11, y = 0.77, 0. = 30, 0, = 30,

6=0.005,Q=0.5,¢ = 0.8, o, = 0.3 (red solid curve) and po, = 0.4

(blue dashed curve). (a) RIIASW and (b) RIAPTW.
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The electrostatic potentials become more profound and
broader as o, decreases. We note that the increase in the
concentration of positive ions manifested through
decreasing plop, to keep the quasi-neutrality condition in the
plasma system leads to an increase in the driving force that
is provided by positive ion inertia of the RITASWs and
RIIAPTWSs; hence, the absolute values of the pulse ampli-
tude and the width increase. Figure 9(a) and (b) demon-
strate the variation of RIIASW and RIIAPTW profiles with
the direction cosine ¢,, respectively. The excitations of
RITASWs and RIIAPTWs increase for lower ¢,, implying an
amplification of the electrostatic potential disturbance as
the RIIASW and RIIAPTW propagate away from the
external static magnetic field. It should be mentioned here
that at ¢, — 0, the amplitudes of the RIIASWs and
RIIAPTWs increase to infinity and the widths tend to
decrease zero. This means that, physically, we have to
assume larger £, (i.e., smaller 0, where 0 is the angle that

0.05
Q)]

0.05
0.04
0.03
0.02
0.01
|

0
-0.01
-0.02
-0.03|

-0.04

—0.0_53.‘30

-20 -10 0 10 20 30
Figure 9: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for poe = 0.5, Hop = 0.3, a = 0.11, y = 0.77, 0. = 30, 0, = 30,

0 =0.005,Q=0.5,¢ = 0.8 (red solid curve) and ¢, = 0.9 (blue
dashed curve). (a) RIIASW and (b) RIAPTW.
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the propagation vector of RIIASWs and RITAPTWs makes
with the magnetic field, 0 < 0 < 45°) to preserve the validity
of the electrostatic approximation in numerical analysis.
Figure 10(a) and (b) display the RIIASW and RIIAPTW
modes’ physical behavior for different values of y. It is
observed that the absolute value of electrostatic pulse
amplitude (the width) increases (decreases) for lower y.
This means physically that an increase in the background
density of electrons, manifested through decreasing v,
leads to an increase in the restoring force that can physi-
cally increase the excitations of RIIASWs and RIIAPTWs. It
is also worth observing that the electron concentration
effect to form the restoring force is more pronounced than
its influence on the nonlinear coefficient to form RIIASW
and RIIAPTW profiles. Figure 11(a) and (b) give, respec-
tively, the RIIASW and RIIAPTW structures for two
different values of 0 = 0.001 and 0.005. The absolute values
of the pulse amplitude and the width slightly increase for

0.05

o)

0.05

0.04f
0.03f
0.02
0.01

0

-0.01f
-0.02f
-0.03

-0.04f

005
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Figure 10: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for pge = 0.5, Jop = 0.3, 0. = 30, 0, = 30, 0 = 0.005, Q = 0.5,
¢, = 0.8, y=0.77 (red solid curve) and y = 0.88 (blue dashed curve).
(@) RIIASW and (b) RIIAPTW.
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Figure 11: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for poe = 0.5, pop = 0.3, a = 0.11, y = 0.77, 6 = 30,
0,=30,0=0.5,¢ =0.8,0=0.005 (red solid curve) and o = 0.001
(blue dashed curve). (a) RIASW and (b) RIIAPTW.

larger . The slight amplification of the amplitude is due to
an increase in the fraction of thermal ions, which are the
source of energy for RIIASWs and RIIAPTWs. Finally, in
Figure 12(a) and (b), we have plotted the electrostatic po-
tentials of RITASW and RIIAPTW solutions as a function
of Q(=0.5-0.3). It is clear that the amplitudes remain un-
changed and the widths become wider as the ion cyclotron
frequency Q decrease. This means that an increase in the
magnitude value of the external static magnetic field leads
to an increase in the ion cyclotron frequency and a
decrease in the dispersion of the system. Therefore, the
static magnetic field acts to restrict the charged particles of
fluid elements tightly to the force lines so that the trans-
verse motion of these particles is forced within the fluid
element, a situation referred to as magnetic confinement.
Thus, the uniform external magnetic field makes the
RITIASWs and RIIAPTWs profiles more spiky. In fact, it is
helpful to compare our results with the findings of El-
Shamy et al. [50]. Without immobile heavy negative ions,

Figure12: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for pge = 0.5, Hop = 0.3, a = 0.11, y = 0.77, 0. = 30, 0, = 30,
0=0.005,¢, = 0.8,Q=0.5(red solid curve) and Q = 0.3 (blue dashed
curve). (@) RHASW and (b) RIIAPTW.

the present study agrees exactly with the earlier work by EI-
Shamy et al. [50]. However, it is worth noting here that
El-Shamy et al. [50] have focused only on studying
compressive IIASWs, while in this investigation we were
interested in studying the features of RIIASWs and
RIIAPTWs.

To summarize, we have examined the linear and
nonlinear propagation of IIAWSs in a dense magnetoplasma
comprising nondegenerate hot ions and ultrarelativistic
degenerate inertialess electrons as well as positrons and
stationary heavy negative ions. Using the small and finite-
amplitude approximation method, we have obtained the
nonlinear ZK equation. In the present investigation, the
ZK equation supports either nonlinear compressive or rar-
efactive IIAWs. In our work, we focused only on the physical
nature of RIITASWs and RIIAPTWs. Applying the bifurcation
theory, we have analyzed the planar Hamiltonian system
both analytically and numerically. In the proposed model,
we have demonstrated that the chemical potentials of
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fermions, the ion cyclotron frequency and direction cosines
affect the amplitude as well as the width of the RITASWs and
RIIAPTWs in magnetized ultrarelativistic degenerate
plasmas. Finally, we believe that the present finding will
help us to understand the essential characteristics of the
nonlinear propagation of IIAWs in ultrarelativistic degen-
erate magnetized plasmas that may occur in many astro-
physical compact objects, like white dwarfs.
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