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Abstract: Nonlinear rarefactive isothermal ion-acoustic
periodic travelling waves (RIIAPTWs) are examined in a
magnetized ultrarelativistic degenerate plasma, contain-
ing warm fluid ions and ultrarelativistic degenerate iner-
tialess electrons as well as positrons and immobile heavy
negative ions. In the linear regime, the excitation of an
isothermal ion-acoustic mode and its evolution are inves-
tigated. The physical behavior of nonlinear rarefactive
isothermal ion-acoustic waves (RIIAWs) in this plasma
model is governed by a Zakharov–Kuznetsov (ZK) equa-
tion. The analytical solutions for the nonlinear rarefactive
isothermal ion-acoustic solitary waves (RIIASWs) and
RIIAPTWs are performed by the bifurcation analysis. A
careful discussion demonstrates the excitations of
RIIASWs and RIIAPTWs are amplified (i.e., the amplitudes
become deeper), as the chemical potential (or the Fermi
energy at zero temperature) of electrons is decreased. It is
found physically that the presence of the ultrarelativistic
degenerate positrons and stationary heavy negative ions
have strong effects on features of nonlinear RIIASWs and
RIIAPTWs. The implications of the present finding in
compact astrophysical objects, such as white dwarf stars,
have been discussed.

Keywords: chemical potentials; isothermal ion acoustic
periodic travelling waves; magnetized ultra-relativistic
degenerate plasmas; nonlinear isothermal ion-acoustic
waves; white dwarfs.

1 Introduction

The enormous areas of quantumdegenerate plasmaparticles
in astrophysical regions like compact objects (i.e., white
dwarfs, neutron stars and pulsar magnetosphere) and labo-
ratory (such as semiconductor plasma, laser compressed
plasma andnanostructures) have attracted the researchers of
all over theworld to study in the field of denseplasmas [1–15].
Indeed, the quantum degeneracy effects in the system start
playing an important role when the de Broglie thermal

wavelengths  λB(� (ℏ/2πjkBTj )1/2) for degenerate particles
(e.g., electrons and positrons, where j = e and p for the elec-
tron and for the positron, respectively) are similar to/larger

than the average interfermionic distance n−1/3
j (i.e., when

 njλ3B≳1). In such situation, plasma temperature Tj (i.e., the
electron and positron temperatures ) approaches the Fermi
temperature TFj(� EFj/kB) (i.e., the electron and positron
Fermi temperatures) and follows the Fermi–Dirac statistical

distribution [16–20], where EFj(� (ℏ2/2mj)(3π2nj)2/3) is the
Fermi energyof degenerate particles, nj is thenumber density
of fermions, ℏ is the Planck constant divided by 2π, mj is the
rest mass of a degenerate particle and kB is the Boltzmann
constant. A matter of importance in compact objects, in
which the number densities of particles are enormous, is that
when the electron and positron thermal energies become
slight compared toelectronandpositronFermi energies, then
the electron and positron degeneracy pressures can be
dominant over the electron and positron thermal pressures.
Therefore, the lower energy state is filled with electrons so
additional electrons cangeneratedegeneracypressure. In the
case of white dwarfs, the average density could be changed
from106 to 108 g.cm−3, thedegenerate electronnumber canbe
of theorder of 1029 cm−3 and the average interparticle distance
is in the range of 10−10 cm. Thus, the light nuclei can be
considered inertial, while both electrons and positrons are
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taken to obey the degeneracy pressure to prevent the gravi-
tational collapse of compact objects. Moreover, the basic
constituents of white dwarfs are mainly positively and
negatively charged heavy elements (such as carbon, oxygen,
helium with an envelope of hydrogen gas). The presence of
heavy elements is found to form in a prestellar stage of the
universe’s evolution when all matter was compressed to
extremely high densities. For white dwarfs, the average
number density of heavy particles is in the range of 1029 cm−3,
with the distance between heavy particles being in the range
of 10−10 cm [21–23]. It is well known that Chandrasekhar ob-
tained the mathematical standard model for white dwarfs by
using the Fermi–Dirac statistics for fermions [24–26]. In the
last few decades, most previous investigations have been
assumed that degenerate particles are completely degenerate
and cold (i.e., Tj = 0) [27–40]. For example, Mamun and his
research group [29–34] discussed that the modification of
nonlinear waves due to the existence of heavy negative ions
in degenerate plasmas. They [34] found that the existence of
the ultrarelativistic degenerate electrons, as well as positrons
and stationary heavy negative ions, play a significant role in
thebasic features of thenonlinear ion-acoustic solitarywaves
and double layers. Furthermore, they [34] demonstrated that
the presence of stationary heavy negative ions provides the
possibility of the co-existence of both compressive and rar-
efactive nonlinear ion-acoustic solitarywaves. It is important
to mention here that the temperature Tj is utilized to define
the energy spread for a classical ideal gas physically. The
energy distribution of a degenerate particle gas is determined
by the Fermi energy EFj at zero temperature (or the chemical
potentialμj) and temperature Tj. As a result, the study of
degenerate particles at nonzero temperature (i.e., Tj≠0) has
engendered a lot of interest, and several types of research
have recently beenmade to examine the linear andnonlinear
waves in a degenerate plasma system, which corresponds to
the Fermi gas and provides the possibility of examining how
the nonlinear wave structures depend on the physical
parameters μj and Tj [41–51]. The equation of state for a
degenerate gas in such situation has been discussed analyt-
ically by many investigators. In particular, Dubinov and his
research group applied the analytical formula of the state
equation for degenerate plasmas to investigate the propa-
gation of nonlinear waves [44–49]. Dubinov and Kitaev [49],
for example, examined the Langmuir waves in warm quan-
tum electron-ion plasmas. They [49] demonstrated that the
equation’s numerical solutions reveal the small scale quan-
tum Langmuir oscillations attributed to the Bohm quantum
force. El-Shamy et al. [50] illustrated that the amplitude and
the width of compressive isothermal ion-acoustic solitary
waves increase as the chemical potential of electrons

increases. El-Shamy et al. [51] stated that the amplitude and
the steepnessof themonotonic isothermal ion-acoustic shock
waves slightly decrease due to the increase in the Fermi
temperature ratio of the low temperature of electrons.
Nevertheless, most previous studies [41–51] focused on
studying solitarywaves, except for theworkdonebyDubinov
and Sazonkin [45]. They [45] have determined the domains of
the presence of solitary and periodic ionic sound waves in
unmagnetized nonrelativistic degenerate electron–positron–
ion plasma. They [45] illustrated that these domains do not
intersect. However, the studies of features of nonlinear rar-
efactive isothermal ion-acoustic solitary and periodic travel-
ling waves in magnetized ultrarelativistic degenerate
plasmas are still lacking. In this context, the well-known
bifurcation analysis is important in many theoretical physics
areas for investigating the dynamical behavior; hence, it is
important to study nonlinear acoustic periodic travelling
waves for different plasma models in laboratories and
astrophysical situations [52]. Over the last few years, the
bifurcation theory has been extensively employed to study
nonlinear waves’ physical nature in various plasma models
due to its significant applications in different plasma situa-
tions [53–61]. For example, El-Shamy et al. [57] examined the
features of electrostatic travelling waves in degenerate dense
magnetoplasmas consisting of nondegenerate inertial cold
ions and relativistic degenerate inertialess electrons and
positrons. They [57] found that theamplitudeand thewidthof
the electrostatic periodic travelling wave increase with the
decrease in the concentration of positrons. Very recently,
Mandi et al. [61] investigated the dynamics of ion-acoustic
waves in Thomas–Fermi plasmas with source term, which
consist of electrons and positrons, following zero-
temperature Fermi-gas statistics and ions behave as a clas-
sical fluid. They [61] demonstrated that the concentration of
positrons has a vital role in forming and the transition of
periodic ion-acoustic waves. However, the effects of ultra-
relativistic degenerate inertialess electrons andpositrons and
immobile heavy negative ions have been paid less attention.
Therefore, themainobjectiveof this study is to investigate the
influence of chemical potentials of fermions and the con-
centrationof heavynegative ions on thenonlinear rarefactive
isothermal ion-acoustic solitary and periodic travelling
waves in ultrarelativistic degenerate magnetoplasmas by
using the bifurcation analysis of the planar dynamical sys-
tems. It is important tomention here that this investigation is
closely related to compact objects, such as white dwarf stars,
wheremany previous studies have predicted the existence of
acoustic-modes [62,63], in which ions provide the inertia and
degenerate electrons, as well as positrons supply restoring
forces to support ion-acoustic mode.
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The manuscript is structured as follows. In Section 2,
we recall the basic equations and derive then the linear
dispersion relation and the nonlinear Zakharov–Kuznetsov
(ZK) equation that governs the dynamics of nonlinear
waves propagating in the present model. In Section 3, the
bifurcation analysis is applied to study the possibility of
the existence of the rarefactive isothermal ion-acoustic
solitary wave and periodic travelling wave solutions. Nu-
merical analysis, simulation and results are finally dis-
cussed in Section 4.

2 Model equations

A magnetized ultrarelativistic degenerate plasma system
composed of warm fluid ions and ultrarelativistic degen-
erate inertialess electrons and positrons in the presence of

an external staticmagnetic field  B
→ � B0êz  , where êz  is the

unit vector along the Z-axis. Propagation of nonlinear
isothermal ion-acoustic waves (IIAWs) is described by the
following normalized basic equations [36, 50]:

∂ni

∂T
+ ∇

→
⋅ (niu

→
i) � 0 , (1)

∂u
→

i

∂T
+(u→ i ⋅ ∇

→) u→ i �−∇
→
ϕ−σ   n−1/3

i ∇ni +Ω(u→ i × êz) , (2)

∇2ϕ� ( β  ne −ni −α np +γ), (3)

The number densities of ultrarelativistic degenerate elec-
trons and positrons are given, respectively, by (see
Refs. [50, 51]).

ne � (1 + β1ϕ + β2ϕ
2 + β3ϕ

3) , (4)

np � (1 − α1ϕ + α2ϕ2 − α3ϕ3) . (5)

The physical quantities ni,  u
→

i (uiX,uiY,uiZ)  and ϕ are the
number density and the velocity of warm ions, and the
electrostatic wave potential, respectively. Further, T is the
time and ∇

→
 (� (∂/∂X, ∂/∂Y, ∂/∂Z)) ,  where X, Yand Z are

space coordinates. Here Ωi(� eB0/mic)  is the ion
cyclotron frequency. Now, let us consider the following
normalization: ni → ni

 n(0)i

,  ne → ne
 n(0)e

,   np → ne
n(0)p

, u
→

i → u
→
i

CF
,ϕ→

eϕ
εFe
,   ∇

→
→ ∇

→
λF, T→ Tωi, and    Ω→ Ω

ωi
,  n(0)

i is the unper-
turbed number density of ions,  n(0)

e is the unperturbed
number density of electrons,  n(0)

p is the unperturbed
number density of positrons,  CF(� ������

εFe/mi
√ ) is the ion

Fermi acoustic speed, λF(�
�����������
εFe/4πe2 n(0)

i

√
) is the Debye

radius, ω−1
i (�

�����������
mi/4πe2 n(0)

i

√
) is the plasma period. It

should be mentioned here that the detailed derivation of
Eqs. (3) and (4) is provided in Ref. [50]. Now, we define the

following notations: σ ( = 5
3

Ti
TFe
),Ω( = eB0

mic
), β( = n(0)e

n(0)
i

),
α( =

n(0)p

n(0)i

), γ( = Zh
n(0)
h

n(0)i

), β1( � C2e
C1e
), β2( � μ0e

C1e
), β3( � 1

3C1e
),

α1(� C2pσF
C1p

),  α2(� μ0p σ2F 
C1p

),α3(� σ3F
3C1p

),σF(� TFe
TFp
), C1j(�(μ30j

3 +

μ0j( π2
3σ2j

− 1
2

m2
j c

4

ε2Fj
))),C2j(�μ2

0j+( π2
3σ2j

−m2
j c

4

2ε2Fj
)) and σj(� TFj

Tj
)

εFj�(3π2 n(0)
j )13  ℏc. Here n(0)

h is the number density of static
negative heavy ions, Zhis the charged state of immobile
heavy negative ions, c is the speed of light in vacuum, e is
the magnitude of the electric charge, μ0e and μ0p are the
chemical potentials (or the Fermi energies at zero temper-
atures) of electrons and positrons at ϕ�0, respectively, mi

is the ionmass, Ti is the ion temperature. C1j and C2j contain
the effect of degeneracy. Later, C1j and C2j will be encoun-
tered as the effect of degeneracy on the nonlinear
structures.

Now, we study the dispersion characteristics of prop-
agating electrostatic mode (ω, k) in magnetized ultra-
relativistic degenerate plasmas with static heavy negative
ions for several physical parameters. By utilizing Fourier
transform, one can examine the dispersion law for linear
modes described by Eqs. (1)–(5). Thus, the dispersion
relation can be written as

k2 + (ββ1 + αα1) �  
(ω2k2 − k2zΩ

2)(ω4 − ω2(Ω2 + k2σ) + k2zΩ
2σ) (6)

Therefore, one can rearrange Eq. (6) to become

ω4 −Q1ω2 +Q2 � 0 , (7)

where Q1 � (Ω2 + k2σ + k2

k2+(ββ1+αα1)) and

Q2 � (σ + 1
k2+(ββ1+αα1))k2∥Ω2. Here,ωandkarewave frequency

and wave number, respectively, k2 � k2∥ + k2⊥,

k2∥ � k2z � k2cos2(θ) � ℓ2zk
2, k2⊥ � k2x + k2y � k2(ℓ2x + ℓ2y), where

ℓx, ℓy, and ℓz are the directional cosines of the wave vector k
→

along the x, y, and z axes, respectively, so that ℓ2x + ℓ2y + ℓ2z � 1.

ω2
± � Q1 ±

��������
Q2

1 − 4Q2

√
2

(8)

Indeed, the upper and lower signs (i.e.,  ω � ω+   and    ω−)
correspond to the propagating isothermal ion-cyclotron
and isothermal ion-acoustic waves, respectively. Let us
now focus on the ion-acoustic waves for a dispersion
correction of order k3 and small wave numbers (i.e., long
wavelengths); Eq. (8) can be approximated to the lowest
order as an acoustic-like dispersion law [64–69]
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ω�k∥
������(σ+ρ)√

 (1+k2∥(σ+ρ)2Ω2 −k2((σ+ρ)
2Ω2 + ρ2

2(σ+ρ))) . (9)

where ρ� 1
(ββ1+αα1)  , and for the limit of a weak dispersion the

phase velocity V of long-wavelength (low-frequency) ion-
acoustic waves becomes

V � �����
σ + ρ

√
 , (10)

Finally, we can obtain

ω � k∥V − k3∥B − k∥k
2
⊥BC +… , (11)

where the coefficients B and C are given by( � (V2−σ)2
2V ) and

( � (1 + V4

Ω2(V2−σ)2)), respectively. Later, B and C will be

encountered as the coefficients of the dispersive terms in
a nonlinear ZK equation. For numerical illustrations,
[22,70-73] we can take some physical parameters that find
in compact astrophysical objects, such as white dwarfs

 n(0)
e ≅ 1029  cm−3,   n(0)

p ≅ 1029  cm−3 , and  n(0)
i ≅ 1029  cm-3,

and the average number density of heavy negative parti-
cles is of the order of 1029 cm−3, which satisfy the quasi-
neutrality condition. Furthermore, the corresponding
Fermi temperatures of the electron and positron are

rewritten as follows: TFe ≅  6.4×(106 − 108) K, and

TFp ≅  6×(106 − 108) K. Furthermore, B0 ≅ 109 − 1011  G  and
Te,p ≅ 6x106  K. It is observed here that the electron/positron
Fermi temperature is of the same order as that of the system
temperature Te,p, but  TFe,p >  Te,p. Moreover, the ion tem-

perature is given by Ti ≅ 0.2×(104 − 106) K [72]. The
characteristics of the linear isothermal ion-acoustic waves
(IIAWs) are shown in Figures 1–4. It is clear that the

chemical potentials of fermions, μ0e and μ0p , the thermal
effect of warm ions, σ and the concentration of static heavy
negative ions, γ, basically modify the angular wave fre-
quency, ω. Clearly, when the angular wave frequency, ω,
approaches the ion cyclotron frequency, Ω, for large
wavenumber k, the modifications are observed signifi-
cantly. As shown in Figures 1–4, the increase in μ0e, μ0p, σ,
and γ lead to an increase in the angular wave frequency,ω,
respectively. The figures show that the lowest increase inω
occurs with σ, while the highest increase occurs with γ.

We shall examine the physical nature of nonlinear
isothermal ion acoustic waves in magnetized ultra-
relativistic degenerate plasmas. Based on the characteristic
of the linear dispersion law for small wavenumber k, one
can introduce the following stretched coordinates [64-66].

Figure 1: The ω − k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Ω = 0.5,
α=0.11, γ=0.77, μ0p = 0.3,σe = 30, σp = 30, σ=0.005, μ0e = 0.4 (red
solid curve) and μ0e = 0.5 (blue dashed curve).

Figure 2: Theω − k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Ω = 0.5,
α= 0.11, γ=0.77, μ0e = 0.5,σe = 30, σp = 30, σ= 0.005, μ0p = 0.3 (red
solid curve) and μ0p = 0.4 (blue dashed curve).

Figure 3: Theω − k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Ω = 0.5,
α=0.11, γ=0.77, μ0e = 0.5, μ0p = 0.3, σe = 30, σp = 30, σ=0.005 (red
solid curve) and σ = 0.001 (blue dashed curve).
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x � ε1/2X, y � ε1/2Y,  z � ε1/2(Z − VT), and t � ε3/2T , (12)

where ε is a real and small parameter measuring the
strength of nonlinearity and V is the phase velocity
normalized by the ion Fermi acoustic speed. Furthermore,
the dependent variables are expanded as

ψ�ψ(0)+∑
∞

n�1
εn ψ(n)  and  ui(X,Y)�ε3/2u(1)

i(x,y)+ε
2u(2)

i(x,y)+… ,

(13)

where

ψ � [ni, uiZ,ϕ] and  ψ(0)[1,0,0] . (14)

Putting Eqs. (12)–(14) into Eqs. (1)–(5), and collecting
the terms in different powers of ε, the lowest-order in ε gives

n(1)
i � 1

(V2 − σ)  ϕ
(1)  , (15)

u(1)
ix � − V2

Ω(V2 − σ)  
∂ϕ(1)

∂y
 , (16)

u(1)
iy � − V2

Ω(V2 − σ)  
∂ϕ(1)

∂x
 , (17)

u(1)
iz � V

(V2 − σ)  ϕ
(1)  . (18)

Following the same strategy, one can obtain the second-
order in ε, and hence, one can eliminate the second-order
terms of the velocities and the number densities, and with
the help of the first order, we finally obtain the ZK equation
as follows:

∂ϕ(1)

∂t
+AB ϕ(1)∂ϕ

(1)

∂z
+B ∂

∂z
 ( ∂

2

∂z2
+C( ∂

2

∂x2
+ ∂

2

∂y2
)) ϕ(1)�0 , (19)

where V, B, and C have the same forms as before

and  A⎛⎝�⎛⎝3(V2−σ9)
(V2−σ)3 +2(αα2−ββ2)⎞⎠⎞⎠ is the nonlinear coeffi-

cient. Since B is always positive, the physical nature of the
nonlinear ion-acoustic waves depends on the sign of the
nonlinear coefficient A; the positive and the negative
values of the nonlinear coefficient, A, will be related to
compressive and rarefactive nonlinear ion acoustic waves,
respectively. In the Sections 3 and 4, as mentioned earlier,
we will focus our work on the properties of nonlinear rar-
efactive isothermal ion-acoustic solitary and periodic
travelling waves in magnetized ultrarelativistic degenerate
plasmas (i.e., A < 0). As displayed in Figure 5, the nonlin-
earity coefficient, A, has been varied from a positive sign
(A > 0) to a negative sign (A < 0) due to the variation in μ0e
for different values of physical parameters β, α, and γ.

3 Nonlinear RIIASW and RIIAPTW
solutions of the ZK equation

In this part, we use the bifurcation analysis to discuss the
possibility of the existence of rarefactive isothermal ion
acoustic solitary wave (RIIASW) and rarefactive isothermal
ion acoustic periodic travelling wave (RIIAPTW) solutions.
Also, we introduce the following independent variables:

η � ℓxx + ℓyy + ℓzz − v0  t , (20)

where v0 denotes the constant speed of the reference frame.
Now, we apply the transformation Eq. (20) to Eq. (19) with
 ϕ(1)(x, y, z, t) � ϕ(η), we obtain

Figure 4: Theω − k relation for the isothermal ion-acoustic waves in
a magnetized ultrarelativistic degenerate plasma for Ω = 0.5,
μ0e = 0.5, μ0p =0.3,σe = 30,σp = 30,σ=0.005,β=0.33, γ=0.77 (red
solid curve) and β = 0.22, γ = 0.88 (blue dashed curve).

Figure 5: The change of the nonlinear coefficient, A, against μ0e for
μ0p = 0.3, σe = 30, σp = 30, σ = 0.005, Ω = 0.5, γ = 0.77, α = 0.11,
β = 0.33 (red solid curve) and γ = 0.87, α = 0.25, β = 0.37 (blue
dashed curve).
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−δv0dϕdη +ABδ ℓzϕdϕ
dη

+ ℓ3zδ3B
d3ϕ
dη3

+BCδ3ℓz(ℓ2x + ℓ2y) d3ϕ
dη3

� 0 .

(21)

integrating Eq. (21) with respect to η, we obtain

d2ϕ
dη2

� −δ1ϕ2 − δ2ϕ − δ3  , (22)

where the coefficients δ1, δ2, and δ3 are defined by
A

2((ℓ2z+(1−ℓ2z ) C)),   
−v0

ℓzB(ℓ2z+(1−ℓ2z ) C) and
D

ℓzB(ℓ2z+(1−ℓ2z ) C) , respectively, and

D is an integration constant. It is crucial to note
that D > v20/2AB ℓz. Putting Φ � ϕ(η) and dΦ/dη � Ψ, then
Eq. (22) can be expressed as a dynamical system of first-
order differential equations (i.e., the planar Hamiltonian
system).

dΦ
dη

� Ψ,

dΨ
dη

� −(δ1Φ2 + δ2Φ + δ3) . (23)

It is worth noticing that the Hamiltonian system depends
on the proposed plasma model’s physical parameters.
Furthermore, the dynamical system Eq. (23) is a conser-
vative Hamiltonian system that governs a particle of unit
mass’s motion of under the effect of the potential forces.
The Hamiltonian function (total energy) can be written as

H(Φ,Ψ) � Ψ2

2
+ δ1
3
 Φ3 + δ2

2
 Φ2 + δ3Φ � h , (24)

where h is an arbitrary constant that determines the value
of the energy. It is instructive at this point to describe all the
possible nonlinear wave solutions for Eq. (19) by applying
the phase portrait (i.e., the (Φ,Ψ) phase plane) of the
Hamiltonian system Eq. (23). Of interest is to note that, at
δ1 ≠ 0, δ2 ≠ 0 and δ3 ≠ 0, Eq. (23) has two equilibrium points

Θ0(Φ0,0) and Θ1(Φ1,0) where Φ0 � −δ2 − ��
Δ

√
/2δ1 and

Φ1 � −δ2 +
��
Δ

√
/2δ1  , where Δ � δ22 − 4δ1δ3 > 0. We assume

that M(Φi,0) is the coefficient matrix of the linearized
system of Eq. (23) at an equilibrium point Θi(Φi,0), where
i = 0, 1. Applying the concept of dynamical systems, an
equilibrium point Θ0(Φ0,0) of Eq. (23) is a saddle point
when J � det M(Φ0,0) ≅ −v0

ℓzB((ℓ2z+(1−ℓ2z ) C)) < 0. On the other

hand, atΘ1(Φ1,0), J � det  M(Φ1,0) ≅ v0
ℓzB((ℓ2z+(1−ℓ2z ) C)) > 0, the

planar Hamiltonian system is a center point. The values of
the energy h at the equilibrium points Θ0(Φ0,0)
and Θ1(Φ1, 0) are, respectively,  H(Φ0,0) � h � (δ32 −
6δ1δ2δ3 −

��
Δ3

√
)/12δ21  is approximately equal to zero and

 H(Φ1,0) � h � (δ32 − 6δ1δ2δ3 +
��
Δ3

√
)/12δ21 ≅ −4v30/6A2B3ℓ3z

((ℓ2z + (1 − ℓ2z) C)) < 0. In this situation, where B and ℓz
(i.e., 0 < ℓz < 1) are always positive, it is crucial to note that

h > 0, except v0 < 0 that corresponds physically to a
nonlinear wave travelling towards negative η. Therefore,
we will focus on analytical solutions and numerical sim-
ulations of the dynamical system for two energy values h,
when h ≅ 0 and h < 0.

Now, we utilize the energy integral Eq. (24) to find
RIIASW and RIIAPTW solutions. It is given by

∫
dΦ�����
P(Φ)√ � �

2
√

  ∫ dη , (25)

where P(Φ) is a polynomial of degree three in Φ, and it
takes the following form

P(Φ) � h − δ1
3
 Φ3 − δ2

2
 Φ2 − δ3Φ . (26)

P(Φ) depends on the values of δ1, δ2, and δ3 (i.e., μ0e, μ0p, σ,
ℓz, γ, and Ω) and on a particular level of energy h. There-
fore, on a zero level of the energy (i.e., h ≅ 0), there is an
orbit passing through the origin, which is a saddle point,
and returns to it again as demonstrated by blue dashed
curves in Figure 6. Indeed, this kind of orbit is named a
homoclinic orbit, which usually indicates the presence of
an RIIASW solution. It is evident from Figure 6 that this
orbit intersects theΦ -axis (Ψ � 0) in two points, and so an
RIIASW solution of Eq. (19) is written as

ϕ( η ) � δ2 +
��
Δ

√ − 3
��
Δ

√
 sech2( ��

Δ
16

4
√

 η)
2|δ1|  .  (27)

On the level of the energy h < 0, there is a family of periodic
orbits around the center point Θ1(Φ1,0) and it is demon-
strated in Figure 6 by red color. A nonlinear RIIAPTW so-
lution to Eq. (19) in terms of Jacobian elliptic functions is
given by [59].

Figure 6: Phase portrait of the dynamical system Eq. (23) with
μ0e = 0.3, μ0p = 0.3 α = 0.11, γ = 0.77, σe = 30, σp = 30,
σ = 0.005, Ω = 0.5 and ℓz � 0.7.
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ϕ( η ) � ϕ1 + (ϕ2 − ϕ1) sn2⎛⎝ �����������
|δ1|(ϕ3 − ϕ1)

6

√
 η, k⎞⎠ , (28)

with the periodic τ �
�������

96 
|δ1 |(ϕ3−ϕ1)

√
 K(k), where K(k) is a

complete elliptic integral with the modulus k �
�����(ϕ2−ϕ1)
(ϕ3−ϕ1)

√
,

which is the measure of nonlinearity, where 0 < k ≤ 1
and ϕ1 < ϕ2 < ϕ3 are the three real roots of the following

equation: h − δ1
3  Φ

3 − δ2
2  Φ

2 − δ3Φ � 0 .

4 Numerical analysis, simulation
and results

In this section, we will investigate numerically the RIIASW
and RIIAPTW solutions to Eq. (19) in the fluctuations of
physical parameters μ0e, μ0p, σ, ℓz, γ andΩ. Figure 7(a) and
(b) illustrate the variety of nonlinear rarefactive isothermal

ion-acoustic solitary waves (RIIASWs) and rarefactive
isothermal ion-acoustic periodic travelling waves
(RIIAPTWs), respectively, in a certain range of the space
coordinate η for two different values μ0e = 0.4 and 0.5, viz.,
keeping all the other parameters fixed. Obviously, the
electrostatic potentials of RIIASWs and RIIAPTWs are
amplified (i.e., the amplitude becomes deeper), as the
chemical potential of electrons is decreased (i.e., for lower
μ0e). It is well known physically that an increase in the
chemical potential of electrons/positrons means that the
electrons/positrons’ background density increases. As
shown in Figure 5, an increase in the density of background
electrons manifested through increasing μ0e, leads to an
increase in the absolute value of the nonlinear coefficient,
A, (i.e., |A|) that can physically decrease the excitations of
RIIASWs and RIIAPTWs. The other important parameter in
this plasma system that needs attention is μ0p. Figure 8(a)
and (b) explore, respectively, the effects of μ0p on the
electrostatic potentials of RIIASW and RIIAPTW solutions.

Figure 7: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for μ0p = 0.3 α = 0.11, γ = 0.77, σe = 30, σp = 30,
σ = 0.005,Ω = 0.5, ℓz � 0.8, μ0e = 0.4 (red solid curve) and μ0e = 0.5
(blue dashed curve). (a) RIIASW and (b) RIIAPTW.

Figure 8: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for μ0e = 0.5, α = 0.11, γ = 0.77, σe = 30, σp = 30,
σ = 0.005,Ω = 0.5, ℓz � 0.8, μ0p = 0.3 (red solid curve) and μ0p = 0.4
(blue dashed curve). (a) RIIASW and (b) RIIAPTW.
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The electrostatic potentials become more profound and
broader as μ0p decreases. We note that the increase in the
concentration of positive ions manifested through
decreasing μ0p to keep the quasi-neutrality condition in the
plasma system leads to an increase in the driving force that
is provided by positive ion inertia of the RIIASWs and
RIIAPTWs; hence, the absolute values of the pulse ampli-
tude and the width increase. Figure 9(a) and (b) demon-
strate the variation of RIIASW and RIIAPTW profiles with
the direction cosine ℓz, respectively. The excitations of
RIIASWs and RIIAPTWs increase for lower ℓz, implying an
amplification of the electrostatic potential disturbance as
the RIIASW and RIIAPTW propagate away from the
external static magnetic field. It should be mentioned here
that at  ℓz → 0, the amplitudes of the RIIASWs and
RIIAPTWs increase to infinity and the widths tend to
decrease zero. This means that, physically, we have to
assume larger ℓz (i.e., smaller θ, where θ is the angle that

the propagation vector of RIIASWs and RIIAPTWs makes
with the magnetic field, 0 < θ < 45°) to preserve the validity
of the electrostatic approximation in numerical analysis.
Figure 10(a) and (b) display the RIIASW and RIIAPTW
modes’ physical behavior for different values of γ. It is
observed that the absolute value of electrostatic pulse
amplitude (the width) increases (decreases) for lower γ.
This means physically that an increase in the background
density of electrons, manifested through decreasing γ,
leads to an increase in the restoring force that can physi-
cally increase the excitations of RIIASWs and RIIAPTWs. It
is also worth observing that the electron concentration
effect to form the restoring force is more pronounced than
its influence on the nonlinear coefficient to form RIIASW
and RIIAPTW profiles. Figure 11(a) and (b) give, respec-
tively, the RIIASW and RIIAPTW structures for two
different values of σ=0.001 and0.005. The absolute values
of the pulse amplitude and the width slightly increase for

Figure 9: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for μ0e = 0.5, μ0p = 0.3, α = 0.11, γ = 0.77, σe = 30, σp = 30,
σ = 0.005, Ω = 0.5, ℓz � 0.8  (red solid curve) and ℓz � 0.9  (blue
dashed curve). (a) RIIASW and (b) RIIAPTW.

Figure 10: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for μ0e = 0.5, μ0p = 0.3, σe = 30, σp = 30, σ = 0.005, Ω = 0.5,
ℓz � 0.8, γ = 0.77 (red solid curve) and γ = 0.88 (blue dashed curve).
(a) RIIASW and (b) RIIAPTW.
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larger σ. The slight amplification of the amplitude is due to
an increase in the fraction of thermal ions, which are the
source of energy for RIIASWs and RIIAPTWs. Finally, in
Figure 12(a) and (b), we have plotted the electrostatic po-
tentials of RIIASW and RIIAPTW solutions as a function
of Ω(=0.5–0.3). It is clear that the amplitudes remain un-
changed and the widths become wider as the ion cyclotron
frequency Ω decrease. This means that an increase in the
magnitude value of the external static magnetic field leads
to an increase in the ion cyclotron frequency and a
decrease in the dispersion of the system. Therefore, the
static magnetic field acts to restrict the charged particles of
fluid elements tightly to the force lines so that the trans-
verse motion of these particles is forced within the fluid
element, a situation referred to as magnetic confinement.
Thus, the uniform external magnetic field makes the
RIIASWs and RIIAPTWs profiles more spiky. In fact, it is
helpful to compare our results with the findings of El-
Shamy et al. [50]. Without immobile heavy negative ions,

the present study agrees exactlywith the earlier work by El-
Shamy et al. [50]. However, it is worth noting here that
El-Shamy et al. [50] have focused only on studying
compressive IIASWs, while in this investigation we were
interested in studying the features of RIIASWs and
RIIAPTWs.

To summarize, we have examined the linear and
nonlinear propagation of IIAWs in a dense magnetoplasma
comprising nondegenerate hot ions and ultrarelativistic
degenerate inertialess electrons as well as positrons and
stationary heavy negative ions. Using the small and finite-
amplitude approximation method, we have obtained the
nonlinear ZK equation. In the present investigation, the
ZK equation supports either nonlinear compressive or rar-
efactive IIAWs. In ourwork, we focusedonly on the physical
nature of RIIASWs and RIIAPTWs. Applying the bifurcation
theory, we have analyzed the planar Hamiltonian system
both analytically and numerically. In the proposed model,
we have demonstrated that the chemical potentials of

Figure 11: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for μ0e = 0.5, μ0p = 0.3, α = 0.11, γ = 0.77, σe = 30,
σp = 30, Ω = 0.5, ℓz � 0.8, σ = 0.005 (red solid curve) and σ = 0.001
(blue dashed curve). (a) RIIASW and (b) RIIAPTW.

Figure 12: Variation of nonlinear rarefactive isothermal ion-acoustic
waves for μ0e = 0.5, μ0p = 0.3, α = 0.11, γ = 0.77, σe = 30, σp = 30,
σ=0.005, ℓz � 0.8,Ω=0.5(red solid curve) andΩ=0.3 (blue dashed
curve). (a) RIIASW and (b) RIIAPTW.
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fermions, the ion cyclotron frequency and direction cosines
affect the amplitude aswell as thewidth of the RIIASWs and
RIIAPTWs in magnetized ultrarelativistic degenerate
plasmas. Finally, we believe that the present finding will
help us to understand the essential characteristics of the
nonlinear propagation of IIAWs in ultrarelativistic degen-
erate magnetized plasmas that may occur in many astro-
physical compact objects, like white dwarfs.
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