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Abstract: Head-on interaction of four dust ion acoustic
(DIA) solitons and the statistical properties of the wave
field due to head-on interaction of solitons moving in
opposite direction is studied in the framework of two Kor-
teweg de Vries (KdV) equations. The extended Poincaré—
Lighthill-Kuo (PLK) method is applied to obtain two
opposite moving KdV equations from an unmagnetized
four component plasma model consisting of Maxwellian
negative ions, cold mobile positive ions, x-distributed
electrons and positively charged dust grains. Hirota’s
bilinear method is adopted to obtain two-soliton solutions
of both the KdV equations and accordingly act of soliton
turbulence is presented due to head-on collision of four
solitons. The amplitude and shape of the resultant wave
profile at the point of strongest interaction are obtained. To
see the effect of head-on collision on the statistical prop-
erties of wave field the first four moments are computed. It
is observed that the head-on collision has no effect on the
first integral moment while the second, third and fourth
moments increase in the dominant interaction region of
four solitons, which is a clean indication of soliton
turbulence.

Keywords: Korteweg de Vries equation; moments; soliton;
soliton turbulence.
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1 Introduction

The presence of charged dust particles modifies the wave
spectra as well as introduces a number of eigenmodes, such
as dustacoustic mode [1], dust drift mode [2], Shukla-Varma
mode [3], dust lattice mode [4], dust cyclotron mode [5], dust
ion acoustic (DIA) mode [6] and dust Berstain—-Green—
Kruskal mode [7]. DIA waves are low frequency analogue of
ion acoustic waves and can be observed in laboratory [8, 9]
as well as in space environment [10-13]. In recent years, a
number of researches have been made to study linear and
non linear DIA wave propagation [14-20]. Alinejad [14]
studied the formation of large amplitude DIA waves in a
multicomponent dusty plasma consisting of warm ions,
two-temperatured trapped electrons and dust particles with
negative charge and observe that the solitary structures are
significantly affected by low and high temperature elec-
trons. Khalid et al. [18] investigated the propagation of DIA
cnoidal waves in a dusty plasma system where electron
follows non-thermal distribution. They have shown that the
non-linear ion flux depends significantly on dust concen-
tration and non-thermality parameter. El-Bedwehy et al. [19]
have investigated the modulational instability (MI) of DIA
waves in a dusty plasma model containing warm ions fluid,
generalized (r, q) distributed electrons and immobile dust
grains.

A fairly large number of investigations consider dis-
tribution for the electrons and ions as Maxwell-Boltz-
mann. However, there are number of theoretical evidences
that the space plasmas can have particle distribution with
high energy tail, and they deviates from the Maxwellian
distribution [21-26]. Superthermal particle arises as a result
of external forces acting on the natural space plasma
environment or the presence of wave particle interaction.
In general plasmas with excess amount superthermal
electrons are characterized by a long tail in the high energy
region. Generalized Lorentzian or kappa distributions [21,
27-29] are used to model such kind of space plasmas. The
form of the three-dimensional isotropic kappa velocity
distribution is [27]

fK (V) = (1)

C(x+1) /1+V2>(K+1)
(@) T(k-1/2\ K6

1/2
where 6= <<K - 3/%/K><2kBTe/m>> is the effective
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thermal speed, modified by spectral index x (>3/2), T, is the
characteristic kinetic temperature, kg is the Boltzmann
constant and I'(x) is the gamma function arises from the
normalization of f(v) such that [f,(v)dv =1. For low
values of x the distribution function (1) represents a hard
spectrum with a strong non-Maxwellian tail having a po-
wer law form at high speeds, while in the limit k — oo, the
kappa distribution function reduces the well known
Maxwell-Boltzmann distribution [21, 27]. Integration of
Eq. (1) over velocity space gives the normalized form of
electron number density as [29]

N
ne—<1—K_3/2> . @

where ¢ is the electrostatic potential and is normalized by
electron thermal energy kgT./e.

Soliton is one of the most common non-linear struc-
tures in any weakly dispersive media and the dynamics of
soliton are well understood in the framework of KdV
equation [30-32]. Extensive studies on the collision of
solitons in liquids have been reported in the studies by
Maxworthy and Craig et al. [33, 34]. In one-dimensional
system, the interaction of solitons may occur in two
different ways: (i) the overtaking collision and exchange
collision depending on the amplitude ratio of propagating
solitons [35], when solitons are moving in the same
direction with different velocities and (ii) the head-on
interaction, when the angle between the propagating
solitons is m and they approaches to each other. Zabusky
et al. [36] studied the overtaking collision of solitons with
different amplitudes and observed that after the interac-
tion, the solitons reappear and move with same velocity,
but their trajectories deviate from the straight line. Harvey
et al. [37] experimentally studied the head-on collision of
two solitons with equal amplitude and found that the
phase shift depends on the initial amplitude of solitons.
The head-on collision of ion acoustic solitons in an
unmagnetized plasmas with Cairns non-thermal distrib-
uted electrons has been studied by Verheest et al. [38].
El-Labany et al. [39] examined the oblique interaction of
two KdV solitons moving towards each other from oppo-
site directions in an magnetized dusty electronegative
plasma consisting of cold mobile positive ions, Boltz-
mann negative ions, Boltzmann electrons and dust par-
ticles of both polarities. They have observed that the angle
of collision, the density and temperature of negative ions
and the opposite polarity dust density have reasonable
effects on the phase shift. Roy et al. [40] studied the fea-
tures of the head-on collision and overtaking collision of
four solitons in plasmas using extended PLK method.
El-Labany et al. [41] have investigated the head-on
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collision of two, four and six solitons in an unmagne-
tized non-extensive plasma system. But none of the above
studies on head-on collision of solitons reveals the
changes in the statistical properties of the wave field
during the head-on collision process of the solitons.

The interaction of a large number of random and
weakly dispersive waves leads to the prediction of several
stationary statistical states, such as weak turbulence, sta-
tistical equilibrium or integrable turbulence. Weak wave
turbulence features an ensemble of non-linear interacting
waves. The weak turbulence theory predicts an energy
transfer through resonant interactions among waves and
also provides analytical predictions of the statistical
properties of turbulence such as the stationary wave
spectrum. The interaction of number of solitons in a
nonlinear integrable system changes the statistical prop-
erties of the wave field and leads to integrable soliton
turbulence [42, 43]. One of the important aspect of turbu-
lence theory is to know the distribution function of the
wave field and statistical moments (mean, variance,
skewness, kurtosis) of the wave field, which are obtained
from the measurements in the studies [44-47]. Recently,
some works have been reported on the soliton interaction
and the statistical properties of the wave field in integrable
and non-integrable systems [48-56]. Pelinovsky et al. [48]
showed that interaction of two-solitons in KdV equation
leads to the decrease of third- and fourth-order moments of
the wave field while the first and second moments remains
invariant. Dutykh et al. [49] studied the collective behav-
iour of soliton ensembles using direct numerical simula-
tions in integrable KdV and non-integrable KdV-BBM
(Benjamin-Bona—Macon) equations. Redor et al. [54]
experimentally observed the ensemble of bidirectional
shallow water solitons in a 34 m long flume taking
advantage of the process of fission of a sinusoidal wave
train. The interplay between multiple solitons and disper-
sive radiation has been analysed by Fourier transform and
the observed random soliton ensemble has been inter-
preted as representing a soliton gas. Didenkulova et al. [55]
investigated soliton turbulence in the framework of Gard-
ner equation and showed that the interaction of solitons
with different polarities leads to the formation of extreme
waves. Ali etal. [56] studied the interaction of three solitons
and soliton turbulence in a dusty plasma system in the
framework of KdV equation. But till today, there is no work
on the statistical properties of the wave field due to the
head-on collision of solitons. In this work, our goal is to
investigate the properties of the resultant solitonic struc-
ture at the time of head-on interaction of four solitons and
also the statistical properties of the wave field during the
collision.
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2 Model equations

We have considered a four component dusty plasma model
comprising cold mobile inertial positive ions, negative ions
following Maxwellian distribution, x distributed electrons and
stationary dust grains with positive charge. The DIA waves are
governed by the following fluid equations in normalized form

on, o(mpu,)
o T oax G
ou, ou, 0P
o Fox o’ “)
¥
Jf:“e(l‘x_(g/z) Rt

where n, represents the number density of positive ions, u,
is the speed of positive ions, ye = Neo/Npo, Ha = ZaNdo/Npos
with neo, NMpo, Nao representing the number densities of
electron, positive ion and dust, respectively, and Z, is the
charge on the dust grains. The parameter « is the ratio of
electron temperature (T,) and negative ion temperature
(T,). The space variable x is normalized to the Debye
wavelength A; = \/€okpT/ny0€? and the time variable ¢ is
normalized to plasma period of positive ions
w,} = (npoe*/eomyy) ™%, my, is the mass of positive ions. The
velocity u, is normalized to the ion acoustic speed for
positive ions C;, = \/kgT./m;,. The charge neutrality con-
dition at the equilibrium gives

(6)
@

Npo + ZaNgo = Neo + Npo,s

Sy = 1= U+ Yy

3 Derivation of two-sided KdV
equations

In order to study the head-on collision of solitons in plasma
model under consideration, the extended PLK perturbation
method is used [38-41, 57]. According to extended PLK
perturbation method, the dependent variables expanded
as

My =1+ €Ny + ENyy + €My + -+, (3)
Uy = 0+ Uy + EUpy + €Uz + -+, ©)
P=0+€EP +EP, +€*Ppy+ 1, (10)

The independent variables x and t can be written as

E=e(x-A)+€Py(n,7) + EPy (&, 1) + -, (11)
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n=ex+At)+€Q(£,7) +€Q(&n, 1) + -+, (12)

T=6%, (13)

where ¢ and 7 refer to the directions of the solitary waves
propagating in opposite directions with phase velocity A.
From Egs. (11)-(13), one can obtain

>+ -, (14)

0 _(2,9Y, (P00 0Q 3
o~ ot on) T\ on 08" o oy
LRI
(15)

+A

—=€l —i+i +é 0
ot o " on on o8 " 9F oy

oT
Using Egs. (8)-(15) into the set of Egs. (3)-(5) and collecting
the coefficients of the same powers of €, the lowest order
non-zero perturbed quantities are obtained as

¢y = ¢ (§:7) + ¢y, (0,7), (16)
N1 = 5(4)1.{ (& 1) + ¢y, (. T)) (17)
Upr = SA(¢1{ (§:1) = by, (n: T)) (18)

The unknown functions ¢,,(¢,7) and ¢, (17,7) will be
determined considering the next higher-order perturbed
quantities [58]. The solvability condition (i.e. the condition
to obtain uniquely defined n,; and u,,; from Egs. (17) and
(18) assuming ¢, as Eq. (16)) gives the phase velocity as

A=1/V5 (19)
where S = (au, + au,) with a = <x V2 _ 3/2>.
The coefficients of the next order of € give
b, = 5 (§7) + o (0, 7), (20)
Mp2 = S( e (§.7) + ¢y (10.7)) (21)
Ups = SA(s¢ (§,7) = 5, (1,7)) 22)

After some algebraic calculation the coefficient of the
next higher order of € gives

2 o, op; 0P,
~2(SX* + 1)¢p; = 257 | < an+A¢k, ; +B {£>dn—28/1
a 1 a 1 3 1
J‘( (‘b’l ¢11’1 ¢fl ('b’l)d{ J‘
J( c%_p ¢m> ?l"d{d +f

0Qo
0§

f(c%

Dcpk,) ¢”l dédn
(23)
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where A =A(3§* -2T)/2S, B=M\2S, C= (3SA°+1),D =
2T, = (bp, +@uy/2) and b= ((k-1/2)(k+1/2)/,
(k —3/2)*). The first and second terms in the right-hand
side of Eg. (23) will be proportional to 17 and ¢, respectively,
because the integrands are independent of 1 and ¢
respectively. The third and fourth terms in the right-hand
side of Eq. (23) are non-secular and they would be secular
in the next higher order of €. Thus, to eliminate the secular
terms from Eq. (23), we must have

a¢>1; %G;l;le B ‘é’ls 0. (24)
aqu ¢m0¢>m af;;n _o, (25)
Caalzro Dy, =0, (26)
Caa%) D ¢1{ 27

Equations (24) and (25) represents the oppositely propa-
gating two-sided KdV equations in the reference frame ¢
and n, respectively. The solitary wave solutions of Egs. (24)
and (25) are

¢y = ﬁ]sechz(\m(zi/_;lh)), (28)
by, = %sec#(%) (29)

where U is the speed of both the solitary waves.
After the head-on collision the phase shift of the soli-
tons can be determined as

VP, = 22 <3Z€U> , (30)
70, = 222 <36BU)/ 61
0 c\ A?

The soliton (28) is traveling to the right and the soliton (29)
is traveling to the left. Equations (30) and (31) indicate that the
solitons (28) and (29) experience a negative phase shifts in their
traveling direction. The negative phase shift after the collision
means that the positions of the propagated solitons are behind
the positions where they would have been if they just passed
through each other without interacting [58].

4 Two-soliton solution

Using Hirota’s bilinear method [59], the two-soliton solu-
tions of Egs. (24) and (25) are obtained as
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12B &’
Oy = A ag 5 InFy (32)
and
12B &’
b=y o7 InF, (33)

respectively. Where

Fi=1+¢e" +e% + AL %)

F=1+e% +e% 1+ Ae(hta)

k; .
91-:2(3%.{—4&.31'4—&); i=12

ki
l/’i = 2( - BB

(kK
A = <k1 + k2>'

The properties of the resultant soliton during the interac-
tion of the four solitons given by Egs. (32) and (33) propa-
gating in opposite direction can be studied from

aZ
b (55
For |1| > >1, the two-soliton solutions, Egs. (32) and

(33), of Egs. (24) and (25) can asymptotically be expressed
as the superposition of two single solitons [60]

2nl3 B1/3
& - 4k;B ‘r+ka A, (35)

n—4k,.3‘r+a,~>; i=12

and

aZ
In F1 +—1n F2> (34)
on?

2 k;
b = izzlAisechz(Bl/3

and

k: BlB
by, ZAsech2< =5 < —n—4kal/3T+Tai —Ai>>> 36)

i=1

respectively, where the soliton amplitudes are written as

12BI2
Aj=—"-1 i=12 (37)
A
and the phase shifts due to collision are
B1/3
Ai = T ln (AIZ)) 1 = 1, 2 . (38)

Therefore, before and after the head-on interaction of
four solitons, Eq. (34) can be written as

¢, = Z[Asech2< ki <$ 4ICBt +BTal A,»))

i=1
o ki 2pis, B
+A;sech 57 -n-4k;B T+7al~—Al~ , (39)
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It is well established that the KdV equation has infinite
number of conserved quantities (Kruskal integrals) [30—
32]. The first four conserved quantities of the KdV, Egs. (24)
and (25), are of the form

Ly = [~ ¢, dy, (40)
Ly =["_¢idy, (41)
- dp,,\2
Iy = .[.x,<¢fy_%< :;/y> >dy> (42)

- 12B, (3¢, \> 36B (¢, \’
I4y = Jw<¢?y_7¢ly< ayh’) + 5A2 ( ay;y) dy,

(43)

where y = &, 5, respectively.
The form of the Kruskal integrals for the resultant
soliton (34) is

L= [" $de, (44)
L= ¢idg, (@)
L= °‘;<¢f =y )df, 46)

e [ 4 12B, (3¢,\ 36B (3¢’
14_ Jw(d)l A ¢1£< aé’) + 5A2 <a§2> >d£’ (47)

The integrals (44), (45) and (46) represent the mass,
energy and moments of instability of wave field. It is
evident from Eqgs. (40)—(43) that for the resultant wave (34),
only the integral (44) will be conserved as it is the sum of
two conserved quantities (I; = Iz + I;)). The integrals I, I
and I, are not conserved as they cannot be expressed as the
sum of conserved quantities.

5 Head-on collision and its impact
on statistical properties of the
wave field

The head-on collisions of four solitons given by Egs. (32)
and (33) are studied in this section. Monoley and Hodnett
[61] showed that complete interaction of the solitons occurs
at the point & = 0, T = 0 for &y = —k;/2B"3A; and a, =
—ky/2BY3A, and for the same choice of a; and a, the
resultant wave profile is symmetric about the point ¢ = 0,
T = 0. At the strongest interaction point, the profile of the
resultant pulse is determined by the formula

. Ali et al.: Soliton turbulence in electronegative plasma —— 1003

o’ A
ag;l T (A7 - 4A:A; +343)

(48)

and the amplitude of the resultant pulse at the point of
strongest interaction is given by

$,(0,0) = 2(A; - 4) (49)

Equation (48) determines the concavity of the resultant
wave profile at the point £ = 0, T = 0. For 0 < R < 1/3 (Where
R = A,/A; <1), the resultant wave profile is concave downwards
and hence, it will take the form of a single peak at the strongest
interaction point. When 1/3 < R < 1, the wave profile is concave
upwards and it will maintain a double peak status at the instant
strongest interaction. Also, it is clear from Eq. (49) that the
amplitude of the resulting impulse increases and exceeds the
amplitude of the larger soliton due to head-on collision of four
solitons two of which are moving from left to right and other
two from right to left. The right moving solitons with amplitudes
A, and A, (4, > A)) collides at the point £ = 0, T = 0 and at that
point the amplitude of the resultant pulse becomes (4; — A,)
[62]. Similarly the left moving solitons with amplitudes A; and
A, (A; > A collides at the point = 0, T = 0 and at the point of
complete interaction, the resultant pulse amplitude become
(A; — A,). Finally, both the resultant pulses superimposed
during the head-on collision and makes the resultant pulse
amplitude 2(A; — A,). Thus, there is a possibility of formation of
large wave in the head-on interaction of four solitons. Figures 1
and 2 shows the head-on interaction process of four solitons.

The interaction of these solitons changes the statistical
behaviour of the integrable system and leads to the theory of
integrable turbulence or soliton turbulence which is an active
field of research [42, 43] and is best described by the statistical
theory [63, 64]. To study the effect of these collisions of solitons
on the statistical properties of the random wave field, we
consider the following four moments of the wave field

My = [ _¢,dé, (50)
M, = [~ glde, (1)
M; = [~ ¢ldé, (52)
M, = [~ _¢ide. (53)

The moments M;, M,, M5 and M, are related to the
mean, variance, skewness and kurtosis of the probability
distribution of the random wave field. Skewness represents
the asymmetry of the probability distribution function of
the random soliton amplitudes and kurtosis indicates the
heaviness of the tails of the distribution function [49]. Us-
ing the non-interacting solitonic structure (39) the analyt-
ical calculation of Egs. (50)—(53) are shown below:
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Figure 1: Head-on interaction process of four solitons with parameter values . = 0.6, g = 0.25, a =3, k= 2.3, R= 0.3, k; = 0.5.
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Figure 2: Head-on interaction process of four solitons with parameter values p, = 0.6, g =0.25, a =3, k= 2.3, R= 0.4, k; = 0.5.
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The numerical evolution of M,, M5 and M, using the
resultant solitonic structure (34) is depicted in Figure 3.

From Figure 3, it is noticed that the second-order
moment (M,), third-order moment (M5) and fourth-
order moment M, increases due to the head-on collision
of four solitons. The increase of M, says that the energy
of the resultant soliton and hence its amplitude in-
creases during the head-on collision of four solitons,

which is observed from Figures 1(b) and 2(b). Figure 4

max _ g0
Mo, (n=2,3,4)
n

in second, third and fourth-order moments versus the
amplitude ratio R (= A,/A,) with other parameter values
aspue=0.6,4y3=0.25,2=3,k=23,R=0.3,k; =0.5.Itis
observed M; =1, which means that the relative varia-
tion in energy due to collision of four solitons is 100%.
In other word, the total energy of the system is accu-
mulated in resultant soliton at the strongest interaction
point. The graphs of M; and M are non-monotonic and
changes their nature (decreasing to increasing) at the
points R = 0.33, which is a transition point of single
peak to double peak status.

depicts the relative deviations M, =

6 Conclusion

We have studied the head-on interaction of four DIA sol-
itons in the framework of two oppositely propagating KAV
equations in a dusty plasma comprising Maxwellian
negative ions, cold mobile positive ions, x-distributed
electrons and positively charged dust grains. It is
observed that the head-on collision leads to the increase
of second-, third and fourth-order moments of the non-
linear wave field while the first-order moment remains
unaffected. Also, we have observed that the resultant

M, (7)
— M)

2ef —M,0

Figure 3: Variations of M,, M5 and M, in the head-on interaction
process with the parameter values y, = 0.6, yy=0.25, a =3, k= 2.3,
R=0.3, k;=0.5.
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Figure 4: Dependence of the relative variations M;, M3, M}, on the
amplitude ratio R during head-on collision of four solitons with the
parameter values p, = 0.6, g = 0.25, a = 3, Kk = 2.3, k; = 0.5.

wave amplitude increases at the strongest interaction
point. The relative variation of second-order moment is
monotonic and is a constant, which indicates the con-
servation of energy in the whole system. Also, the relative
variations in third and fourth-order moments are non-
monotonic and the change for both the curves occurs at
R = 0.33, which is a transition point of single peak and
double peak status. The findings of this investigation may
be helpful to explain the interaction features of DIA waves
in space plasma environment [65-68] and in laboratory
devices [69-72], where electronegative dusty plasma with
Boltzmann distributed negative ions and k-distributed
electrons exists.
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