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Abstract: We have recently proposed a new matrix dy-
namics at the Planck scale, building on the theory of trace
dynamics. This is a Lagrangian dynamics in which the
matrix degrees of freedom are made from Grassmann
numbers, and the Lagrangian is trace of a matrix poly-
nomial. Matrices made from even grade elements of the
Grassmann algebra are called bosonic, and those made
from odd grade elements are called fermionic. In the pre-
sent article, we provide a basic definition of spin angular
momentum in this matrix dynamics, and introduce a
bosonic(fermionic) configuration variable conjugate to the
spin of a boson(fermion). We then show that at energies
below Planck scale, where the matrix dynamics reduces to
quantum theory, fermions have half-integer spin (in mul-
tiples of Planck’s constant), and bosons have integral spin.
We also show that this definition of spin agrees with the
conventional understanding of spin in relativistic quantum
mechanics. Consequently, we obtain an elementary proof
for the spin-statistics connection.

Keywords: noncommutative geometry; spin angular mo-
mentum; spin-statistics connection; trace dynamics.

1 Introduction

We have recently proposed a new matrix dynamics at the
Planck scale [1, 2], building on Adler’s theory of trace dy-
namics [3–5] and by using constructs from Connes’
noncommutative geometry programme [6, 7] to incorporate
gravity and curvature into trace dynamics. One starts by
assuming the existence of a Riemannian differentiable
manifold along with the standard Dirac operator
DB ≡ iγμ∇μ. Matter is described by relativistic point parti-
cles. Einstein field equations are not assumed. As is known
from earlier work, the information about metric and

curvature can also be captured by theDirac operator and its
eigenvalues [8, 9].

Given this classical background, the transition to the
matrix dynamics is made as follows. The idea is to describe
fundamental degrees of freedom bymatrices, instead of by
real numbers. Themotivation is to achieve a formulation of
quantum field theorywhich does not refer to classical time.
Doing so also allows one to construct the new dynamics at
the Planck scale, from which quantum field theory and
classical general relativity are emergent at lower energies
and at length and time scales much larger than Planck
length and Planck time. Given a matter Lagrangian on a
space-time background, all configuration variables and
their corresponding velocities are replaced by matrices,
and the trace of the resultingmatrix polynomial defines the
new Lagrangian. Integral of this Lagrangian over time de-
fines the action, whose variation gives the matrix-valued
Lagrange equations of motion. These equations define the
Lagrangian dynamics, for which an equivalent Hamilto-
nian dynamics can also be constructed following standard
techniques [3].

The next step is to raise space–time points also to the
status of matrices, and employ the Dirac operator to
describe distance and curvature on the resulting noncom-
mutative geometry. One no longer makes a distinction
between thematrix describing a relativistic particle and the
matrix describing the space–time geometry it produces.
Together, they are described by a Grassman-valued matrix
q, which can always bewritten as a sum: q ≡ qB + qF , where
the bosonicmatrix qB ismade of even-grade elements of the
Grassmann algebra, and the fermionic matrix qF is made of
odd-grade elements of the Grassmann algebra. The matrix
qF describes the matter part and qB describes the contri-
bution of qF to space–time geometry and gravity. We call
this entity an ‘atom’ of space–time–matter, or an aikyon. It
evolves in Hilbert space, with evolution described by a
time-parameter τ intrinsic to a noncommutative geometry
[6, 10], and labelled by us as Connes time. The matrix dy-
namics Lagrangian and action for the aikyon q are given by
[1]

S
C0

� 1
2
∫dτ

τP
 Tr[ L2

P

L2c2
 (q̇B + β1

L2P
L2 q̇F) (q̇B + β2

L2P
L2 q̇F)] (1)

where β1 and β2 are constant self-adjoint fermionic
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matrices. These matrices make the Lagrangian bosonic.
The only two fundamental constants are Planck length and
Planck time—these scale the length scale L of the aikyon,
and the Connes time, respectively. C0 is a constant with
dimensions of action, which will be identified with
Planck’s constant in the emergent theory. The Lagrangian
and action are not restricted to be self-adjoint. A dot de-
notes derivative with respect to Connes time (Dot � δ/cδτ).
By varying this action w.r.t. qB and qF one gets a pair of
coupled equations of motion, which can be solved to find
the evolution of qB and qF. The respective momenta pB and
pF are constants ofmotion, and the expression for pB can be
written as an eigenvalue equation for the modified Dirac
operator D ≡ DB + DF:

[DB + DF]ψ � 1
L
(1 + i

L2
P

L2
)ψ (2)

where

DB ≡
1
Lc

 
dqB
dτ

  ; DF ≡
L2P
L2

β1 + β2
2Lc

 
dqF
dτ

(3)

DB is defined such that in the commutative c-number limit
where space–time emerges, it becomes the standard Dirac
operator on a Riemannian manifold. If there are many
aikyons in the theory, their total action is the sum of their
individual actions. There is no space–time in this dynamics
at the Planck scale; only a Hilbert space, from which
space–time is emergent.

We next asked what the coarse-grained matrix dy-
namics looks like at energies much lower than Planck
scale; equivalently, at times scales much larger than
Planck time. This question can be answered by employing
the techniques of statistical thermodynamics, as set up in
the theory of trace dynamics. The low energy dynamics
falls in two classes. If not too many aikyons are entangled
with each other, the anti-self-adjoint component of the net
Hamiltonian is negligible, and the emergent dynamics is
quantum dynamics without a classical space–time. The
canonical variables obey quantum commutation relations,
and the Heisenberg equations of motion, for which there is
also an equivalent Schrödinger picture. Evolution is still in
Connes time, and there is no background space–time, yet.

The other limiting class is when sufficiently many
aikyons get entangled; then the anti-self-adjoint part of the
net Hamiltonian becomes significant. This causes rapid
spontaneous localisation, loss of quantum superposition
and the emergence of classicality. The classical space–time
manifold emerges, and its points are defined by the posi-
tion eigenvalues to which the fermions localise. The metric
and classical curvature are recovered by localisation of the

Dirac operators of the aikyons to their specific eigenvalues.
The net action for the aikyons described above reduces to
the action for classical general relativity. In this way Ein-
stein field equations are recovered, with relativistic point
particles as sources. Given this space-time background, the
above-mentioned quantum dynamics of uncollapsed
aikyons can be described as quantum field theory on a
background space–time. This background is generated by
the classicalised matter degrees of freedom.

Subsequently, we have generalised this action to
include Yang–Mills gauge fields [2], and the new action is

given by S/C0 � ∫τLL/τP where

L � Tr[L2
p

L4
{iα(qB + L2p

L2β1qF) + L(q̇B + L2p
L2β1q̇F)}

   {iα(qB + L2
p

L2
β2qF) + L(q̇B + L2

p

L2β2q̇F)}]
(4)

This Lagrangian for an aikyon should be compared with
the earlier one (1) which had only gravity and Dirac fer-
mions as unified components of the aikyon. This new
Lagrangian here also includes gauge-fields and their cur-
rents, through qB and qF, assumed self-adjoint. α is the
Yang–Mills coupling constant, assumed to be a real num-
ber. Gravitation, and Yang–Mills fields, and their corre-
sponding sources, are unified here as the ‘position’ q and
‘velocity’ dq/dτ of the aikyon. With position being the
Yang–Mills part, and velocity being the gravitation part.

By defining new dynamical variables ˙̃QB and ˙̃QF as

˙̃QB � 1
L
(iαqB + Lq̇B)  ;  ˙̃QF � 1

L
(iαqF + Lq̇F) (5)

this Lagrangian can be brought to the elegant and
revealing form.

L � Tr[L2
p

L2
( ˙̃QB +

L2
p

L2
β1
˙̃QF)( ˙̃QB +

L2
p

L2β2
˙̃QF)] (6)

We used this form to express a unification for gravity and
gauge fields in our recent work [2] in terms of these new
complex variables. These variables imbibe the position and
velocity of the aikyon as their real and imaginary parts. We
note that qB, qF , q̇B and q̇F are all assumed to be self-adjoint
in the present paper. This new construction amounts to re-

expressing the aikyon q by the variable Q̃ ≡ Q̃B + Q̃F where

the bosonic Q̃B and the fermionic Q̃F are further expressed
in terms of their self-adjoint and anti-self-adjoint parts as in
Eq. (5) above. The self-adjoint part is velocity, which en-
codes gravity, and the anti-self-adjoint is position, which
encodes Yang–Mills gauge fields. This natural split of a
Grassmann matrix into its four parts [bosonic self-adjoint,
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bosonic anti-self-adjoint, fermionic self-adjoint, fermionic
anti-self-adjoint] captures gravity and Yang–Mills fields, as
well as their sources. There is only one term in the
Lagrangian of an aikyon, whichwhen opened up using this
split, gives rise to 16 different terms. The classical limit is
Einstein gravity coupled to Yang–Mills fields and matter
sources [2].

Our new Planck scale matrix dynamics has been used
to make several predictions. We derived the Bekenstein–
Hawking black hole entropy from the microstates of its
constituent aikyons [11]. We have predicted the Karolyhazy
uncertainty relation as a consequence of our theory [12].We
have used the theory to propose that dark energy is a large-
scale quantum gravitational phenomenon [13]. We have
explained the remarkable fact that the Kerr–Newmanblack
hole has the same gyromagnetic ratio as a Dirac fermion,
both being twice the classical value [2].

In the present article we provide a basic definition of
spin angular momentum in this matrix dynamics, and
introduce a bosonic(fermionic) configuration variable
conjugate to the spin of a boson(fermion). We then show
that at energies below Planck scale, where the matrix dy-
namics reduces to quantum theory, fermions have half-
integer spin (inmultiples of Planck’s constant), and bosons
have integral spin.We also show that this definition of spin
coincides with the conventional understanding of spin in
relativistic quantum mechanics. Consequently, we obtain
an elementary proof for the spin-statistics connection.
Essentially, we reverse the arguments of the traditional
proof of spin-statistics connection in relativistic quantum
field theory [14]. Instead of showing that integer-spin par-
ticles obey Bose–Einstein statistics, we show that particles
obeying Bose–Einstein statistics have integer spin. Simi-
larly, we show that particles obeying Fermi–Dirac statistics
have half-integer spin.

2 A definition for spin in the new
matrix dynamics

Our starting point is the Lagrangian for an aikyon, as given
in Eqn. (62) of [2], and mentioned above in (6), which we
reproduce here again:

L � Tr[L2
p

L2
( ˙̃QB +

L2
p

L2
β1
˙̃QF)( ˙̃QB +

L2
p

L2β2
˙̃QF)] (7)

We now introduce self-adjoint bosonic operators RB and
θB, and self-adjoint fermionic operators RF and θF, as
follows:

Q̃B ≡ RB  exp iθB   ; Q̃F ≡ RF  exp iηθF (8)

Here, η is a real Grassmann number, introduced to ensure

that the fermionic phase is bosonic so that Q̃F comes out
fermionic, as desired, upon the Taylor expansion of its
phase. As is known, this will give exp iηθF � 1 + iηθF , with
the higher terms in the Taylor expansion vanishing
because η2 = 0. These definitions are equivalent to
expressing a Grassmann-valued matrix in terms of its
‘amplitude’matrix and ‘phase’matrix, as if to represent the
matrix on a complex plane.

We note from the definition of Q̃B that it remains un-
changed under the shift θB → θB + 2πI. In this sense θB acts
like an angle variable, and we will require all bosonic
physical quantities depending on θB to remain unchanged
under the shift θB → θB + 2πI  .We can also reason why the

fermionic Q̃F should change sign if the bosonic part of the
corresponding aikyon undergoes a shift θB → θB + 2πI. The
bosonic Q̃B is a matrix made from elements of the even-
grade Grassmann algebra, so that in principle we can
consider the case that it is made from two fermionic

matrices: Q̃B � Q̃F1 × Q̃F2. Hence

Q̃B ≡ RB  exp iθB � Q̃F1 × Q̃F2 � RF1  exp iηθF1 × RF2  exp iηθF2
(9)

The shift ηθF1 → ηθF1 + π induces a sign change in Q̃F1, and
a simultaneous shift ηθF2 → ηθF2 + π induces a sign change

in Q̃F2. Together these two sign changes imply that the

bosonic Q̃B does not change sign, and one can conclude
that these two shifts are equivalent to θB → θB + 2πI.
Conversely, under θB → θB + 2πI, each of the fermionic
parts undergo a change of sign. They do not change under
θB → θB + 4πI. This observation is analogous to the fact
that a spinor changes sign under a 2π rotation in space. We
may think of spinors as eigenstates of fermionic matrices,
having odd-grade Grassmann numbers as their compo-
nents. Vectors are eigenstates of bosonic matrices, and
clearly, a product of two spinors is a vector, just as a
product of two fermionic matrices is a bosonic matrix.

Each of these four newly introduced self-adjoint op-
erators are functions of Connes time, and are the four
configuration variables which define the aikyon. By

substituting these definitions of Q̃B and Q̃F in the above
Lagrangian (7), we can write the Lagrangian in terms of
time derivatives of these four configuration variables. We
will do that in the next section. For now, it suffices to note
that the canonical linear momenta pBR and pFR are defined
as usual, as derivatives of the Lagrangian with respect to
the corresponding velocities:
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pBR � δL
δṘB

  ; pFR � δL
δṘF

(10)

The novel part is the following. We define bosonic and
fermionic spin angular momenta as follows:

pBθ � δL
δθ̇B

  ; pFθ � δL
δθ̇F

(11)

[A word about dimensions. The Lagrangian and action as
introduced here are dimensionless, and hence so is the
linear momentum. However, when care is taken of the τP
present in the action integral, and the C0 on the left hand
side of the action integral brought to the right, linear mo-
mentum acquires familiar correct dimensions. The same
reasoning applies for the dimensions of angular mo-
mentum]. The following proof for spin quantisation is in-
dependent of the specific form of the Lagrangian for the
matrix dynamics. All that is required is that the configu-
ration variables have a self-adjoint part as well as an anti-
self-adjoint part. As is known from Adler’s theory of trace
dynamics, and is true also for the present matrix dynamics,
there is a conserved charge known as the Adler–Millard
charge [15]. This charge results from the invariance of the
trace Lagrangian under global unitary transformations of
the degrees of freedom. The charge has dimensions of ac-

tion and is denoted by the symbol C̃:

C̃ � ∑
r∈B
[qr , pr] − ∑

r∈F
{qr , pr} (12)

which is the sum over the shown commutators for bosonic
degrees of freedom, minus the sum over the shown anti-
commutators for fermionic degrees of freedom. If there are
many aikyons in the system, the conserved charge is the
sum over all aikyons, of their individual contributions. For
the present set of momenta, the Adler–Millard charge is

C̃ � [RB, pBR] + [θB, pBθ] − {RF , pFR} − {θF , pFθ} (13)

As we know from trace dynamics and our own earlier
work, if we observe this matrix dynamics at energy scales
much lower than Planck scale, the emergent dynamics is
quantum theory. This is shown by coarse-graining the
matrix dynamics over timesmuch larger thanPlanck times,
and using the techniques of statistical thermodynamics to
find out the coarse-grained dynamics [There is an addi-
tional requirement that any anti-self-adjoint component in
themomenta and in theHamiltonianmust be negligible for
the emergence of quantum theory]. In particular, the
Adler–Millard charge gets equipartitioned over all the de-
grees of freedom, and the constant value of the equiparti-
tioned charge per degree of freedom is identified with
Planck’s constant ℏ. This implies, from the structure of the

charge C̃ above, that the self-adjoint part of statistically
averaged canonical variables (identified with the dynam-
ical variables of quantum field theory) obey the canonical
commutation relations of quantum theory:

[RB, pBR] � iℏ  ; [θB, pBθ] � iℏ  ; {RF , pFR} � iℏ ;
 {θF , pFθ} � iℏ

(14)

It is understood in these commutators that only the self-
adjoint component of the momenta is present, and this
component has been averaged over the canonical
ensemble of the microstates allowed at statistical equilib-
rium. Fromhere, it is possible to deduce the quantization of
spin angular momentum. From the second commutation
relation, between θB and pBθ, we deduce that this spin
angular momentum is a displacement operator, whose ei-
genvalues are quantized:

pθB � −iℏ δ
δθB

  ;  − iℏ
δ
δθB

ψ � λψ  ; ψ ∼ exp[i λ
ℏ
θB]⇒ λ

� nℏ

(15)

where n is an integer. Moreover, since θB is an even grade
Grassmann matrix, two such matrices commute, leaving
the state of a multiparticle bosonic system unchanged
upon interchange of two identical bosons. The state is
hence symmetric, and the system obeys Bose–Einstein
statistics.

The situation regarding fermions is more subtle.
Because the fermionic spin pFθ satisfies an anti-
commutation relation with the dynamical variable θF, one
can construct a displacement operator for it using Berezin
calculus. [By itself, θF does not permit any angle interpre-
tation for itself. However we can infer fermion spin quan-
tisation indirectly. Consider a bosonic degree of freedom B
made from a product of two identical fermions F1 and F2,
i.e., B = F1F2. Since B has integral spin and since spin is
additive, and since we cannot discriminate between the
contribution of spin from F1 and spin from F2, we can
conclude the following. If the boson has spin ℏ, the fer-
mions each have spin ℏ/2. And because fermions are made
from odd-grade Grassmann numbers which anti-commute,
a state for a system of identical fermions is anti-symmetric
under exchange of particles, implying that the statistics is
Fermi–Dirac].

The fermionic Berezin displacement operator corre-
sponding to θF is iℏδ/δθF and its eigenvalue will be a
Grassmann number, not a c-number. However, we can

construct the bosonic operator iℏδ/δθ′F where θ′F � ηθF
and this has a c-number eigenvalue λ and an eigenstate
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proportional to exp[ −iληθF/ℏ] . Since the phase must
change sign under a shift of 2π in ηθF, it follows that the
fermion has a spin λ � ±ℏ/2.

The novelty of the present proposal is the introduction
of the fermionic configuration variable θF. There is no
analogue for it in quantummechanics. That is because one
develops quantum mechanics by quantising classical
dynamical theories. In so doing, we never arrive at this
dynamical variable θF, which indeed comes down to us
from the Planck scale matrix dynamics. Moreover, there is
no space–time, yet, in our analysis. This is another piece of
evidence to suggest that quantum mechanics is a low en-
ergy limit of a [more complete] underlying dynamics: a
dynamics in which classical space-time is absent. It also
seems to be the case that this proof of the spin-statistics
connection does not manifestly require a space–time
symmetry such as Lorentz invariance.

Next, we show, using our specific Lagrangian, that the
spin angular momentum introduced here agrees with the
conventional understanding of spin in relativistic quantum
mechanics.

3 Relating the spin in matrix
dynamics to the spin in quantum
mechanics

We work out the expressions for the four momenta by first
substituting the forms (8) into the Lagrangian (6). The ve-
locities are given by (in the small angle approximation)

˙̃QB � ṘB  exp iθB + RB  exp iθB × iθ̇B  ;

  ˙̃QF � ṘF  exp iηθF + RF  exp iηθF × iηθ̇F
(16)

These are substituted in the Lagrangian, and they yield the
following expressions for the four momenta. We first open
the brackets in the expression for the Lagrangian, andwrite
it as a sum of four terms: L � T1 + T2 + T3 + T4:

T1 � Tr
L2P
L2 ( ˙̃Q2

B) � Tr
L2
P

L2
(ṘB  exp[iθB]ṘB  exp[iθB]

+ṘB  exp[iθB]RB  exp[iθB]iθ̇B
       + RB  exp[iθB]iθ̇BṘB  exp[iθB]

+RB  exp[iθB]iθ̇BRB  exp[iθB]iθ̇B) (17)

T2 � Tr
L4P
L4 [ ˙̃QBβ2

˙̃QF] � Tr
L4P
L4 (ṘB  exp[iθB]β2ṘF  exp[iθF]

+ṘB  exp[iθB]β2RF  exp[iθF]iηθ̇F
         + RB  exp[iθB]iθ̇Bβ2ṘF  exp[iθF]

+RB  exp[iθB]iθ̇Bβ2RF  exp[iθF]iηθ̇F) (18)

T3 � Tr
L4
P

L4
[β1 ˙̃QF

˙̃QB] � Tr
L4
P

L4 (β1ṘF  exp[iθF]ṘB  exp[iθB]
+β1ṘF  exp[iθF]RB  exp[iθB]iθ̇B

         + β1RF  exp[iθF]iηθ̇FṘB  exp[iθB]
+β1RF  exp[iθF]iηθ̇FRB  exp[iθB]iθ̇B)

(19)

T4�Tr L
6
P

L6 [β1 ˙̃QFβ2
˙̃QF]�(β1ṘF  exp[iθF]β2ṘF  exp[iθF]

+β1ṘF  exp[iθF]β2RF  exp[iθF]iηθ̇F
          + β1RF  exp[iθF]iηθ̇Fβ2ṘF  exp[iθF]

+β1RF  exp[iθF]iηθ̇Fβ2RF  exp[iθF]iηθ̇F)
(20)

The momenta can be worked out by taking appropriate
trace derivatives of the Lagrangian, using the rules of dif-
ferentiation from trace dynamics. The variedmatrix should
be moved to the extreme right by cyclic permutation inside
the trace, keeping in mind that exchange of two fermionic
matrices results in a change of sign in the overall
expression.

The fermionic spin angular momentum is

pFθ � δL
δθ̇F

� L4P
L4 [ − RB  exp[iθB]iθ̇B(β1 + β2)RF  exp[iηθF]η

+i(ṘB  exp[iθB]β1 + β2)RF  exp[iηθF]η)] + O(L6P
L6
) (21)

The higher order terms do not contribute to the present
discussion. As we will see below, this expression has the
desired form for matching with the conventional discus-
sion of spin in the Dirac equation. We note that this spin
angular momentum is not a conserved quantity; the
Lagrangian explicitly depends on θF.

The bosonic spin angular momentum is given by

pBθ � δL
δθ̇B

� −2 L
2
P

L2RB  exp[iθB]θ̇BRB  exp[iθB]

+2i L
2
P

L2
ṘB  exp[iθB] RB  exp[iθB]

+ L4P
L4

(β1 + β2)ṘF  exp[iηθF] RB  exp[iθB]

+i L
4
P

L4
(β1 + β2)RF  exp[iηθF]ηθ̇FRB  exp[iθB]

(22)

The fermionic and bosonic linear momenta are given
by

pBR � δL
δṘB

� 2
L2
P

L2
exp[iθB] ṘB  exp[iθB]

+2i L
4
P

L4
exp[iθB] RB  exp[iθB]θ̇B
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+ L
4
P

L4
exp[iθB](β1 + β2)ṘF  exp[iθF]

+i L
4
P

L4
exp[iθB](β1 + β2)RF  exp[iηθF]ηθ̇F

(23)

pFR � δL
δṘF

� L4P
L4 [exp[iηθF]ṘB  exp[iθB](β1 + β2)

+i exp[iηθF] RB  exp[iθB]θ̇B(β1 + β2)]
+O(L6P

L6
) (24)

In our earlier work, we constructed the variables Q̃B

and Q̃F as follows:

˙̃QB � 1
L
(iαqB + Lq̇B)  ;  ˙̃QF � 1

L
(iαqF + Lq̇F) (25)

Here, the self-adjoint operator qB corresponds to the Yang–
Mills potential in the classical limit, and q̇B to gravity. Here
q̇F is thematter source for gravity, and qF is the current that
sources the Yang–Mills fields. α is the gauge coupling
constant. These operators are related to the standard Dirac
operator DB, and we also defined an operator DF:

DB ≡
1
Lc

 
dqB
dτ

; DF ≡
L2
P

L2

β1 + β2
2Lc

 
dqF
dτ

(26)

DB is defined such that in the commutative c-number limit
where space-time emerges, it becomes the standard Dirac
operator on a Riemannianmanifold.DF is defined such that
upon spontaneous localisation, it gives rise to the classical
action for a relativistic point particle. The modified Dirac
operators which take into account the presence of the
Yang–Mills potential qB and the corresponding current qF,
are given by

DBnewi � 1
L
˙̃QB and DFnewi � L2P

L2

β1 + β2
2Lc

˙̃QF (27)

qB is related to the gauge-potential by αqB/L
2 � γμAμ, and

qF is related to the gauge current.
The constancy of the bosonic momentum corre-

sponding to Q̃B implies that we have a constant net Dirac
operator which can be expressed as an eigenvalue equa-
tion given by:

[DBnewi + DFnewi]ψ � λψ (28)

where the eigenvalues λ are assumed to be C-numbers
[since the operator is bosonic] and are independent of the
Connes’ time τ.

We nowwork out what this Dirac equation looks like in
terms of the variables θB, θF, RB and RF introduced in the
present paper. This will unearth the presence of spin as
defined in the current paper, and show its presence in the
conventional Dirac equation. By comparing the real and
imaginary parts of Eqs. (16) and (25) we obtain that

q̇B � ṘB(cos θB) − RB(sin θB)θ̇B (29)

α
L
qB � ṘB(sin θB) + RB(cos θB)θ̇B (30)

If wemake the assumption that introducing the gauge-
potential does not change the background space–time
geometry too much, we should have that θB is small and
that qB is nearly the same as RB and q̇B is nearly the same as

ṘB. This trivializes the first of these equations [qB = qB]

whereas the second equation gives that αqB/L2 � RBθ̇B/L .
The left hand side in this equality is of course the same as
the contribution of the gauge potential to the Dirac oper-
ator DBnewi. We now show that the right hand side is pro-
portional to the spin angularmomentum, as defined above.
Let us look at the self-adjoint part of the expression (21)
for fermionic spin pFθ. For small θB we can approximate

it as −RBθ̇B(β1 + β2) RF  exp[iηθF]η . This means that pFθ ∼
−(αqB/L)Q̃Fηwhich represents the coupling of the fermion
to the gauge potential. Equivalently, the term αqB/L rep-
resents the correction to the Dirac operator enforced by the
spin angular momentum pFθ. We also know that this
correction term in the standard Dirac equation allows us to
conclude that the electron has a gyromagnetic ratio of 2
and hence has a spin ℏ/2. We therefore conclude that our
definition of the spin angular momentum pFθ is consistent
with the conventional understanding of spin in relativistic
quantum mechanics. Of course this Dirac equation is still
not on space–time, and evolution is with respect to Connes
time; however the transition from here to the conventional
Dirac equation on a space–time is straightforward [after
spontaneous localisation ofmacroscopic systems gives rise
to emergent space–time]. The Dirac operator is the stan-
dard one, and the gauge potential represents an external
potential to which the fermion is coupled.

One subtle point to note is the following. In the defi-

nition of ˙̃QB and
˙̃QF , the gravity part q̇B and the gauge part

qB have a relative i factor between them, and the same is
true for the pair (q̇F , qF) . This is different from the standard
theory where there is of course no i factor between DB and
the gauge potential αA in the modified Dirac operator
DB + αA. We believe our construction to be more funda-
mental, as it allows us to think of the gauge interaction as

the phase part of the complex Q̃B. Equivalence with the
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standard theory can be restored if in the classical (gauge
field plus current) Lagrangian we introduce an i factor in
the current part of the interaction term jμA

μ and also an i

factor in front of the potential term Aμ in this interaction
term, and make an overall change of sign for this term in
the Lagrangian. And similarly, an overall change in sign in
front of the gauge-field Lagrangian because i2 = −1.

4 Understanding spin

From the Lagrangian above, we can write the first integrals

for the equations of motion for Q̃B and Q̃F . The two corre-
sponding canonical momenta are constants of motion,
implying that

p̃B � ∂L
∂ ˙̃QB

� L2
p

L2 [2 ˙̃QB +
L2
p

L2
(β1 + β2) ˙̃QF] (31)

p̃F � ∂L
∂ ˙̃QF

� L4p
L4 [ ˙̃QB(β1 + β2) + L2

p

L2
β1
˙̃QFβ2 +

L2p
L2β2

˙̃QFβ1] (32)

The presence of spin in quantum mechanics is also indi-
cated from this expression above for the bosonic mo-
mentum, from which the Dirac equation is constructed. It
depends not only on the bosonic velocity but also on the
fermionic velocity, which is related to the fermioinic spin
angular momentum.

Here the conjugate momenta, p̃B and p̃F are constants

as the trace Lagrangian is independent of Q̃B and Q̃F ,
similar to what happened for pure gravity. This implies,

2 ˙̃QB +
L2p
L2 (β1 + β2) ˙̃QF � C1 (33)

˙̃QB(β1 + β2) + L2p
L2β1

˙̃QFβ2 +
L2
p

L2
β2
˙̃QFβ1 � C2 (34)

for some C1 and C2 which are constant bosonic and fer-
mionic matrices, respectively. We can deduce from the
definition of ˙̃QB and

˙̃QF in terms of (qB, q̇B, qF , q̇F) as to how
the former set of variables evolve. The latter set evolve as
harmonic oscillators [2]:

qB � B+ei (ατ/L) + B−e−i (ατ/L)   ;  qF � F+ei (ατ/L) + F−e−i (ατ/L)

(35)

This implies that in the complex ‘plane’ formed by q̇B
along the horizontal axis, and iqB along the vertical axis,

the complex dynamical variable ˙̃QB executes periodic
motion with a time-period L/α. The angular momentum
associated with this periodic motion is the bosonic spin
angular momentum. An analogous interpretation holds for

the fermionic spin, vis a vis themotion of ˙̃QF in the complex
plane formed by q̇F and iqF. In the emergent quantum
theory, this spin angular momentum is quantized in units
of Planck’s constant, just like angular momentum is,
except that, because fermions are described by odd-grade
Grassmann matrices, their spin is half-integral.

To put it more physically, spin is the angular mo-
mentum associated with the motion of an aikyon in the
phase space of matrix dynamics. The motion takes place in
the two dimensional ‘plane’ formed by the self-adjoint and
anti-self-adjoint parts of the Grassmann matrix which de-
scribes an aikyon. The self-adjoint part relates to gravity
and the anti-self-adjoint part to Yang–Mills gauge in-
teractions. We can decompose this motion into a sum of
linear motion and angular motion. Since in both the linear
motion as well as in angular motion, both the self-adjoint
and anti-self-adjoint parts vary, each of these motions
relate both to gravity and to gauge fields. However, since
spin gets switched on only after the imaginary axis of the
plane is switched on because of introducing gauge fields, it
could be the case that there is an intimate connection be-
tween spin and gauge interactions. In particular, since spin
relates to torsion in geometry, one should investigate if
gauge interactions are manifestations of torsion, and of a
complex antisymmetric part to the space–timemetric. This
kind of a suggested unification of gravity and gauge fields
on a complex plane might help get rid of the need for extra
hidden space–time dimensions as required in Kaluza–
Klein theories. The fact that gauge-interactions are related
to the phase which obeys periodic boundary conditions
might help understand why the standard model symmetry
groups have to do with rotational invariance, whereas
gravity, related to the amplitude RB has to do with
diffeomorphisms.

Another way to think of spin is to regard the self-
adjoint fermionic position and velocity operators, q̇F and
qF, as the real and imaginary parts of the complex velocity
˙̃QF [which is what they precisely are]. Spin is the mo-
mentum associated with change of phase during evolution
(in Connes time) in the complex plane defined by position
and velocity. Linear momentum is associated with change

in amplitude of ˙̃QF during evolution.
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