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Abstract: The nonlinear wave excitations arising from the
spatially varying magnetic field in the quantum plasma
environment are investigated in the frame work of quan-
tum hydrodynamic model. In the weakly nonlinear,
dispersive and dissipative limit it is shown that the varying
magnetic field and collision-induced excitations can be
described by a modified form of Korteweg-de Vries–Bur-
gers’ type model equation. It is found that the dissipation
terms (Burgers’ and collisional term) arise due to spatially
varying magnetic field and the ion-neutral collisions. The
numerical solutions of this equation predict that the
localized soliton solutions decay algebraically due to the
combined effect of varying magnetic field and collision by
radiating oscillatory pulses behind the propagating
soliton.

Keywords: dissipative quantum plasmas; electrostatic
waves; nonlinear phenomena.

1 Introduction

The nonlinear propagation of low frequency electrostatic
waves in magnetized quantum plasmas has recently
gained much interest in dense astrophysical environ-
ments [1]. In dense quantum plasmas, degenerate elec-
trons pursue Fermi pressure law, and there are typically
quantum forces associated with the Bohm potential,
which generate wave dispersion at nanoscales [2]. In the
last several years, several researchers made their efforts
on dense quantum plasmas due to its novelty as well as
potential application prospects in ultrasmall electronic
devices [3], in dense astrophysical objects like white
dwarfs, neutron stars [4–9] and also in intense laser-solid
interaction experiments [10]. In metallic nanostructures

the quantum diffraction effect of charged particles has a
significant role in the collective processes in plasmas.
Spectral measurements of X-ray Thomson scattering [11]
experimentally verify the influence of the quantum
diffraction on the dispersive character of electrostatic
waves in degenerate plasmas.

Most of the astrophysical systems comprise of mag-
netic field. Moreover, in space or laboratory plasma, mo-
tion of plasma particles generates a magnetic field. So, the
fundamental characteristics of plasma motion in presence
of magnetic field depend vitally on our ability to describe
nonlinear behavior of magnetized plasma. Linear and
nonlinear acoustic waves have been investigated in
quantum plasmas by considering the quantummechanical
effects of plasma particles in different plasma media. For
example, the behavior of low temperature and high density
quantum plasmaswas first studied by Pines [12]. Haas et al.
[13] derived the dispersion relation for the two-stream
instability and identified a new pure quantum branch to
describe the dynamics of quantumplasmaswith the help of
nonlinear Schrödinger–Poisson model. Based on the
Wigner–Poisson dynamical equations, Anderson et al. [14]
described a statistical multistream model of quantum
plasmas. Haas et al. [15] used the quantum hydrodynamic
(QHD) model to study the linear and nonlinear quantum
ion-acoustic waves (IAWs) in the limit of small mass ratio
of charge carriers. Within the framework of the QHD
approximation, the quantum effects on linear and non-
linear propagation of electrostatic waves have been inves-
tigated in the past by various authors [16–22]. Recently,
Roy et al. [23] investigated face-to-face interaction between
multisolitons in a fermionic quantum plasma. Singh et al.
[24] addressed the problem of heavy nucleus-acoustic
excitations in magnetorotating quantum plasma by
deriving Zakharov–Kuznetsov–Burgers equation. More
recently, Saha et al. [25] studied the dynamical proper-
ties of electrostatic IAWs in a dense Thomas–Fermi
magnetoplasma.

The existence of strongmagnetic fields in white dwarfs
was predicted by Ginzburg [26]. The magnetic field plays a
significant role in the study of the neutron star atmo-
spheres and their radiation [27]. Haas [28] formulated a
quantum magnetohydrodynamic (QMHD) model to estab-
lish the equilibrium conditions and the importance of
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magnetic field for dense astrophysical plasmas, such as,
the interior of massive white dwarfs or the atmosphere of
neutron stars. The linear and nonlinear behavior of the
slow and fast magnetosonic modes were obtained using
QMHD model that includes the Bohm and spin terms [29].
By using the QMHDmodel, Kaur et al. [30] investigated the
nonlinear ion-acoustic (IA) cnoidal waves in magnetized
quantum plasmas. Asenjo [31] discussed the effect of
quantum corrections on the propagation of low frequency
magnetosonic waves with mobile electrons and ions by
considering the Bohm potential and the spin magnetiza-
tion energy of electrons. In dense plasmas, the equilibrium
density of charged carriers and the static ambientmagnetic
field can be nonuniform with finite scale lengths. Shukla
and Stenflo [32] described the existence of new drift modes
in a nonuniform quantum magnetoplasma and observed
that the electron quantumcorrection significantlymodified
the electron drift-wave frequency. Moslem et al. [33]
investigated electrostatic waves in a nonuniform quantum
magnetoplasma and reported that the effects of quantum
parameters, velocity, density and magnetic field in-
homogeneities give rise to both oscillatory and purely
growing instability in the local approximation regime.
Misra [34] studied the amplitude modulation of low-
frequency electrostatic drift-wave envelopes in a nonuni-
form quantum magnetoplasma.

In all the earlier investigations, external magnetic field
has been taken constant. However, spatially varying
magnetic field take place in the plasma transport processes
both in laboratory as well as in different space plasma
environment [35, 36]. A varying magnetic field causes
changes in the dynamics of the electrons and ions in a
dense plasma environment. It affects the ionization bal-
ance and the plasma spatial distribution. Transport prop-
erties of two-dimensional electron gas (2DEG) under a
periodic magnetic field were theoretically investigated by
Xue and Xiao [37]. Peeters and Vasilopoulos [38] studied
quantum transport of a 2DEG in presence of a spatially
modulated magnetic field. Wu and Ulloa [39] investigated
electronic states and collective excitations of a 2DEG in
presence of a spatially modulated magnetic field. More-
over, Loukopoulos and Tzirtzilakis [40] studied the prob-
lem of the biomagnetic fluid flow in a channel under the
influence of an applied spatially varying magnetic field.
Recently, Pakzad et al. [41] studied the behavior of small
amplitude IA solitary waves in a nonrelativistic framework
for classical plasmas under the influence of a spatially
varying magnetic field. They showed that, in the presence
of a varying magnetic field, solitons radiate some amount
of energy during their propagation through the varying
magnetic field, and the radiated energy emerges as

backwardmoving shockwaves. However, to the best of our
knowledge, no attempt has been made to study the
nonlinear propagation of quantum IAWs in a collisional
quantum plasma in presence of a spatially varying mag-
netic field. Motivated by such considerations, we derive the
modified form of Korteweg-de Vries–Burgers (KdVB) type
equation to describe the nonlinear quantum IAWs excited
by spatially varying magnetic field in a collisional plasma
and discuss the potential utility of propagating waves
influenced by several plasmaparameters. The organization
of the paper is as follows. In Section 2, we derive the
nonlinear evolution equation that governed the dynamics
of the nonlinear waves within the framework of QMHD
model. In Section 3, we discuss the numerical solutions of
the nonlinear equation with its graphical representations.
Finally, a brief summary of the results is provided in Sec-
tion 4.

2 Theoretical model and derivation
of evolution equation

We consider the nonlinear propagation of electrostatic
IAWs in a collisional quantum magnetoplasma consisting
of positively charged inertial nondegenerate ions and
inertialess degenerate electrons. At equilibrium, both
electrons and ions have equal number density, say n0. We
introduce a space–dependent slowly varying external
magnetic field B � B(r)ẑ, i.e., the magnetic field in our
model is a function of space [41]. The ion-neutral collisions
are taken into account in the momentum conservation
equations for ions as a simple relaxation term [42]. Thus, in
collisional magnetized quantum plasma the basic set of
QHD equations are [43, 44]

∂ni

∂t
+ ∇.(niv) � 0, (1)

dvi
dt

� − e
mi

∇ ϕ + e
mi

(vi × B) − γivi, (2)

0 � e
me

∇ ϕ − ∇pe

mene
+ ℏ2

2me
∇ (∇2 ��

ne
√
��
ne

√ ), (3)

∇2ϕ � e
ϵ0

(ne − ni), (4)

which can be written in nondimensional form as

∂ni

∂t
+ ∂(nivix)

∂x
+ ∂(niviy)

∂y
+ ∂(niviz)

∂z
� 0, (5)

dvix
dt

� −∂ϕ
∂x

+ bviy − νvix, (6)
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dviy
dt

� −∂ϕ
∂y

− bvix − νviy, (7)

dviz
dt

� −∂ϕ
∂z

− νviz , (8)

n2/3
e � 1 + 2ϕ + H2��

ne
√ ∇2 ��

ne
√

, (9)

∇2ϕ � ne − ni. (10)

Here, d/dt ≡ ∂/∂t + vix∂/∂x + viy∂/∂y + viz∂/∂z is the to-
tal derivative. In the equation ne(i) is the electron (ion)
number density normalized by the equilibrium density n0,
vi ≡ (vix, viy, viz) is the ion velocity normalized by the

quantum IA speed cs �
���������
2kBTFe/mi

√
, with kB denoting the

Boltzmann constant, mi is the ion mass, TFe �
ℏ2(3π2n0)2/3/2kBme is the electron Fermi temperature and ℏ
is the Planck’s constant. Also, γi is the ion-neutral collision
frequency and ν � γi/ωpi is the nondimensional collisional

parameter. H � ℏωpe

2kBTFe
is the quantum diffraction parameter

denoting the ratio of the ‘plasmon energy density’ to the

Fermi thermal energy in which ωpj � n0e2/ϵ0mj is the
plasma oscillation frequency for the jth species particle.
Moreover, ϕ is the electrostatic potential normalized by
2kBTFe/e. The space and time variables are respectively,

normalized by cs/ωpi and the ion plasma period ω−1
pi . The

space–dependent parameter b(r) is defined by b(r) � eB(r)
miωpi

.

We note that Eq. (9) is obtained after integrating once the
momentum Eq. (3) for nonrelativistic degenerate electrons
and using the boundary conditions : ϕ→ 0, ne → 1 at in-
finity. In this equation, we have considered the pressure pe
follows the equationof state for degenerate electrons [45, 46]

pe � 1
5
meV2

Fe

n2/3
0

n5/3
e , (11)

where VFe �
���������
2kBTFe/me

√
is the electron Fermi thermal

speed.
In order to describe the evolution of the nonlinear

waves, we use the standard perturbation techniques. We
define stretched variables,

ξ � ϵ1/2(lxx + lyy + lzz − λt), τ � ϵ3/2t, (12)

where ϵ is a small parameter representing the strength of
the wave amplitude, λ is the wave phase velocity and lx, ly,
lz are the direction cosines of the wave vector k having x, y,
and z-components, i.e., l2x + l2y + l2z � 1. We also assume that
γi � ϵ3/2γ, where γ is of the order of unity or less. Such a

consideration of smallness of γi can be found in the liter-
ature [47] and is valid inmany experimental situations [48].
We now expand the dependent variables in a power series
in terms of an expansion parameter ϵ,

ni � 1 + ϵn(1)
i + ϵ2n(2)

i +⋯ ,
ne � 1 + ϵn(1)e + ϵ2n(2)

e +⋯ ,

vix � ϵ3/2v(1)ix + ϵ2v(2)ix +⋯ ,
viy � ϵ3/2v(1)iy + ϵ2v(2)iy +⋯ ,

viz � ϵv(1)iz + ϵ2v(2)iz +⋯ ,

ϕ � ϵϕ(1) + ϵ2ϕ(2) +⋯ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

where ϵ is a smallness parametermeasuring the strength of
nonlinearity. Inserting the above stretching and expan-
sions and comparing the lowest power of ϵ, we have

n(1)e � n(1)i � 3ϕ(1), v(1)ix � −ly
b
∂ϕ(1)

∂ξ
,

v(1)iy � lx
b
∂ϕ(1)

∂ξ
, v(1)iz � 3λ

lz
ϕ(1),

together with

λ � |lz |�
3

√ , (14)

where lz � (k.ẑ)/k � cosθ in which θ is the obliqueness
angle between the wave propagation direction and the
external magnetic field. The dynamical equations in the
next higher order of ϵ are obtained as

λ
∂n(2)i

∂ξ
− lx

∂v(2)ix

∂ξ
− ly

∂v(2)iy

∂ξ
− lz
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i

∂τ
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i v(1)iz )
∂ξ

(15)

v(2)ix � λ
b

∂v(1)iy

∂ξ
(16)

v(2)iy � −λ
b
∂v(1)ix

∂ξ
(17)

λ
∂v(2)iz
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∂ξ
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(1)
iz
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∂ξ
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(18)
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3
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18
n(1)2
e − H2

4
∂2n(1)e

∂ξ 2
(19)

∂
2ϕ(1)

∂ξ 2
� n(2)

e − n(2)
i (20)
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Finally, eliminating all the second-order quantities
from Eqs. (15)–(20) together with relation to Eq. (14), we
obtain the following equation :

∂ϕ(1)

∂τ
+ 4λϕ(1)∂ϕ

(1)

∂ξ
+ λ
6
(1 − 9H2

4
) ∂

3ϕ(1)

∂ξ 3

+ λ
6
(1 − 3λ2) ∂

∂ξ
(1
b

∂

∂ξ
(1
b
∂ϕ(1)

∂ξ
)) + γ

2
ϕ(1)

� 0 (21)

In the above damped modified KdV Eq. (21), the fourth
term represents the effects of the important parameter b
related to the variable magnetic field, and the fifth term
corresponds to the effects of ion-neutral collision. In the
absence of magnetic field and collision, we may obtain the
usual KdV equation for an IAW in quantum plasma. It
should be mentioned that, in absence of magnetic field
(b = 0), the corresponding term does not appear in the
equation of motion of ions and therefore we are not con-
cerned about the singularity in b = 0. The above Eq. (21) can
be written as

∂ϕ(1)

∂τ
+ Aϕ(1)∂ϕ

(1)

∂ξ
+ B

∂
3ϕ(1)

∂ξ 3
+ C(ξ) ∂3ϕ(1)

∂ξ 3

+ D(ξ) ∂2ϕ(1)

∂ξ 2
+ E(ξ) ∂ϕ(1)

∂ξ
+ γ
2
ϕ(1) � 0

(22)

where

A � 4λ, B � λ
6
(1 − 9H2

4
), C(ξ) � λ

6b2 (1 − 3λ2),
D(ξ) � 3λ

6b3 (1 − 3λ2) ∂b
∂ξ

,

E(ξ) � λ
6
(1 − 3λ2)⎧⎨⎩ 3

b4 (∂b∂ξ)
2

− 1

b3

∂
2b

∂ξ 2
⎫⎬⎭.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(23)

From the above Eq. (22), it is found that, in a uniform
magnetic field, the fifth and sixth terms do not appear in
the evolution equation. But, in a spatially varyingmagnetic
field, the coefficient of dissipative terms is a spatial func-
tion through the nonuniform magnetic field encoded in
b(ξ ) . These two terms give rise to the generation of shocks
and the frictional force term (due to the effects of ion-
neutral collision) provides damping of the wave.

3 Results and discussion

In this section, we are interested in finding the solution of
Eq. (22) with its full generality. In the presence of

nonuniformmagnetic field and collision, Eq. (22) is not an
exactly integrable Hamiltonian system. Therefore, to
investigate the effect of spatially varying magnetic field
and collision on nonlinear low-frequency waves, we solve
the nonlinear Eq. (22) numerically with the help of a
MATHEMATICA-based finite difference scheme. As is well
known, in the absence of magnetic field and collision, the
nonlinear Eq. (22) is an exactly integrable Hamiltonian
system and possesses a single soliton solution,

ϕ(1)(ξ , τ) � 3U
A sech2[ ξ−Uτ����

4B/U
√ ], where U is the soliton veloc-

ity. In order to examine the influence of spatially varying
magnetic field on the dynamical properties of IAWs, we
carry out such a numerical investigation of Eq. (22) for an
arbitrary Gaussian shape of the magnetic field as

b � 0.4(1 + e−ξ
2 ).

For the time-dependent numerical solution, we use the
single soliton solution as the initial wave form:

ϕ(1)(ξ ,0) � 3U
A sech2[ �����

U/4B
√

ξ ], ξ ∈ [ −L, L], where L is the

spatial length. Theboundary conditions areϕ(1)(±L, τ) � 3U
A

sech2[ �����
U/4B

√
L] and ϕ(1)

ξ ( −L, τ) � 0 � ϕ(1)
ξ (L, τ). To obtain

ample results for the computation, we take L = 100 and
U = 0.4. The development of this waveform at different
times and for several values of parameters is displayed in
Figures 1–4. We have analyzed the influence of different
spatially varying magnetic field perturbations in absence
of collision on the time evolution of nonlinear structures
in Figure 1. It is found that as the time progresses, the
pulse amplitude decreases. One also sees the generation
of oscillatory tail (dispersive shock) occur behind the
advancing soliton. As the magnetic field strength de-
creases, the number of radiating oscillatory structures
increases and the wave amplitude reduces prominently in
its magnitude. This figure clearly indicates that smaller
magnetic field creates larger dissipation effects. This
is expected as the dissipation coefficient is proportional to
1/b3 according to Eq. (23). Figure 2(a) and (b) show the
development of wave profile in absence and presence of
collision, respectively. This clearly demonstrates the
generation of oscillatory tail at different time behind the
soliton. In the absence of collisional effect [Figure 2(a)],
the shock is more dispersive than that of the presence of
collision [Figure 2(b)]. Also, it is seen that in the presence
of collision the decrease in soliton amplitude become
more pronounced. This clearly demonstrates that the
presence of collision enhances the dissipative effect.
Figure 3 depicts the developments of solitary waves into
shocks for different values of quantum diffraction
parameterH. It is observed that the solitary pulse becomes
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smaller in amplitude and narrower in width for higher
values of H. It means that quantum effects compress the
soliton. This may be attributed to the fact that the increase
in quantum diffraction parameterH reduces dispersion in
the system, and consequently the amplitude is decreased.
One of the important results of the soliton perturbation is
the formation of oscillatory tail (a wave packet of small
amplitude following behind a soliton). It may be
mentioned that for larger values ofH the amplitude of this
radiative shock structures increases. Finally, we have
examined the influence of collisional parameter γ on the
basic features of nonlinear wave profile in Figure 4. It is
evident that due to collisionality, the wave is damped and
its amplitude reduces as it propagates. Also, we note that
as the value of collisional parameter increases, the num-
ber of oscillatory tail reduces. This is because that shock is
created due to dissipation, and increasing collision fre-
quency is commensurate to enhancing the dissipation in
the system. Therefore, collisional effect significantly
modifies the nonlinear characteristics of IAW profiles.

Figure 1: Solution of Eq. (22) in different time τ in the absence of
collision for different varying magnetic fields, where H = 0.1, θ = 10°
and U = 0.4.

Figure 2: Development of soliton structures at different time
(a) in absence and (b) presence of collision (γ = 0.05), where
b � 0.4(1 + e−ξ

2 ) and other parameters are same as in Figure 1.

Figure 3: The effect of quantum diffraction parameter H on the
nonlinear excitation structures: solid line for H = 0.1, dotted line for
H=0.3, dashed line forH=0.5, where γ=0.05,b � 0.4(1 + e−ξ

2 ) and
other parameters are same as in Figure 1.
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4 Conclusion

We have investigated the propagation characteristics of low-
frequency nonlinear electrostatic waves in a dissipative
quantum plasma. The dissipation aries due to the spatially
varying magnetic field and ion-neutral collision. The dy-
namics of the nonlinear wave is found to be governed by a
nonlinearpartialdifferential equation in the formofmodified
KdVB equation, by adopting the reductive perturbation
technique in the quantum plasma medium under consider-
ation. In our analysis, we have focused particularly on the
time-dependent amplitude and generation of oscillatory tail
in order to trace the effect of dissipation.Wehave shown that
the presence of nonuniformmagnetic field is responsible for
the Burgers’ term. This brings the physics of shock wave and
playsa significant role inpropagationdynamics. Till now,we
have not yet envisaged any experimental observations. We
hope that the next generation intense laser plasma labora-
tory experiments will furnish the experimental investigation
of these types of nonlinear structures (oscillatory tail behind
the soliton) in quantum plasmas.
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