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Abstract: Weconsider the solutionof the equation ofmotion
of a classical/quantum spin subject to a monochromatical,
elliptically polarized external field. The classical Rabi prob-
lem can be reduced to third-order differential equations with
polynomial coefficients and hence solved in terms of power
series in close analogy to the confluent Heun equation
occurring for linear polarization. Application of Floquet the-
ory yields physically interesting quantities like the quasie-
nergy as a function of the problem’s parameters and
expressions for the Bloch–Siegert shift of resonance fre-
quencies. Various limit cases are thoroughly investigated.

Keywords: elliptical polarization; quasienergy; Rabi
problem; resonance frequencies.

1 Introduction

In recent years, theoretical and experimental evidence has
shown that periodic driving can be a key element for
engineering exotic quantum mechanical states of matter,
such as time crystals and superconductors at room
temperature [1–3]. The renewed interest in Floquet
engineering, i.e., the control of quantum systems by peri-
odic driving, is due to (a) the rapid development of laser
and ultrashort spectroscopy techniques [4], (b) the dis-
covery and understanding of various “quantummaterials”
that exhibit interesting exotic properties [5, 6], and (c) the
interaction with other emerging fields of physics such as
programmable matter [7] and periodic thermodynamics
[8–22].

One of the simplest system to study periodic driving is
a two level system (TLS) interacting with a classical peri-
odic radiation field. The special case of a constant mag-
netic field in, say, x-direction plus a circularly polarized
field in the y−z-plane was already solved more than eight
decades ago by Rabi [23] and can be found in many text-
books. This case is referred to as Rabi problemwith circular
polarization (RPC) in the following. Shortly thereafter,

Bloch and Siegert [24] considered the analogous problem
of a linearly polarized magnetic field orthogonal to the
direction of the constant field henceforth called, Rabi
problem with linear polarization (RPL) and proposed the
so-called rotating wave approximation. They also investi-
gated the shift of the resonant frequencies due to the
approximation error of the rotating wave approximation,
since then called the “Bloch–Siegert shift.”

In the following decades, one noticed [25, 26] that the
underlying mathematical problem leads to the Floquet
Theory [27], which deals with linear differential matrix
equations with periodic coefficients [28, 29]. Accordingly,
analytical approximations for solutions were worked out,
which formed the basis for subsequent research. In
particular, the groundbreaking work of Shirley [26] has
received widespread attention and many citations. Among
the numerous applications of the theory of periodically
driven TLS are nuclear magnetic resonance [30], ac-driven
quantum dots [31], Josephson qubit circuits [32], and
coherent destruction of tunneling [33]. On a theoretical level,
the methods for solving the RPL and related problems have
been gradually refined and include power series approxi-
mations for Bloch–Siegert shifts [34, 35], perturbation theory
and/or various boundary cases [36–41] and the hybridized
rotating wave approximation [42]. Also, the inverse method
yields analytical solutions for certain periodically driven TLS
[43–46].

In the meantime also the RPL has been analytically
solved [47, 48]. This solution is based on a transformation
of the Schrödinger equation into a confluent Heun differ-
ential equation. A similar approachwas previously applied
to the TLS subject to amagnetic pulse [49, 50] and has been
extended to other cases of physical interest [51, 52]. In the
special case of the RPL, the analytical solution has been
further elaborated to include time evolution over a full
period and explicit expressions for the quasienergy [53].

In this paper, we will extend these results to the Rabi
problem with elliptic polarization (RPE) that is also of
experimental interest, see [54, 55]. Here, wewill approach the
Floquet problem of the TLS via its well-known classical limit,
see, e.g., [56]. It has been shown that, for the particular
problem of a TLS with periodic driving, the classical limit is
already equivalent to the quantum problem [57, 58]. More
precisely, to each periodic solution of the classical equation
of motion, there exists a Floquet solution of the original
Schrödinger equation that can be explicitly calculated via
integrations. Especially, the quasienergy is essentially given
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by theaction integral over oneperiodof the classical solution.
This is reminiscent of the semiclassical Floquet theory
developed in a study by Breuer et al. [59].

The motion of a classical spin vector S(τ) in a mono-
chromaticalmagneticfieldwith elliptic polarization andan
orthogonal constant component can be analyzed by
following an approach analogous to that leading to the
confluent Heun equation in a study by Ma and Li [47] and
Xie andHai [48].We differentiate the first-order equation of
motion twice and eliminate two components of the spin
vector. The resulting third-order differential equation for
the remaining component x(τ) can be transformed into a
differential equation with polynomial coefficients by the

change from the dimensionless time variable τ to u � sin2τ
2.

The latter differential equation is solved by a power series
in u such that its coefficients satisfy a six terms recurrence
relation. The second component y(τ) can be treated in the
same way, whereas the third component z(τ) is obtained in
a different way. As in the RPL case, the transformation from
τ to u is confined to the half period 0 < τ < π and, and
moreover, the resulting power series diverges for u = 1
corresponding to τ = π. Hence, it is necessary to reduce the
full-time evolution of the classical spin vector to the first
quarter period. This is done analogously to the procedure
in a study by Schmidt [53] utilizing the discrete symmetries
of the polarization ellipse.

The structure of the paper is the following. In Section 2,
we present the scenario of the classical Rabi problem with
elliptic polarization and its connection to the underlying
Schrödinger equation. The abovementioned reduction of
the time evolution to the first quarter period is made in
Section 3. Already in the following Section 4, before solving
the equation of motion, it can be shown that the fully pe-
riodic monodromic matrix depends only on two parame-
ters r and α, which determine the quasienergy and the
initial value of the periodic solution S(τ), respectively. The
Fourier series of this solution necessarily have the structure
of an even/odd cos-series for x(τ)/y(τ) and an odd sin-
series for z(τ). The third-order differential equations for
X(u(τ)) � x(τ) and Y(u(τ)) � y(τ) and their power series
solutions are derived in Section 5. First consequences of
this solution for the Fourier series coefficients and the pa-
rameters r and α are considered in Section 6. In order to
check our results obtained so far, we consider, in Section 7,
an example of the time evolution with simple values of the
parameters of the polarization ellipse and two different
initial values. On the one hand, we calculate the time
evolution by using 10 terms of the abovementioned power
series solutions for the first quarter period and extend the
result to the full period. One the other hand, we

numerically calculate the time evolution and find satis-
factory agreement between both methods.

The quasienergy is discussed inmore details in Section
8 with the emphasis on curves in parameter space where it

vanishes. The resonance frequenciesω(n)
res can be expressed

in terms of power series in the variables F and G denoting
the semiaxes of the polarization ellipse and compared with
known results for the limit cases of linear and circular
polarization, see Section 9. The next Section 10 is devoted
to the discussion of further limit cases along the lines of
[57]. In the adiabatic limit of vanishing driving frequency
ω→ 0, the spin vector follows the direction of themagnetic
field, see Section 10.1. The corresponding quasienergy can
be expressed through a complete elliptic integral of the
second kind. The next two order corrections proportional to

ω1 and ω2 can be obtained recursively and yield a kind of
asymptotic envelope of a certain branch of the quasienergy
as a function of ω. In the next limit case of F, G → 0 in
Section 10.2, the solution S(t) and the quasienergy can be
written in the form of a so-called Fourier–Taylor series.
This series is also of interest for the limit case of vanishing
energy level splitting ω0 → 0 in Section 10.3, where it re-
places the exact solution of the RPL for ω0 � 0, and allows
analytical approximations for the further limit cases F→ 0
and F→ G. An application concerning the work performed
on a TLS by an elliptically polarized field is given in Section
11. We close with a summary and outlook in Section 12.

2 The classical Rabi problem:
general definitions and results

We consider the Schrödinger equation

iℏ 
d
dt

Ψ(t) � H(t) Ψ(t) , (1)

of a spin with quantum number s = 1/2, Ψ(t) � (Ψ1(t)
Ψ2(t))

and a time-dependent, periodic Hamiltonian

H(t) � ℏ
2
(ω0  σ1 + G cos(ωt) σ2 + F sin(ωt) σ3) , (2)

where the σi, i = 1, 2, 3, are the Pauli matrices

σ1 � (0 1
1 0

), σ2 � (0 −i
i 0

), σ3 � ( 0 1
−1 0

) . (3)

Hence H(t) can be understood as a Zeeman term w. r. t. a
(dimensionless) magnetic field

H(t) � ⎛⎜⎝ ω0

G cos ωt
F  sin ωt

⎞⎟⎠ . (4)
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Alternatively, ℏ
2ω0  σ1 can be understood as the zero

field Hamiltonian of a TLS and (4) without the constant
component as a monochromatic, elliptically polarized
magnetic field.

Setting ℏ = 1 and passing to a dimensionless time
variable τ = ωt we may rewrite (1) in the form

i 
d
dτ

(ψ1(τ)
ψ2(τ)) � 1

2
( f  sin τ ν − g cos τ
ν + g cos τ −f  sin τ ) (ψ1(τ)

ψ2(τ)) ,
(5)

whereG= gω, F= fω andω0 = νω. The dimensionless period
is alwaysTω = 2π. Sometimes, wewill denote the derivative
w. r. t. τ by an overdot d

dτ � .̇
Let

P(τ) �
∣∣∣∣∣∣∣∣(ψ1(τ)

ψ2(τ))〉 (ψ1(τ)
ψ2(τ))∣∣∣∣∣∣∣∣〈 (6)

denote the one-dimensional time-dependent projector
onto a solution of (5) and

P τ( ) � 1
2
  1 + x(τ)   σ1 + y(τ)   σ2 + z(τ)   σ3 (7)

its expansion w. r. t. the basis (1, σ1, σ2, σ3) of Hermitean
2 × 2-matrices. It follows that the vector S(τ) �
(x(τ), y(τ), z(τ))⊤ satisfies the classical equation of motion

d
dτ

S(τ) � h(τ) × S(τ) , (8)

and hence S(τ) can be viewed as a classical spin vector (not
necessarily normalized). Moreover,

h(τ) � ⎛⎜⎝ h1
h2
h3

⎞⎟⎠ � ⎛⎜⎝ ν
g cos τ
f  sin τ

⎞⎟⎠ (9)

denotes the dimensionlessmagnetic field vector (4) written
as a function of τ.

Conversely, to each solution of (8) one obtains the
corresponding solution of (5) up to a time-dependent phase
that can be obtained by an integration, see [57] for the
details.

The coefficients of the Taylor series w. r. t. τ of x(τ), y(τ)
and z(τ) can be recursively determined by using (8) and the
initial values x(0), y(0) and z(0). Note that h1 and h2 are even
functions of τ and that h3 is an odd one. Hence, there exist
special solutions of (8) such that x(τ) and y(τ) are even
functions of τ and z(τ) is an odd one, symbolically:

S(τ) � ⎛⎜⎝ even
even
odd

⎞⎟⎠ . (10)

In fact, this is consistent with (8) and (9) since

d
dτ

S(τ) � ⎛⎜⎝ odd
odd
even

⎞⎟⎠ , (11)

and

h × S � ⎛⎜⎝ even
even
odd

⎞⎟⎠ ×⎛⎜⎝ even
even
odd

⎞⎟⎠ � ⎛⎜⎝ odd
odd
even

⎞⎟⎠ , (12)

and can be proven by induction over the degree of the
Taylor series coefficients of S(τ) using the necessary initial
condition z(0) = 0.

Analogously, there exist solutions S(τ) of type

S(τ) � ⎛⎜⎝ odd
odd
even

⎞⎟⎠ . (13)

satisfying x(0) = y(0) = 0. We will state these results in the
following form:

Proposition 1: 1. The solution S(τ) of (8) is of type (10) iff
z(0) = 0.
1. Analogously, the solution S(τ) of (8) is of type (13) iff
x(0) = y(0) = 0.

For general initial conditions, the solution S(τ) of (8)
will be of mixed type.

Next, let S(i)(τ), i � 1, 2, 3 , denote the three solutions of

(8) with initial conditions S(i)j (τ0) � δij and R(τ, τ0) be the

3 × 3-matrix with columns S(i)(τ). Since the S(i)(τ) are
mutually orthogonal and right-handed for τ= τ0 this holds for
all τ ∈ R and henceR(τ, τ0) ∈ SO(3). It satisfies the differential
equation

d
dτ

R(τ, τ0) � H(τ) R(τ, τ0) , (14)

with initial condition

R(τ0, τ0) � 1 . (15)

Here, H(τ) ∈  so(3) is the real antisymmetric 3 × 3-matrix
corresponding to h(τ), i.e.,

H(τ) � ⎛⎜⎝ 0 −f  sin τ g cos τ
f  sin τ 0 −ν
−g cos τ ν 0

⎞⎟⎠ . (16)

The differential Equation (14) with initial condition (15)
has a unique solution R(τ, τ0) for all τ, τ0 ∈ R, see, e.g.,
theorem 3.9 in [29]. Obviously, this implies the composition
law

R(τ2, τ0) � R(τ2, τ1) R(τ1, τ0) , (17)

and hence
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R(τ2, τ1)−1 � R(τ1, τ2) , (18)

for all τ0, τ1, τ2 ∈ R.
Usually, wewill set τ0 = 0. ThematrixH(τ) is obviously

2π-periodic. Hence, we may apply Floquet theory to the
classical equation of motion (8). The monodromy matrix
R(2π, 0) has the eigenvalues {1,  exp(±i ρ}) which leads to
the corresponding classical quasienergy (or Floquet
exponent) of the form

ϵ(cl) � 0,± ρ
2π

 , (19)

uniquely defined up to integer multiples (note that effec-
tively ω = 1 in our approach).

The connection to the quasienergy ϵ(qu) of the under-

lying spin s � 1
2 Schrödinger Equation (5) can be given in two

ways. Either we may utilize the fact that the classical Rabi

problem can be understood as the “lift” of the spin s � 1
2

problem to spin s = 1. Then Equation (38) of [57] implies

ϵ(cl) � 2 m ϵ(qu), where m � −1, 0, 1. (20)

Taking into account the mentioned ambiguity of ϵ(cl), this
means thatwe have two possibilities: Either ϵ(qu) � ±1

2ϵ
(cl) or

ϵ(qu) � 1
2 (1 ± ϵ(cl)). Since we have, modulo integers, only

two values for ϵ(qu) these two possibilities are generally
exclusive. One way to decide between the two possibilities
would be to utilize the well-known quasienergies for the
RPC, that agree with the case ϵ(qu) � 1

2 (1 ± ϵ(cl)), and to
argue with continuity.

Another way to obtain ϵ(qu) would be to follow the
prescription given in the study by Schmidt [57] and write it
as follows:

ϵ(qu) � 1
2
(h1 + h2y + h3z

1 + z
), (21)

where the overline indicates the time average over one
period of a 2π-periodic solution S(τ) of (8). An equivalent
expression, that is manifestly invariant under rotations, is
given by

ϵ(cl) � h ⋅ S − S ⋅ (Ṡ × S̈)
Ṡ ⋅ Ṡ

, (22)

see Eq. (46) in [58]. Periodic solutions of (8) can be found by
using the initial value S(0) = r, where r is the normalized
eigenvector of R(2π, 0) corresponding to the eigenvalue 1,
see also in the study by Schmidt et al. [58].

Of course, bothways, (20) and (21), to obtain ϵ(qu) agree
within the usual ambiguity modulo integers. This will be
explicitly checked in Section 8 for the case of circular
polarization.

3 Reduction to the first quarter
period

Due to the discrete symmetries of the polarization ellipse, it
is possible to reduce the time evolution of the classical spin

to the first quarter period τ  ∈  [0, π2]. This is similar to the

corresponding considerations in [53]. Let T(i), i = 1, 2, 3
denote the involutory diagonal 3 × 3-matrices with entries

T(i)
jk � (−1)δij  δjk, for example,

T(1) � ⎛⎜⎝−1 0 0
0 1 0
0 0 1

⎞⎟⎠, (23)

and T(ij) ≡ T(i) T(j), for example,

T(13) � ⎛⎜⎝−1 0 0
0 1 0
0 0 −1

⎞⎟⎠. (24)

First, we will formulate a proposition that allows us to
reduce the time evolution for the classical spin from the full
period to the first half period τ ∈ [0,π].

Proposition 2:

R(π + τ,0) � T(1)R(τ,0)T(1)R(π,0) (25)

for all τ ∈ R.
Proof: Let R̃(τ) ≡ T(1)R(π + τ,π)T(1) such that R̃(0) �

T(1)R(π,π)T(1) � 1. It satisfies the differential equation

d
dτ

R̃(τ) � T(1)  ( d
dτ

R(π + τ,π))T(1) (26)

�(14)T(1)(H(π + τ) R(π + τ,π))T(1) (27)

� (T(1)H(π + τ)T(1))(T(1)R(π + τ,π) T(1)) (28)

� H(τ)(T(1)R(π + τ,π)T(1)) (29)

� H(τ) R̃(τ). (30)

In (29)we have used that sin (π+τ) =−sin τ, cos (π+τ) =−cos
τ and hence

T(1)  H(π + τ) T(1)

� ⎛⎜⎜⎜⎜⎜⎜⎝−1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎜⎝ 0 f  sin τ −g cos τ
−f  sin τ 0 −ν
g cos τ ν 0

⎞⎟⎟⎟⎟⎟⎟⎠
× ⎛⎜⎜⎜⎜⎜⎜⎝−1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (31)
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� ⎛⎜⎝ 0 −f  sin τ g cos τ
f  sin τ 0 −ν
−g cos τ ν 0

⎞⎟⎠ � H(τ). (32)

It follows that R̃(τ) satisfies the same differential equation
and initial condition as R(τ, 0) and hence T(1)  R(π + τ,π)
T(1) � R̃(τ) � R(τ,0). Consequently,
R(π + τ,0) �(17)R(π + τ,π)R(π,0) � T(1)R(τ,0)T(1)R(π,0),

(33)

which completes the proof of the proposition.
Setting τ = π in (25) gives

R(2π,0) � T(1)R(π,0)T(1)R(π,0) � (T(1)R(π,0))2. (34)

Next, we show how to further reduce the time evolution to
the first quarter period τ ∈ [0, π2].
Proposition 3:

R(π − τ,0) � T(13)  R(τ,0) T(13)  R(π,0) (35)

for all τ ≥ 0.
Proof: The proof is similar to that of proposition 2

except that an additional time reflection is involved. Let
R̃(τ) ≡ T(13)  R(π − τ,π) T(13) such that R̃(0) � T(13)R(π,π)
T(13) � 1. It satisfies the differential equation

d
dτ

R̃(τ) � T(13)( d
dτ

R(π − τ,π))T(13) (36)

�(14)T(13)( − H(π − τ)R(π − τ,π))T(13) (37)

� (T(13)( − H(π − τ) T(13)))(T(13)R(π − τ, π)T(13)) (38)

� H(τ)(T(13)R(π − τ,π)T(13)) (39)

� H(τ)R̃(τ). (40)

In (39), we have used that sin (π−τ) = sin τ, cos (π−τ) = −cos
τ and hence

T(13)  (−H(π − τ)) T(13)

�⎛⎜⎜⎜⎜⎜⎜⎝−1 0 0

0 1 0

0 0 −1
⎞⎟⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎜⎝ 0 f  sin τ g cos τ

−f  sin τ 0 ν
−g cos τ −ν 0

⎞⎟⎟⎟⎟⎟⎟⎠
× ⎛⎜⎜⎜⎜⎜⎜⎝−1 0 0

0 1 0

0 0 −1
⎞⎟⎟⎟⎟⎟⎟⎠ (41)

� ⎛⎜⎝ 0 −f  sin τ g cos τ
f  sin τ 0 −ν
−g cos τ ν 0

⎞⎟⎠ � H(τ) . (42)

It follows that R̃(τ) satisfies the same differential equation
and initial condition as R(τ, 0) and hence

T(13)R(π − τ,π)T(13) � R̃(τ) � R(τ,0). (43)

Consequently,

R(π − τ,0) �(17)R(π − τ,π)R(π,0) � T(13)R(τ,0)T(13)R(π,0),
(44)

which completes the proof of the proposition.

Setting τ = π in (43) implies

T(13)R(0,π)T(13) � R(π,0), (45)

and hence

R(0,π) �(18)R(π,0)⊤ � T(13)R(π,0)T(13). (46)

Moreover, if we set τ � π
2 in (35), we obtain

R(π
2
,0) � T(13)R(π

2
,0)T(13)R(π,0), (47)

and hence, solving for R(π, 0),

R(π,0) � T(13)R(π
2
,0)⊤

T(13)R(π
2
,0). (48)

Thus (35) can be re-written as

R(π − τ,0) � T(13)R(τ,0)R(π
2
,0)⊤

T(13)R(π
2
, 0), (49)

and hence the evolution data for τ ∈ [π2,π] can be
completely written in terms of those for τ ∈ [0, π2]. Together
with (25), this shows that the complete time evolution can
be reduced to that in the first quarter period.

4 Fourier series and quasienergy:
preliminary results

First we will re-derive (46) under more general assumptions.

Proposition 4: Let R ∈ SO(3) and T ∈ O(3) be such that T2 = 1
and hence T⊤ = T. Define R̃ ∈ SO(3) by

R̃ ≡ T  R⊤T  R, (50)
then

R̃
⊤ � T  R̃ T (51)

holds.
Proof: R̃

⊤ � (T  R⊤  T  R)⊤ � R⊤  T  R T � T2  R⊤  T  R T �
T  (T  R⊤  T  R)  T � T  R̃ T.

Let us specialize to the case T = T(13), then (51) is
equivalent to the following three equations:
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R̃12 � −R̃21, R̃13 � R̃31, R̃23 � −R̃32. (52)

A general rotationalmatrix R̃ ∈ SO(3) can be determined by
three real parameters; by the three Equation (52) the
number of parameters can be reduced to two:

Proposition 5: Every rotational matrix R̃ ∈  SO(3) satisfying
(52) will be of the form

R̃ � ⎛⎜⎜⎜⎝ r2 + (1 − r2)cos(2α) (1 − r2)sin(2α) 2r
�����
1 − r2

√
sin(α)

−(1 − r2)sin(2α) (1 − r2)cos(2α) − r2 2r
�����
1 − r2

√
cos(α)

2r
�����
1 − r2

√
sin(α) −2r �����

1 − r2
√

cos(α) 1 − 2r2
⎞⎟⎟⎟⎠,

(53)

where r ∈ [0, 1] and α ∈ [0, 2π].
Proof: Obviously, the third column R̃3 of R̃ according to

(53) is the most general form of a unit vector. The second
column R̃2 must be a unit vector orthogonal to R̃3 with a
given component R̃3,2 � −R̃2,3 � −2r �����

1 − r2
√

cos(α). If r > 0
there are only two possibilities for R̃2: the first one is given
by (53) and the second one is b � (−r2 sin(2α),
−r2 cos(2α) − r2 + 1,−2r �����

1 − r2
√

cos(α))⊤. The first column
of R̃ is uniquely given by R̃1 � R̃2 × R̃3, but R̃2 � b does not
yield a matrix satisfying (52) and hence has to be excluded.

We have still to consider the case r = 0 such that

R̃3 � (0,0, 1)⊤. Then the representation (53) reduces to

⎛⎜⎝ cos(2α) sin(2α) 0
−sin(2α) cos(2α) 0

0 0 1

⎞⎟⎠, (54)

which is obviously themost general case satisfying (52) and
R̃3 � (0,0, 1)⊤.

Recall that the “half period monodromy matrix” R(π,
0) satisfies (46), hence, according to Prop. 4, also (52) and,
by virtue of Prop. 5, must be of the form (53). In the case of
linear polarization (g � 0), this result also follows from the
form of the half period monodromy matrix U(π, 0) of the
corresponding Schrödinger equation, see Equation (30) in
[53], where the parameters r and α have the same meaning
as in this paper. Using (34), we can immediately derive the
form of the full period monodromy matrix

It will be instructive to sketch another derivation of
(55). To this end, we state without proof that the mono-
dromy matrix of the Schrödinger Equation (5) will assume
the form

U � U(2π,0) � ( 1 − 2r2 2ir
�����
1 − r2

√
e−iα

2ir
�����
1 − r2

√
eiα 1 − 2r2

), (56)

completely analogous to Eq. (33) of [53]. U has the eigen-
values exp(±2i arcsin r) with respective eigenvectors
(e±iα, 1)⊤. Then the corresponding monodromy matrix ρ of
the classical RPE is given by the equation

U  σi  U∗ � ∑
3

j�1
ρj, iσj, o (57)

where the σi are the Pauli matrices (3). It is easy to check
that the so definedmatrix ρ coincideswithR(2π, 0) given by
(55).

Like R(π, 0) also R(2π, 0) depends only on two pa-
rameters α and r and satisfies a similar equation that
characterizes the corresponding two-dimensional sub-
manifold of SO(3), to wit,

R(2π,0)⊤ � T(3)R(2π,0)T(3). (58)

This equation can be proven either directly by check-
ing (55) or by applying (34) and (46).

According to the general theory [57], the eigenvalues of
R(2π, 0) that are generally of the form (1,  exp(±i ρ)) yield
the quasienergies ϵ(qu)± of the underlying Schrödinger

equation for spin s � 1
2 via

exp  ± iρ � exp (4πi ϵ(qu)± ). (59)

As in [53] it follows that

ϵ(qu)± � ± 1
4π

arg(1 + 8r4 − 8r2 + 4 ir(1 − 2r2) �����
1 − r2

√ )
� ±1

π
arc sin r . (60)

The eigenvector r corresponding to the real eigenvalue
1 of R(2π, 0) is

r � ⎛⎜⎝ cos α
sin α
0

⎞⎟⎠. (61)

Choosing r as the initial value r = S(0) for the time
evolution (8) yields a 2π-periodic solution. Any other unit
vector in the plane P orthogonal to r will, in general, not
return to its initial value after the time τ = 2π but will be

R(2π,0) � ⎛⎜⎜⎜⎜⎜⎜⎝(1 − 2r2)2 + 4r2(1 − r2)cos(2α) 4r2(1 − r2)sin(2α) 4r
�����
1 − r2

√ (2r2 − 1)sin(α)
4r2(1 − r2)sin(2α) 4(r2 − 1)r2 cos(2α) + (1 − 2r2)2 4r(1 − 2r2) �����

1 − r2
√

cos(α)
4r(1 − 2r2) �����

1 − r2
√

sin(α) 4r
�����
1 − r2

√ (2r2 − 1)cos(α) 8r4 − 8r2 + 1

⎞⎟⎟⎟⎟⎟⎟⎠. (55)
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rotated in the plane P by the angle 2πϵ(cl). This endows the
parameters r and α occurring in (53) and (55) with a
geometrical and dynamical meaning.

Another remarkable result follows from R(π, 0) being
of the form (53):

R(π,0)⎛⎜⎝ cos α
sin α
0

⎞⎟⎠ � ⎛⎜⎝ cos α
−sin α

0

⎞⎟⎠, (62)

which means that for the initial value S(0) = r the half period
time evolution is equivalent to a reflection at the x−z-plane.
This has further consequences for the Fourier series of the
2π-periodic functions x(τ), y(τ), and z(τ) with initial values
x(0) � cos α, y(0) � sin α, and z(0) = 0. Since x(τ) and y(τ)
will be even functions of τ and z(τ) will be an odd one, see
Proposition 1, we can write their Fourier series in the form

x(τ) � ∑
∞

μ�0
xμ cos(μτ), (63)

y(τ) � ∑
∞

μ�0
yμ cos(μτ), (64)

x(τ) � ∑
∞

μ�1
zμ sin(μτ). (65)

Now consider the sequence of linear mappings

r � ⎛⎜⎜⎜⎜⎜⎜⎝ cos α
sin α
0

⎞⎟⎟⎟⎟⎟⎟⎠ →R π,0( )⎛⎜⎜⎜⎜⎜⎜⎝ cos α
−sin α

0

⎞⎟⎟⎟⎟⎟⎟⎠→T
1( ) ⎛⎜⎜⎜⎜⎜⎜⎝−cos α

−sin α
0

⎞⎟⎟⎟⎟⎟⎟⎠
→R τ,0( )⎛⎜⎜⎜⎜⎜⎜⎝−x(τ)

−y(τ)
−z(τ)

⎞⎟⎟⎟⎟⎟⎟⎠→T
1( ) ⎛⎜⎜⎜⎜⎜⎜⎝ x(τ)

−y(τ)
−z(τ)

⎞⎟⎟⎟⎟⎟⎟⎠
�(29)R(π + τ,0)r � ⎛⎜⎜⎜⎜⎜⎜⎝ x(π + τ)

y(π + τ)
z(π + τ)

⎞⎟⎟⎟⎟⎟⎟⎠. (66)

From this we conclude

x(π + τ) � ∑
∞

μ�0
xμ cos(μ(π + τ))

� ∑
μ even

xμ cos(μτ) − ∑
μ odd

xμ  cos(μτ) � x(τ)

� ∑
μ even

xμ  cos(μτ) + ∑
μ odd

xμ cos(μτ). (67)

Hence, the odd terms of the cos-seriesmust vanish and x(τ)
is an even cos-series. Similarly, we conclude from (66) that
y(τ) is an odd cos-series and z(τ) an odd sin-series. Sum-
marizing, we have proven the following

Proposition 6: The components of the 2π-periodic solution
S(τ) of (8) with initial values S(0) = r according to (61) have
the Fourier series

x(τ) � ∑
μ even

xμ  cos(μτ) , (68)

y(τ) � ∑
μ odd

yμ  cos(μτ) , (69)

z(τ) � ∑
μ odd

zμ  sin(μτ). (70)

In particular, the time averages of y(τ) and z(τ) over one
period vanish.

5 Third order differential equations
for single spin components

We consider again (8) and its higher derivatives that
read

d
dτ

S � ⎛⎜⎝ ẋ
ẏ
ż

⎞⎟⎠ � ⎛⎜⎝ gz cos τ − f y sin τ
f x sin τ − νz
νy − gx cos τ

⎞⎟⎠ , (71)

d2

dτ2
S �⎛⎜⎜⎜⎜⎜⎜⎝ ẍ

ÿ

z̈

⎞⎟⎟⎟⎟⎟⎟⎠
�⎛⎜⎜⎜⎜⎜⎜⎜⎝−sin τ(f 2x sin τ+ z(g − fν))+ y cos τ(gν− f ) −g2x cos2 τ

cos τ(x(f +gν) + f  g z sin τ) − y(f 2  sin2 τ+ ν2)
sin τ(x(f ν+ g)+ f  g y cos τ)− z(g2  cos2 τ+ ν2) ⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

(72)

d3

dτ3
S �⎛⎜⎜⎜⎜⎜⎝ x

/

y
/

z
/

⎞⎟⎟⎟⎟⎟⎠ � :x S(3)
1 + y S(3)

2 + z S(3)
3  , (73)

with

S(3)
1 � ⎛⎜⎜⎜⎜⎜⎜⎜⎝ −3(f 2 − g2)sin τ cos τ

−sin τ(f 3 sin2 τ + f g2  cos2 τ + f ν2 + f + gν)
cos τ(f 2g sin2 τ + f ν + g3  cos2 τ + gν2 + g) ⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

(74)

S(3)
2 � ⎛⎜⎜⎝ sin τ(f 3  sin2 τ + f  g2  cos2 τ + f ν2 + f − 2gν)

−3f 2  sin τ cos τ
−f  sin2 τ(f ν + 2g) − g cos2 τ(gν − f ) − ν3

⎞⎟⎟⎠ ,

(75)

and

S(3)
3 � ⎛⎜⎜⎝−cos τ(f 2g sin2 τ − 2fν + g3 cos2 τ + gν2 + g)

f sin2  τ(f ν − g) + g cos2 τ(2f + gν) + ν3

3g2 sin τ cos τ
⎞⎟⎟⎠ .

(76)

It is obvious that ẋ and ẍ depend linearly on y and z and
that this dependence can be inverted to express y and z

in terms of x, ẋ and ẍ. Inserting this result into x
/
yields a
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third-order linear differential equation for x(τ), where the
coefficients are trigonometric functions of τ.

Similarly, we can obtain third-order differential equa-
tions for y(τ) and z(τ). For the preparation of the next step, we
make the restriction to solutions of (71) such that x(τ) and y(τ)
are even functions of τ,whereas z(τ) is an odd one, according
to Prop. 1. In this way, we could obtain two solutions S(1) and
S(2) with different initial conditions for x(τ) and y(τ) and the
initial condition z(0) =0, the latter beinga consequenceof the
restriction to odd functions z(τ). The third solution S(3) with
x(τ) and y(τ) odd and z(τ) even is then uniquely determined
by S(1) and S(2). For example, if S(1) and S(2) are chosen to be
orthogonal for τ = 0 then theywill be orthogonal for all τ and
S(3) is just the vector product of S(1) and S(2).

Following the study by Xie and Hai [48], we will
consider a transformation τ↦ u of the independent vari-
able such that the coefficients of the transformed differ-
ential equations become rational functions of u. This
transformation will be chosen as

u(τ) � sin2τ
2
� 1
2
(1 − cos τ), (77)

the same as in the study by Xie and Hai [48], and maps the
half period τ ∈ [0,π]o bijectively onto u ∈ [0, 1]. Since (77)
defines an even function of τ the corresponding trans-
formation is only appropriate for the even functions x(τ)
and y(τ). Their transforms will be denoted by X(u) and Y(u)
such that

X(u(τ)) � x(τ), and Y(u(τ)) � y(τ)for τ ∈ [0,π]. (78)

The remaining function z(τ) has to be calculated differ-
ently, e.g., by using that the length of S(τ) is conserved
under time evolution according to (8). This gives the result

z(τ) � ±
������������������������
x(0)2 + y(0)2 − x(τ)2 − y(τ)2

√
, (79)

where z(0) = 0 has been used, and the sign has to be chosen
in such a way that z(τ) remains a smooth function in the
neighborhood of its zeros. An alternative procedure would
be possible if x(τ) and y(τ) can be written as Fourier series
(maybe only locally valid for τ ∈ [0,π/2]). Then z(τ) could be
obtained by a direct integration of ż(τ) � νy(τ) −
gx(τ)cos(τ). This last procedurewill be applied in Section 7.

We come back to the differential equation for X(u) and
write it with polynomial coefficients pn(u) in the form

0 � ∑
3

n�0
pn(u)X(n)(u) . (80)

The coefficients are the following ones:

p3(u) � u(1 − u)(4f 2ν(u − 1)u + f g − g2ν(1 − 2u)2) (81)

p2(u) � −1
2
(2u− 1)(4f 2ν(u− 1)u+3f g +g2ν(−4(u− 1)u−3))

(82)

p1(u) � −16f 4ν(u− 1)2u2 −4f 3g(u− 1)u
+4f 2ν(u− 1)u(2g2(1− 2u)2 + ν2)
+ f g3(1− 2u)2 +3f gν2 −g2ν(g2(1− 2u)4 + ν2(1− 2u)2 + 2)

(83)

p0(u) � −2(2u− 1)(f −g)(f +g)(4f 2ν(u− 1)u+3f g
− g2ν(1− 2u)2). (84)

The singular points of the differential equation are the
zeros of p3(u). Except the points u = 0 and u = 1 that occur
also for the confluent Heun equation, see [48] and [53], we
have an additional pair of singular points, real or complex
ones, depending on the parameters f, g and ν. The obvious
ansatz to obtain a physically relevant solution of (80) is a
power series

X(u) � ∑
∞

n�0
ξ nu

n (85)

at the singular point given by u = 0. We have not investi-
gated its radius of convergence, but it is clear that the series
diverges at least for the second singular point u = 1, which
has been ourmotivation to restrict the application of (85) to
|u| ≤ 1

2 corresponding to the first quarter period τ ∈ [0,π/2].
In contrast to a study by Xie and Hai [48], we need only one
real solution and can neglect further solutions of the
fundamental system. However, due to the degree three of
the differential equation and the additional singular points
we need a six-term recurrence relation for the coefficients
of the power series.

We will not give the details of the recurrence relation
but rather sketch how to obtain it by means of computer-

algebraic aids. We take a finite part ∑m+2
n�m−3ξn  un of the po-

wer series and insert it into the differential Equation (80).
The result is expanded into a u-polynomial and the coef-
ficient of um is set to 0. It has been checked that only the
above considered finite part of the power series influences
this coefficient. Thus, we obtain a six-term recurrence
relation of the form

ξm+2 � ∑
m+1

i�m−3
ai  ξ i, (86)

where the ai have been determined as rational functions of
f, g, ν, but they are too complicated to be presented here.

The next problem is that we need the first five co-
efficients of X(u) � ∑

n
ξ nun to get the next coefficients using

the recursion relation. Since the original Equation (8) is of
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the first order, we have only two undetermined initial
values x(0) and y(0), taking into account that z(0) = 0. To
solve this problem, we have compared the first terms of the
τ-power series of x(τ) and X(u(τ)), using the differential
Equation (8), and thereby determined ξ0,…, ξ4 as func-
tions of x(0) and y(0). This also compensates the enlarge-
ment of the solution space by passing from a first-order
differential equation to a third-order one. To give an
impression of the kind of results, we display the first three
coefficients:

ξ 0 � x(0) (87)

ξ 1 � −2(y(0)(f − gν) + g2x(0)) (88)

ξ 2 �
1
3
(2x(0)( − 3f 2 − 2f gν + g2(g2 + ν2 + 3))

+ 2y(0)(f(g2 + 3ν2) − gν(g2 + ν2 + 2))). (89)

Obviously, ξn is a linear function of x(0) and y(0) that
can be written as

ξ n � ξ (x)n x(0) + ξ(y)n y(0). (90)

After these preparations it is, in principle, possible to
calculate any finite number of power series coefficients ξn
as a function of the physical parameters f, g and ν and the
initial values x(0) and y(0), although the expressions
become more and more intricate, and finally to obtain a
truncated approximation of X(u(τ)). For a comparison to a
numerical solution of (8) see Section 8.

Analogous considerations apply for the case of the
solution y(τ) = Y(u(τ)). This time we obtain a differential
equation of the form

0 � ∑
3

n�0
qn(u)Y(n)(u), (91)

where

q3(u) �(u − 1) u(2u − 1)3(f 2g + f ν + gν2)
×(4f 2g(u − 1)u − f ν − gν2) (92)

q2(u) � 1
2
(1 − 2u)2(f 2g + f ν + gν2)(4f 2g(u − 1)u
+ f ν( − 8(u − 1)u − 3) + gν2( − 8(u − 1)u − 3))

(93)

q1(u) �(1 − 2u2)(2u − 1)(f 2g + f ν + gν2)(16f 4g(u − 1)2u2
−4f 3ν(u − 1)u − 4f 2g(u − 1)u(g2(1 − 2u)2 + 2ν2)
+f ν(3g2(1 − 2u)2 + ν2) + g3ν2(1 − 2u)2 + gν4)

(94)

q0(u) � 2(1 − 2u)2(f 2g + fν + gν2)(4f 4g(u − 1)u
+ f 3ν( − 8(u − 1)u − 3)
+ f 2gν2(4(u − 1)u − 1) − f ν3 − gν4). (95)

The zeros of q3(u) yield five singular points. The power
series solution ansatz

Y(u) � ∑
∞

n�0
ηn  u

n (96)

leads to a 9-term recursion relation and the first eight
coefficients are again determined by calculating the cor-
responding t-power series coefficients. We show the first
three ones.

η0 � y(0) (97)

η1 � 2x(0)(f + gν) − 2ν2y(0) (98)

η2 �
1
3
(2y(0)( − 3f 2 + 2f gν + ν2(g2 + ν2 − 1))

− 2x(0)(f(3g2 + ν2) + gν(g2 + ν2))). (99)

Analogously to (90), ηn is a linear function of x(0) and
y(0) that can be written as

ηn � η(x)
n x(0) + η(y)n y(0). (100)

The further details are too intricate to be displayed
here, but, in principle, the procedure is completely analo-
gous to the power series solution of the confluent Heun
equation investigated in [53].

6 Fourier series and quasienergy:
results based on the power
series solutions

It is clear that un � sin2nτ
2 � (12 (1 − cosτ))n is a finite Fourier

series including only cos-terms. It explicitly reads

sin2nτ
2
� (2n − 1) ! !

2nn!

+ ∑
n

μ�1

(2n − 1) ! !(1 − μ + n)μ(−1)μ
2n−1(μ + n)!  cos(μτ) , (101)

where (a)μ � a(a + 1)… (a + μ − 1) denotes the Poch-
hammer symbol. Inserting (101) into the power series (85)
and (96) for x(τ) and y(τ) yields Fourier series representa-
tions valid within the convergence radius of the power
series. This does not mean that x(τ) and y(τ) are generally
periodic functions but only that they locally, within the
respective domains of convergence, coincide with periodic
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functions.Wemay explicitly write down the corresponding
Fourier coefficients of

x(τ) � ∑
∞

μ�0
xμ  cos(μτ), (102)

y(τ) � ∑
∞

μ�0
yμ  cos(μτ), (103)

to wit,

xμ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
∞

n�0
(2n − 1) ! !

2nn!
 ξ n :  μ � 0,

∑
∞

n�μ

(2n − 1) ! !(1 − μ + n)μ(−1)μ
2n−1(μ + n)! ξ n :  μ > 0,

(104)

yμ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
∞

n�0
(2n − 1) ! !

2nn!
 ηn : μ � 0,

∑
∞

n�μ

(2n − 1) ! !(1 − μ + n)μ(−1)μ
2n−1(μ + n)!  ηn : μ > 0.

(105)

Recall that the ξ n and ηn are the coefficients of the power
series (85) and (96) to be determined by means of recur-
rence relations.

The case of z(τ) is a bit more complicated. Using the
above local Fourier series representation of x(τ) and y(τ),
we may directly solve the differential equation

ż(τ) � ν y(τ) − g cosτ x(τ), (106)

since the r. h. s. of (106) is again a cos-series. In general,
there will be a nonvanishing constant term z0 at the r. h. s.
of (106) that generates a corresponding part z0  τ of z(τ)
taking into account that z(0) = 0.

The complete result is the following:

z(τ) � z0  τ + ∑
∞

μ�1
zμ  sin (μ τ), (107)

zμ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ν y0 − g

2
 x1 : μ � 0,

ν y1 − g x0 − g
2
 x2 : μ � 1,

1
μ
(ν yμ − g

2
 (xμ−1 + xμ+1)) : μ > 1.

(108)

The expressions (104) and (105) for the Fourier
coefficients still depend, via ξ n and ηn, on the initial con-
ditions x(0) and y(0). In the special case of x(0) �
cosα, y(0) � sinα according to (61) the solutions x(τ) and
y(τ) will be 2π-periodic functions and hence, according to
proposition 6, can be written as even resp. odd cos-series
valid for all τ ∈ R. In particular,

y0 � 0 � ∑
∞

n�0
(2n − 1) ! !

2nn!
 ηn

� ∑
∞

n�0
(2n − 1) ! !

2nn!
 (η(x)n x(0) + η(y)n y(0))

� ∑
∞

n�0
(2n − 1) ! !

2nn!
 (η(x)n cosα + η(y)n sinα) . (109)

This equation can be solved for the auxiliary
parameter α:

α � −arctan⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑∞

n�0
(2n−1)!!
2nn!  η(x)

n

∑∞

n�0
(2n−1)!!
2nn!  η(y)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (110)

if the numerator and denominator of this fraction do not
vanish simultaneously. This solution is only determined
modulo π in accordance with the fact that x(0) = −cosα,
y(0) = −sinα also gives a periodic solution.

The determination of the second auxiliary parameter r
is more involved.We consider the following procedure that
does not presuppose the determination of α. First, we

calculate the quarter period monodromy matrix R(π2,0) by

means of the local Fourier series representation considered
above. From this, we obtain R(π, 0) via (48) and finally r by

r � ±
�����������
1 − R(π,0)3,3

2

√
 . (111)

The latter holds since R(π, 0) is of the form (53). It will
be instructive to give some more details.

First considerR(π2, 0)
1,1

� x(π2), where x(τ) has the initial
values x(0) = 1, y(0) = z(0) = 0. It follows that

x(π
2
) � ∑

∞

μ�0
xμcos(μπ2) � ∑

μ�0,4,…
xμ − ∑

μ�2,6,…
xμ  , (112)

because the only nonvanishing terms are cos(μ π
2) � 1 for μ

being an integer multiple of 4 and cos(μ π
2) � −1 for even μ

such that μ/2 is odd. Recall that the Fourier coefficients xμ
have to be determined via (104) where the ξ n have to be
chosen as ξ (x)n according to (90) and the above initial values.

The procedure for the calculation ofR(π2,0)
2,1

� y(π2) is
completely analogous. For R(π2,0)

3,1
� z(π2) we employ

(107) and (108) as well as

z(π
2
) � z0  

π
2
+ ∑

μ�1,5,…
zμ − ∑

μ�3,7,…
zμ  . (113)

For the second column of R(π2,0) the calculation is

again the same as for the first column except that ξ (x)n has to
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be replaced by ξ (y)n and η(x)n by η(y)n . As mentioned before,

the third column of R(π2,0) is the vector product of the first

and the second ones. Since we only need a particular ma-
trix element of the half period monodromy, namely
R(π,0)3,3, it suffices to use the following equation resulting
from (48):

R(π,0)3,3 � R(π
2
,0)2

1,3
− R(π

2
,0)2

2,3
+ R(π

2
,0)2

3,3

� 1 − 2 R(π
2
,0)2

2,3
 , (114)

and hence

r �
∣∣∣∣∣∣∣R(π2,0)2,3

∣∣∣∣∣∣∣
�
∣∣∣∣∣∣∣R(π2,0)3,1

 R(π
2
,0)

1,2
− R(π

2
,0)

1,1
 R(π

2
,0)

3,2

∣∣∣∣∣∣∣ , (115)

where the entries from the first and second column of
R(π

2,0) have been calculated above. This completes the
determination of the auxiliary parameter r and the qua-
sienergy via (60).

We have checked the results (110) and (115) by com-

parison with a numerical solution of the s � 1
2 Schrödinger

Equation (5) for the choice of the parameters ν= 1, f= 1, and
g � 1/2. For this case, both methods come to the same
conclusion

α � 1.40464…, r � 0.387328…, and  hence

 ϵ(qu) � 0.126602… .
(116)

7 Time evolution: an example

As an example, we consider the time evolution over one
period τ ∈ [0, 2π] according to (8). We choose the values of
the parameters f � 1, g � 1/2 and ν = 1 and analytically

calculate three mutually orthogonal solutions S(i)(τ), i �
1, 2, 3 for τ ∈ [0, π2] by evaluating the corresponding power

series solutions with 10 terms. For the remaining three
quarter periods, we adopt the reduction Equations (25) and

(35) for S(1), where R(π,0) can be expressed through R(π2,0)
via (48). We observe a satisfactory agreement with the
numerical solution of (8), see Figure 1.

The alternative choice of the initial conditions as
x(0) = cos α and y(0) = sin α, whereas z(0) = 0 remains
unchanged, leads to 2π-periodic solutions, see Figure 2.

This calculation uses the value of the auxiliary parameter α
that has been determined according to (110).

The first few terms of the corresponding Fourier series
read as follows:

x(τ) � 0.0240019 + 0.144012cos(2t)
− 0.00263811cos(4t) +… (117)

y(τ) � 1.01784cos(t) − 0.0319147cos(3t)
+ 0.000303923cos(5t) +… (118)

Figure 1: The three components of the classical spin vector as
functions of dimensionless time τ over one period according to the
equation ofmotion (8).Wehave chosen theparameters f � 1,g � 1/2
and ν = 1 and the initial conditions x(0) = 1, y(0) = z(0) = 0. The solid
curves are numerical results; the dashed curve represents x(τ) as
calculated analytically, likewise y(τ) (dotted curve) and z(τ) (dotted-
dashed curve).

Figure 2: The three components of the classical spin vector as
periodic functions of dimensionless time τ over one period
according to the equation of motion (8). We have chosen the
parameters f � 1,g � 1/2 and ν = 1 and the initial conditions
x(0) = cos α, y(0) = sin α and z(0) = 0. The dashed curve represents
x(τ) as calculated numerically and analytically, likewise y(τ) (dotted
curve) and z(τ) (dotted-dashed curve).
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z(τ) � 0.969835sin(t) − 0.0224197sin(3t)
+ 0.000192725sin(5t) +… . (119)

8 Vanishing of the quasienergy

We will discuss the quasienergy in physical units

E(ω0, F,G,ω) ≡ ℏ ω ϵ(qu)(ω0

ω
,
F
ω
,
G
ω
) � ℏ ω ϵ(qu)(ν, f , g),

(120)

where usually ℏ is set to 1. Analogously to the ambiguity of
ϵ(qu) also E will be only defined up to integer multiples of
ℏω. A typical plot of the functionsω↦ E(ω0, F,G,ω) for the
values ω0 = F = 1 and G varying from G = 0 (linear polari-
zation) to G = F = 1 (circular polarization) is shown in
Figure 3, where the branch and the sign of the quasienergy
are chosen according to

0 ≤
1
ℏω

E(1, 1,G,ω) ≤ 1
2
 . (121)

We notice that these curves qualitatively all look the same.
First we note that the family of curves shows the same
asymptotic behavior of E(ω0, F,G,ω) forω→∞. In the case
of circular polarization, we have E(ω0, F,G,ω)→ ω0

2 for
G = F, as well as E(ω0, F,G,ω)→ ω0

2 for linear polarization,
see Eq. (269) in [57]. Further, the quasienergy functions
have an infinite number of zeros with a nonvanishing
slope, the largest being slightly below ω = 1.

To better understand this behavior in detail, we revisit
the RPC. It is well known that in the special case of circular
polarization the quasienergy can be analytically deter-
mined in a rather simple form. In the context of the present
discussion, we note that the fundamental matrix solution
of (14) with initial condition (15) assumes the formR(τ,0) �
(R1,R2,R3) with the three columns reading

R1 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 2 cos(τΩ) + (ν − 1)2

f(2(ν − 1)cos(τ)sin2(τΩ
2
) + Ω sin(τ)sin(τΩ))

f(2(ν − 1)sin(τ)sin2(τΩ
2
) − Ω cos(τ)sin(τΩ))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

(122)

R2�⎛⎜⎜⎜⎜⎜⎝ −f(ν−1)(cos(τΩ)−1)
cos(τ)(f 2+(ν−1)2cos(τΩ))−(ν−1)Ωsin(τ)sin(τΩ)
sin(τ)(f 2+(ν−1)2cos(τΩ))+(ν−1)Ωcos(τ)sin(τΩ)

⎞⎟⎟⎟⎟⎟⎠ ,

(123)

R3�⎛⎜⎝ f Ωsin(τΩ)
−Ω((ν−1)cos(τ)sin(τΩ)+Ωsin(τ)cos(τΩ))
Ω(Ωcos(τ)cos(τΩ)−(ν−1)sin(τ)sin(τΩ))

⎞⎟⎠ ,

(124)

where we have used the abbreviation

Ω ≡
����������
f 2 + (1 − ν)2

√
 , (125)

known as the “Rabi frequency”. The corresponding mon-
odromy matrix R(2π, 0) reads:

Figure 3: The branch of the quasienergy E(ω0, F ,G,ω) satisfying
(121) as a function of ω and G for fixed values of ω0 = 1 and F = 1. G
varies from G = 0 (linear polarization) to G = F = 1 (circular
polarization). Along the red, dashed curve the quasienergy
vanishes. An analytical approximation of this curve according to
(131) is shown as a black, dashed curve.

R(2π,0) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f 2 cos(2πΩ) + (ν − 1)2

Ω2

2f(ν − 1)sin2(πΩ)
Ω2

f sin(2πΩ)
Ω

2f(ν − 1)sin2(πΩ)
Ω2

f 2 + (ν − 1)2cos(2πΩ)
Ω2 −(ν − 1)sin(2πΩ)

Ω

−f sin(2πΩ)
Ω

(ν − 1)sin(2πΩ)
Ω

cos(2πΩ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (126)
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Its trace is evaluated as Tr(R(2π,0)) � 1 + 2 cos(2π Ω)
and yields the eigenvalues (1, exp(±2 π i Ω)), corre-
sponding to a classical quasienergy

ϵ(cl) � Ω . (127)

On the other hand, we may apply (21) to the periodic
solution

S(τ) � 1
Ω
⎛⎜⎝ ν − 1

f  cosτ
f  sinτ

⎞⎟⎠ (128)

with the well-known result

ϵ(qu) � 1 ± Ω
2

 , (129)

that is compatible with (127) and (20).
ForG � F � ω0 � 1, the quasienergy curve has a zero at

ω � 1, i.e., E(1, 1, 1, 1) � 0. For slightly lower values of G,
this zero shifts to lower values ofω, see Figures 3 and 4.We
will denote by G � E0(ω ; F,ω0) the position of the largest
zero of the quasienergy.

The vanishing of the quasienergy is in so far interesting
as it means that all solutions of (8) will be 2π-periodic, not
only the special one with the initial condition S(0)=(cos α,
sin α, 0)⊤ according to (61). Moreover, E(ω0, F,G,ω) � 0
means degeneracy of the Floquet states for the TLS, which
may produce some second-order phase transition in the
parameter space, see [21].

The vanishing of the quasienergy implies that the
linear term z0τ in (107) must vanish and hence

0 � z0 �(108) ν y0 −
g
2
 x1  . (130)

In order to check the consistency, we will evaluate the
condition (130) by using a truncation of the power series
solutions (85) and (96) to the first 10 terms. This yields the
exact first five terms of G = E0 (ω; 1, 1) expanded into a
power series in terms of ω − ω0 � ω − 1:

E0(ω ;  1,  1) � 1 + 2(ω − 1) − 5
6
(ω − 1)2 + 49

36
(ω − 1)3

− 577
240

(ω − 1)4 + 58357
12960

(ω − 1)5

+ O((ω − 1)6) . (131)

The result is shown in Figure 3 as a black dashed curve
and fits to the numerically determined red dashed curve of
vanishing quasienergy in the domain 0.7 < ω < 1.

Further we note that according to [57] the quasienergy
E can be split into a geometrical part Eg and a dynamical
part Ed such that E = Eg + Ed and the slope relation

∂E
∂ω

� Eg

ω
(132)

holds, see Eq. (151) in a study by Schmidt [57]. Recall that Ed

is the time average of the energy, i. e, Ed � 1
2

¯h(t) ⋅ S(t) and
Eg � ω

4π  |A |, where |A | denotes the signed area of the Bloch
sphere swept by S(t) over one period. In our case, this im-
plies that for vanishing quasienergy and hence G � E0(ω)
we have Eg + Ed � 0 and the slope of the curve ω↦
E(ω0, F,G,ω) equals

∣∣∣∣Eg

∣∣∣∣ � |Ed|. We have illustrated this
relation for the special case of circular polarization in
Figure 4 by drawing the tangent (dashed red line) with the
slope 1

2. This corresponds to a periodic solution of (8)
tracing a great circle on the Bloch sphere with solid angle
|A | � 2 π.

In general the quasienergy (129) of the RPC has its first

zero atω � ω1 ≡
F2+ω2

0
2ω0

. Hence, the series (131) will assume its

general form as G � E0(ω ;  F,ω0) � F +∑​∞
n�1gn  (ω − ω1)n.

It begins with

G�E0(ω)
�F

−
6(−60F4+50F4ω0−100F2ω2

0+71F2ω3
0−25ω4

0)(ω−F2+ω2
0

2ω0
)

F(30F4+20F2ω0+67F2ω2
0+10ω3

0+65ω4
0)

+… ,

(133)

but the next terms are too intricate to be shown here.

We will consider the case of vanishing quasienergy
along the curve G � E0(ω) in more details. As already
mentioned, in this case all solutions of (8) will be 2π-peri-
odic and hence the local Fourier series representations

Figure 4: The branch of the quasienergy E(ω0, F ,G,ω) satisfying
(121) as a function ofω for fixedω0 = 1, F= 1 and two valuesG= 1 (red
curves) and G = 0.95 (blue and orange curves). In the circular case
(G = 1), we observe level crossing whereas in the case with small
eccentricity (G = 0.95) this crossing is avoided as demonstrated by
the inset. The dashed red line is the tangent of E(1, 1, 1, ω) at ω = 1.
According to (132), it has the slope Eg � 1

2.
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(102), (103) and (107) can be extended to all times τ. It turns
out that the slope relation (132) cannot be satisfied by all
periodic solutions of (8) but only by a particular one that is
the limit of the (up to a sign) unique periodic solutions for
nonvanishing quasienergy. Instead of again using Eq. (110)
to determine this limit, we will proceed in a different way.

Recall that for a general periodic, not necessarily

normalized solution S(τ) � (x(τ), y(τ), z(τ))⊤ of (8) of the
form (102), (103) and (106) the functions x(τ) and y(τ) are
represented by cos-series, whereas z(τ) will be a sin-series.
Consider the decomposition of x(τ) � xe(τ) + xo(τ) into an
even cos-series and an odd one and analogously for y(τ) �
ye(τ) + yo(τ) and z(τ) � ze(τ) + zo(τ). Consequently, the
time derivative ẋ can be uniquely split into an even sin-
series and an odd one:

ẋ � ẋe + ẋo

� (g cos(τ) zo − f  sin(τ) yo) + (g cos(τ) ze − f  sin(τ) ye) .
(134)

Analogous decompositions for ẏ and ż lead to a
decomposition of S(τ) into two separate solutions

S(τ) � S(1)(τ) + S(2)(τ) ≡⎛⎜⎝ xe(τ)
yo(τ)
zo(τ)

⎞⎟⎠ +⎛⎜⎝ xoτ)
ye(τ)
ze(τ)

⎞⎟⎠ . (135)

It is clear that S(1)(τ) equals the limit of periodic so-
lutions for nonvanishing quasienergies since these peri-

odic solutions have the same even/odd character asS(1)(τ),
see Proposition 6. Moreover, the two solutions (135) are
orthogonal for all τ: Their scalar product is constant in
time, on the other hand an odd cos-series and has thus a

vanishing time average. Further, it follows that S(2)(τ)
belongs to Ed � 0 since h ⋅ S(2) will be an odd COS-series

and thus has a vanishing time average. In contrast, h ⋅ S(1)

will be an even cos-series which is compatible with |Ed| > 0
and a positive slope of the quasienergy curves at
G � E0(ω), see Figure 3.

For the sake of completeness, we note that the third
solution S(3) = S(1)×S(2) will be of the following type: x(3) (τ) is
an odd sin-series, y(3) (τ) is an even sin-series, and z(3)(τ) is
an even cos-series. Hence also for this solution, the time
average of h⋅S(3) will be an odd sin-series and hence E
vanishes. An example is shown in Figure 5.

In the case of the periodic solutions S(1)(τ) or S(2)(τ),
the time average ofh⋅S can be expressed in terms of the first
Fourier coefficients:

ϵ(qu)d � 1
2
h ⋅ S � 1

2
(ν x0 + g

2
y1 + f

2
z1) , (136)

where we have again passed to the dimensionless quasie-
nergy and the Fourier coefficients are given in (104), (105)
and (107). The suitable initial conditions x(0) � cosβ and
y(0) � sinβ can be derived from the result ϵ(qu)d � 0 analo-
gously to (110):

β � −arctan ν x(x)0 + g
2y

(x)
1 + f

2z
(x)
1

ν x(y)0 + g
2y
(y)
1 + f

2z
(y)
1

 . (137)

Here, the superscript (x) or (y) refers to the dependence of the
Fourier coefficients, via ξ n and ηn, on the initial conditions
x(0) and y(0). Finally, the initial conditions x(0) � cosα and
y(0) � sinα for the first solution (S)(1)(τ) are given by

α � β ± π
2
 , (138)

using the orthogonality of S(1)(τ) and S(2)(τ). After some
calculations, it follows that the dynamical part of the
quasienergy of the first solution S(1)(τ) assumes the value

ϵd � 1
2
h ⋅ S(1)

� 1
2
((ν x(x)0 + g

2
y(x)1 + f

2
z(x)1 )cos α

+ (ν x(y)0 + g
2
y(y)1 + f

2
z(y)1 )sin α) (139)

Figure 5: Three periodic solutions S(i)(τ), i = 1, 2, 3 (blue, red and
green curves) of (8) for the parameters ω0 � F � 1,G � 1

2 and ω = ω1

such that the quasienergy vanishes. Themagneticfield vector (black
arrow) moves on the black ellipse; the initial vectors S(i)(0), i = 1, 2, 3
are shown as colored arrows. The time average of the energy
vanishes for S(2) and S(3).
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� 1
2

������������������������������������������(ν x(x)0 + g
2
y(x)1 + f

2
z(x)1 )2

+ (ν x(y)0 + g
2
y(y)1 + f

2
z(y)1 )2

√√
 .

(140)

As an example we consider the parameters ω0 = F = 1

and G � 1
2. The quasienergy curve ω↦ E(1, 1, 12,ω) has its

largest zero at ω1 = 0.781665. This value has been deter-
mined numerically; the analytical approximation (131)
yieldsω1 = 0.781023. At this point, the two solutions S

(1) and
S(2) are obtained with initial values x(0) � cosα,
y(0) � sinα, and x(0) � cosβ, y(0) � sinβ, respectively,
where β = −0.489254 has been calculated according to (137)
and α � β + π

2, see Figure 5. The slope of the tangent of the

quasienergy curve atω � ω1 has been determined via (140)
and assumes the value ϵd � 0.64787, see Figure 6.

9 Resonances

The function ω0 ↦ E(ω0, F,G,ω), restricted to the domain
(121), has an infinite number ofmaxima, see Figure 7. These
satisfy the condition

0 � ∂

∂ω0
E(ω0, F,G,ω) . (141)

defining an infinite number of hypersurfaces in the
parameter space P with points (ω0, F,G,ω) ∈P . Solving
(141) for ω gives the so-called “resonance frequencies”

ω � ω(n)
res(ω0, F,G), n � 1, 2, 3,… . (142)

In the circular case, a smooth representative of the qua-
sienergy Ec assumes the form

Ec � 1
2
(ω − Ω) � 1

2
(ω −

�������������
F2 + (ω − ω0)2

√ ) , (143)

and has a unique maximum at ω0 = ω, see Figure 7. This
conforms with the intuitive picture that a resonance occurs if
the driving frequency ω equals the Larmor frequency ω0 of
the energy level splitting. The other maxima of the quasie-
nergy, restricted to the domain (121), are represented by in-
tersections of suitable branches of the quasienergy of the
form ±Ec + nω, n ∈ Z. For example, the next maximimum at
ω0 ≈ 3 ω is obtained by the intersection of −Ec and Ec + ω at

ω0 � ω + ��������
4 ω2 − F2

√ � 3 ω − F2

4 ω
+ O(F4) . (144)

Note that an arbitrarily small admixture of eccentricity to
the polarization leads to an avoided level crossing and a
smooth maximum close to the valueω0 of the intersection,
see Figure 7.

According to [26], the time average of the transition
probability between different Floquet states assumes its

maximum value P̄ � 1
2 at the resonance frequencies, which

justifies the denotation. Although Shirley’s derivation of the
resonance condition refers to the RPL case, see (1) in [26], one
can easily check that it also holds in the more general RPE

case. Moreover, it has been shown [57] that for ω � ω(n)
res the

classical periodic solution of (8) has a vanishing time-average
into the direction of the constant component of the magnetic
field. According to our definitions, this means that

x0 � x(x)0  cosα + x(y)0  sinα � 0 , (145)

where α is the auxiliary parameter leading to a periodic
solution given by (110). Together with

Figure 6: The branch of the quasienergy E(ω0, F, G, ω) satisfying
(121) as a function of ω for fixed values of ω0 = F = 1 and G � 1

2.
The function has its largest zero at ω1 = 0.781665 where the tangent
(dashed red line) has a slope of 0.64787, see the text after Eq. (140).

Figure 7: The quasienergy E(ω0, F, G, ω) as a function of ω0 for fixed
values of ω = 1, F = 0.5 and G = 0.1 (solid curves) calculated by
numerical solutions of the Schrödinger Equation (5). One observes
maxima of the quasienergy at ω0 ≈ 1, 3, 5,…. The dotted curves are
various branches of the analytical form (143) of the quasienergy for
the case of circular polarization, i.e., G = 0 and ω = 1, F = 0.5.
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y0 � y(x)0  cosα + y(y)0  sinα � 0 , (146)

see (109), this implies that the matrix

Ξ ≡⎛⎝ x(x)0 x(y)0

y(x)0 y(y)0

⎞⎠ (147)

has a nonvanishing null-vector and hence

detΞ � x(x)0  y(y)0 − x(y)0  y(x)0 � 0 . (148)

We use truncated versions of (85) and (96) in order to derive
the first terms of the power series representations

ω(n)
res

ω0
� ∑

∞

m,k�0
Ω(n)

m, k  ( F
ω0
)m

 ( G
ω0
)k

, (149)

analogously to [57]. We will show a few results. The first
resonance ω(1)

res is determined by

We note that Ω(1) is a symmetric matrix due to the
symmetry of the Rabi problem under the exchange G↔ F.

The matrix elements Ω(1)
m, k vanish for odd m + k. Further,

it is instructive to look at the limit cases of linear or cir-

cular polarization. For G = 0, the first column of Ω(1)

agrees with the corresponding known results in the
case of linear polarization, see Table 1 in the study by
Schmidt [57]. For F = G, the power series (149) coalesces
into a series of a single variable F with coefficients

Ω̃(1)
M � ∑M

m�0Ω
(1)
m,M−m,M � 0, 2, 4,…. On the other hand, the

resonance frequency ω(1)
res of the circularly polarized case

is known to be ω(1)
res � ω0. Hence, the antidiagonal sums of

Ω(1)-entries Ω̃(1)
M must vanish for M � 2, 4,…. This can be

confirmed for M = 0, 2, …, 8 in the above shown part of

Ω(1), see (150).
The second resonance is described by the matrix

Ω(1) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1
16

0
1

1024
0 − 35

131072
0

103
8388608

…

0 −1
8

0
3
256

0
27

65536
0 − 69

262144
0 …

1
16

0 − 13
512

0
611

131072
0

433
2097152

0 * …

0
3
256

0 − 315
32768

0
609

262144
0 * 0

1
1024

0
611

131072
0 − 19115

4194304
0 * 0 * …

0
27

65536
0

609
262144

0 * 0 * 0 …

− 35
131072

0
433

2097152
0 * 0 * 0 * …

0 − 69
262144

0 * 0 * 0 * 0 …

103
8388608

0 * 0 * 0 * 0 * …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

 . (150)

952 H.-J. Schmidt: The Rabi problem with elliptical polarization



Here, analogous remarks apply as in the case of Ω(1),

except that the antidiagonal sums of Ω(2)-entries Ω̃(2)
M no

longer vanish. They can be determined by the following
consideration. In the circular limit, the second resonance is
defined by the level crossing

1
2
(−ω + Ω) � 1

2
(3 ω − Ω) , (152)

where Ω ≡
�������������
F2 + (ω0 − ω)2

√
. (Recall that an arbitrary small

amount of eccentricity F-G produces an avoided level
crossing and hence a smooth maximum of the quasie-
nergy). After some manipulations, the condition (152) can
be transformed into

ω(2)
res

ω0
� 1
3
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − 1 +

����������
3( F

ω0
)2

+ 4

√√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (153)

� 1
3
+ ∑

∞

n�1
(−1)n+13n−1(2n − 3) ! !

23n−1  n!
( F
ω0
)2n

(154)

� 1
3
+ 1
4
( F
ω0
)2

− 3
64

( F
ω0
)4

+ 9
512

( F
ω0
)6

+ O( F
ω0
)8

 . (155)

It can be easily checked that the coefficients of the power
series (155) coincide with the antidiagonal sums,
i.e., Ω̃

(0)
2 � 1

3, Ω̃
(2)
2 � 1

4, Ω̃
(2)
4 � − 3

64, and Ω̃
(2)
6 � 9

512.
Finally, we consider the third resonance described by

Ω(3) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5

0
5
96

0 − 2125
221184

…

0
1
48

0 − 125
55296

0 …

5
96

0 − 205
36864

0 * …

0 − 125
55296

0 * 0 …

− 2125
221184

0 * 0 * …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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 ,

(156)

the antidiagonal sums of which are obtained via

ω(3)
res

ω0
� 1
15
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − 1 +

������������
15( F

ω0
)2

+ 16

√√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (157)

� 1
5
+ ∑

∞

n�1
(−15)n−1(−3 + 2n) ! !

24n−1  n!
( F
ω0
)2n

(158)

� 1
5
+ 1
8
( F
ω0
)2

− 15
512

( F
ω0
)4

+ O( F
ω0
)6

 . (159)

The first nontrivial antidiagonal ofΩ(n) can be given in
closed form. According to the recurrence relation given in
[57], we conjecture that

Ω(2) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

0
3
32

0 − 135
8192

0
2133

1048576
0 …

0
1
16

0 − 9
2048

0 − 3591
524288

0 * …

3
32

0 − 21
4096

0
6075

1048576
0 * 0 …

0 − 9
2048

0
4095
262144

0 * 0 * …

− 135
8192

0
6075

1048576
0 * 0 * 0 …

0 − 3591
524288

0 * 0 * 0 * …

2133
1048576

0 * 0 * 0 * 0 …

0 * 0 * 0 * 0 * …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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Ω(n)
2,0 � Ω(n)

0,2 � 2n − 1
16(n − 1)n  , (160)

for n > 1. Employing the circular limit

ω(n)
res

ω0
�

�����������������������
(2n − 3)(2n − 1)(F2

ω2
0
+ 1) + 1

√
− 1

4(n − 2)n + 3

� 1
2n − 1

+ 1
4(n − 1)( F

ω0
)2

+ O( F
ω0
)4

(161)

we obtain

Ω(n)
1,1 � 1

8(n − 1)n  , (162)

for n > 1. These results can be checked for n = 2, 3 by
inspection of (151) and (156).

10 Special limit cases

10.1 Limit case ω→ 0

This limit case (“adiabatic limit”) has been already treated
in [57] in sufficient generality, such that we only need to
recall the essential issues.We adopt a series representation

S(ωt) � ∑
∞

n�0
ωn  S(n)(ωt) (163)

of the periodic solution of (8) and obtain a recursive system
of inhomogeneous linear differential equations for the Sn.
The starting point is

S(0)(ωt) � h(t)
‖h(t)‖

� 1���������������������������
F2 sin2(ωt) + G2 cos2(ωt) + ω2

0

√ ⎛⎜⎝ ω0

G cos ωt
F  sin ωt

⎞⎟⎠ ,

(164)

that is, the spin vector follows the direction of the slowly
varying magnetic field. The corresponding zeroth term of
the series for the quasienergy

E �
¯1

2
(h1 + h2S2 + h3S3

1 + S1
) � ∑

∞

n�0
En  ωn (165)

can be obtained as

E0 �
¯1

2
(h1 + h2S(0)

2 + h3S(0)
3

1 + S(0)
1

) � ¯1
2

����
h ⋅ h

√
(166)

� ¯1
2

���������������������������
F2 sin2(ωt) + G2 cos2(ω t) + ω2

0

√
(167)

�
�������
G2 + ω2

0

√
π

E(G2 − F2

G2 + ω2
0

) , (168)

where E(…) denoted the complete elliptic integral of the
second kind. Note that in the adiabatic limit the quasie-
nergy E0 can be completely reduced to its dynamical part
Ed, since the geometrical part Eg is proportional to ω and
only contributes to the next term E1. For G = 0, the formula
for E0 agrees with Eq. (253) in [57]. In the circular case
(G = F), the series expansion

E � ω + Ω
2

� 1
2

�������
F2 + ω2

0

√
+⎛⎜⎜⎜⎝1

2
− ω0

2
�������
F2 + ω2

0

√ ⎞⎟⎟⎟⎠ω + F2ω2

4(F2 + ω2
0)3/2

+ O(ω3)
(169)

yields the zeroth order contribution limω→0E � limω→0
ω+Ω
2 �

1
2

�������
F2 + ω2

0

√
that also follows from (168) and E(0) � π

2.
The next term S(1) of the series (163) is obtained as the

solution of
d
dt
S(0) � h × S(1)  , (170)

such that S(0)⋅S(1) = 0 in order to guarantee normalization in
linear ω-order. The result is

ω S(1)(t) � ( d
dt
S(0)(t)) × h(t)

||h(t)||2

� 2
�
2

√
 ω((G2 − F2)cos(2ωt) + F2 + G2 + 2ω2

0)3/2
×⎛⎜⎜⎜⎜⎜⎜⎝ −FG

F  ω0  cos ωt
G ω0  sin ωt

⎞⎟⎟⎟⎟⎟⎟⎠ . (171)

It leads to a linear contribution to the quasienergy of

ω E1 � ω⎛⎜⎜⎜⎜⎜⎜⎜⎝1
2
−
Fω0Π(1 − F2

G2

∣∣∣∣∣∣G2−F2
G2+ω2

0
)

πG
�������
G2 + ω2

0

√ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (172)

where Π(…|…) denotes the complete elliptic integral of
the third kind. According to (171), S1⋅h = 0 and hence the
dynamical part E1d of E1 vanishes. E1 consists only of the
geometrical part that can be identifiedwith the Berry phase
[60–62] divided by the period since in the adiabatic limit
the solid angles swept by the elliptically polarized mag-
netic field and by the spin vector are identical. Conse-
quently, E1 vanishes in the limit of linear polarization. For
G = F, the limit of (172) and the linear term in the series
expansion (169) agree since Π(0,0) � π

2.
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According to [57], the next, quadratic term of (163) is
given by

S(2) � ( 1
ω

d
dt
S(1)) × h

||h||2 −
h

2‖h‖2
S(1) ⋅ S(1) (173)

� 1((G2 − F2)cos(2tω) + F2 + G2 + 2ω2
0)7/2

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ S(2)

1,0 + S(2)
1,2 cos(2ωt) + S(2)

1,4 cos(4ωt)
S(2)
2,1 cos(ωt) + S(2)

2,3 cos(3ωt)
S(2)
3,1 sin(ωt) + S(2)

3,3 sin(3ωt)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (174)

where

S(2)
1,0 � −6 �

2
√

ω0(F4 + ω2
0(F2 + G2) + G4) , (175)

S(2)
1,2 � 2

�
2

√
ω0(F2 − G2)(2F2 + 2G2 + ω2

0) , (176)

S(2)
1,4 � 2

�
2

√
ω0(F2 − G2)2  , (177)

S(2)
2,1 � �

2
√

G( − 6F4 + F2(2G2 − 7ω2
0) + 11G2ω2

0 + 8ω4
0) ,
(178)

S(2)
2,3 � 3

�
2

√
G(F − G)(F + G)(2F2 + ω2

0) , (179)

S(2)
3,1 � �

2
√

F(F2(2G2 + 11ω2
0) − 6G4 − 7G2ω2

0 + 8ω4
0) , (180)

S(2)
3,3 � 3

�
2

√
F(F2 − G2)(2G2 + ω2

0) . (181)

The corresponding quadratic correction to the qua-
sienergy is too complicated to be calculated here. We
confine ourselves to determine E2 for a special set of
physical parameters, namely F = 3, G = 2, and ω0 � 1. The
result is

E2 � 57 − 16147
200

�
2

√

+ 1
π
⎛⎝4777 Γ(14)2 + 21036 Γ(34)2

240
����
10π

√ − 171 Π(−5
4

∣∣∣∣ − 1)�
5

√ ⎞⎠
≈ 0.217319…  .

(182)

The corresponding adiabatic approximation of the
quasienery has been shown in Figure 8 together with the
various branches of the form n ω ± E. It turns out that the
adiabatic approximation is a kind of envelope of a certain
family of branches that interpolates between the numerous
avoided level crossings of this family. This finding is in-
sofar plausible, since by definition the adiabatic limit of
quasi-energy is an analytical function of ω, while the
different branches n ω ± E for ω→ 0 get stronger and
stronger kinks.

10.2 Limit case F ,G→ 0

For sake of comparison with the analogous results in [57],
we rewrite the equation of motion (8) in the form

dX
dt

� λ G cos(ωt) Z − λ F  sin(ω t) Y  , (183)

dY
dt

� λ F  sin(ω t) X − ω0  Z  , (184)

dZ
dt

� ω0  Y − λ G cos(ω t) X , (185)

where λ is a formal expansion parameter that is ultimately
set to λ � 1.

In the case λ � 0, there areonly twonormalized solutions
of the classical Rabi problem that are T-periodic for all T > 0,

namely X(t) � ±(1,0,0)⊤. Hence, for infinitesimal λ, we

expect that we still have X(t) � ±1 + O(λ2) but (Y(t), Z(t))
will describe an infinitesimal ellipse, i.e., Y(t) � A cos ωt
+O(λ3) and Z(t) � B sin ωt + O(λ3), such that A and B
depend linearly on λF and λG. These considerations and
numerical investigations suggest the following Fourier–Tay-
lor (FT) series ansatz, not yet normalized,

X(t) � ∑
∞

n�0
λ2n ∑

n

m�0
Rn,m(F,G,ω,ω0)cos 2mωt , (186)

Y(t) � ∑
∞

n�0
λ2n+1 ∑

n

m�0
Sn,m(F,G,ω,ω0)cos (2m + 1)ω t, (187)

Z(t) � ∑
∞

n�0
λ2n+1 ∑

n

m�0
Tn,m(F,G,ω,ω0)sin (2m + 1)ω t . (188)

Inserting these series into the differential Equations
(183)–(185) and collecting powers of λ yields recurrence

Figure 8: Various branches of the quasienergy E(ω0, F ,G,ω) as a
function of ω for fixed values of ω0 = 1, F = 3 and G = 2. The different
branches are generated by adding integer multiples of ω to ±E and
can be distinguished by their color. The black-dashed curve repre-
sents the adiabatic approximation E0 + ω E1 + ω2  E2 according to
(168), (172) and (182).
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relations for the functions Rn,m, Sn,m and Tn,m. As initial
conditions, we use the following choices that result from

the above considerations and the lowest orders λ0 and λ1 of
the differential Equations (183)–(185):

R0,0(F,G,ω,ω0) � 1 , (189)

Rn,0(F,G,ω,ω0) � 0 for n � 1, 2,… , (190)

S0,0(F,G,ω,ω0) � − Fω + Gω0

(ω − ω0)(ω + ω0)  , (191)

T0,0(F,G,ω,ω0) � − Fω0 + Gω
(ω − ω0)(ω + ω0)  . (192)

For n > 0, the FT coefficients Rn,m, Sn,m and Tn,m can be
recursively determined by means of the following relations:

Rn+1,m � 1
4 m ω

(F  Sn,m−1 − F  Sn,m − G Tn,m−1 − G Tn,m)
    for 1 ≤m ≤ n + 1 ,

(193)

Sn,m � 1

2(((2m + 1)ω)2 − ω2
0)  (( − Gω0 − F(2m + 1)ω)Rn,m

+( − Gω0 + F(2m + 1)ω)Rn,m+1)
    for  0 ≤m ≤ n ,

(194)

Tn,m � 1

2(((2m + 1)ω)2 − ω2
0) (( − G(1 + 2m)ω − Fω0)Rn,m

+( − G(1 + 2m)ω + Fω0)Rn,m+1)
     for 0 ≤m ≤ n .

(195)

where, of course, we have to set Rn, n+1 � Sn, n+1 � 0 in
(193)–(195). It follows that Rn,m(F,G,ω,ω0),
Sn,m(F,G,ω,ω0) and Tn,m(F,G,ω,ω0) are rational func-
tions of their arguments.

Wewill show the first few terms of the FT series forX(t),
Y(t) and Z(t):

Y(t) � ( − Fω + Gω0(ω2 − ω2
0)) cos ωt

+⎛⎝ − (F − G)(F + G)(Fω − Gω0)
8(ω2 − ω2

0)2 ⎞⎠
× cos 3 ωt + O(λ5) ,

(197)

Z(t) � ( − Gω + Fω0(ω2 − ω2
0)) sin ωt

+⎛⎝ − (F − G)(F + G)(−Gω + Fω0)
8(ω2 − ω2

0)2 ⎞⎠ 

× sin 3 ωt + O(λ5) ,
(198)

where λ stands for any linear combination of F and G. We
note that the coefficients contain denominators of the
form ω2 − ω2

0 and 9ω2 − ω2
0 due to the denominator

(2m + 1)2ω2 − ω2
0 in the recursion relations (194) and

(195). Hence, the FT series breaks down at the resonance
frequencies ω(m)

res � ω0
2m−1. This is the more plausible since

according to the above ansatz z0 = 1 which is not
compatible with the resonance condition z0 = 0
mentioned above.

Using the FT series solution (186)–(188), it is a
straightforward task to calculate the quasienergy E � a0 as
the time-independent part of the FT series of

1
2
(ω0 + G cos(ωt)Y(t) + F sin(ωt)Z(t)

R + Z(t) )
� a0 + ∑

n≠0
n∈Z
aneinωt , (199)

according to (21). The first few terms of the result are given
by

X(t) � 1 − (F − G)(F + G)
4(ω2 − ω2

0)  cos 2 ωt +

−(F − G)(F + G)(3F2ω2 + 3G2ω2 − 4FGωω0 − F2ω2
0 − G2ω2

0)
8(ω2 − ω2

0)2(9ω2 − ω2
0)  cos 2 ωt

+( 3(F − G)2(F + G)2
64(ω2 − ω2

0)(9ω2 − ω2
0))cos 4 ωt  + O(λ6) ,

(196)
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This is in agreement with the result for linear polari-
zation, see [57], Equation (198), if we set G = 0.

It will be instructive to check the first two terms of (200)
by using the decomposition of the quasienergy into a
dynamical and a geometrical part. In lowest order in λ, the
classical RPE solution is a motion on an ellipse with semi
axes

a � Fω + Gω0∣∣∣∣ω2 − ω2
0

∣∣∣∣  , and b � Gω + Fω0∣∣∣∣ω2 − ω2
0

∣∣∣∣  . (201)

Hence, the geometrical part of the quasienergy reads

Eg � ω
4π

 π a b + O(λ4) � ω(Gω + Fω0)(Fω + Gω0)
4(ω2 − ω2

0)2 + O(λ4) .
(202)

The dynamical part is obtained as

Ed �
¯ω0  X + G cos(ωt) Y + F  sin(ωt) Z
2R

� ω0

2
+ −4FGω3 − 3(F2 + G2)ω2ω0 + (F2 + G2)ω3

0

8(ω2 − ω2
0)2

+ O(λ4) . (203)

The sum of both parts together correctly yields

E � Ed + Eg � ω0

2
− 2FGω + (F2 + G2)ω0

8(ω2 − ω2
0) + O(λ4) . (204)

Moreover, the slope relation (132) is satisfied in the
considered order,

∂E
∂ω

� (Gω + Fω0)(Fω + Gω0)
4(ω2 − ω2

0)2 + O(λ4) � Eg

ω
 , (205)

in accordance with [57], Equation (202).
However, as mentioned above, the FT series for the

quasienergy has poles at the values ω � ω(m)
res � 1

2m−1,m �
1, 2,… and hence the present FT series ansatz is not suited
to investigate the Bloch–Siegert shift for small λ. We have
thus chosen another approach in Section 9.

10.3 Limit case ω0 → 0

It is well known, see, e.g., [57] or [53], that for ω0 � 0 and
linear polarization (F = 0) the equation of motion (183) –
(185) has the exact solution

X(t) � cos(G
ω
 sin ωt) � J0(Gω) + 2∑

m�1

∞

J2m(Gω) cos 2mωt ,

(206)

Y(t) � 0 , (207)

Z(t) � −sin(G
ω
 sin ωt) � −2 ∑

∞

n�0
J2m+1(Gω) sin (2m + 1)ωt ,

(208)

where the Jk(…) denote the Bessel functions of the first
kind and the series representation results from the Jacobi–
Anger expansion. Upon inserting the Taylor series of Jk(x),
that startswith the lowest power xk, into (206) and (208), we
would obtain the FT series of X(t) and Z(t). On the other
hand, we have considered an FT series of X(t), Y(t) and Z(t)
in Section 2 that can be specialized to ω0 � F � 0. (We will
indicate the specialization to ω0 � F � 0 by using the no-
tation X(t),Y(t) and Z(t)) The only difference is normali-
zation: The solution (206)–(208) is already normalized and
satisfies ¯X(t) � J0(Gω), whereas the ansatz (186)–(188) as-
sumes ¯X(t) � 1. It follows that the FT series (186)–(188),
specialized to ω0 � F � 0 is identical with the FT series
obtained by (206)–(208) upon division by J0(Gω). We have
checked this for a couple of examples. Especially, it follows
that

Rn,m(g) � [2J2m(g)
J0(g) ]2n

 g2n  , (209)

where g ≡ G
ω and [f(x)]n denotes the coefficient an of the

Taylor series f(x) � ∑nan  xn.
Unfortunately, it does not seem possible to generalize

the above ω0 � 0 solution obtained for the linear

E � ω0

2
− 2FGω + F2ω0 + G2ω0

8(ω2 − ω2
0)

+ 4FG(F2 + G2)ω3 + (F4 + 22F2G2 + G4)ω2ω0 + 12FG(F2 + G2)ωω2
0 + (3F4 + 2F2G2 + 3G4)ω3

0

128(ω2 − ω2
0)3 + O(λ6) .

(200)
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polarization case to the elliptical case. However, its FT
series is already known: We have only to specialize
(186)–(188) to the case ω0 � 0. But unlike in the case of
ω0 � F � 0, the summation over n involved in this FT series
cannot be performed to obtain a result in closed form.

10.3.1 Limit case ω0 � 0 and F → 0

We can only get a result for “almost linear” polarization,
i.e., in the lowest linear order of F. To achieve this result, we
first note that forω0 � 0 the functions X(t) and Z(t)will be
even functions of F and Y(t) will be an odd one. This is
compatible with the above-mentioned fact that Y(t) van-
ishes for F � 0 and can be shown by induction over n using
the recurrence relations (193)–(195). It follows that the

linear part Y1(t) of Y(t) � Y1(t) F + Y3(t) F3 +… can be
obtained by applying the recurrence relation (194) that
reduces to

Sn,m � F
2((2m + 1)ω) (Rn,m+1 − Rn,m) (210)

�(209) Fg2n

2((2m + 1)ω)([2J2(m+1)(g)
J0(g) ]

2n

− [2J2m(g)
J0(g) ]2n

) . (211)

Nowwe can perform the sum over n = 0,…,∞without any
problems:

∑
∞

n�0
Sn,m � ∑

∞

n�0

Fg2n

2((2m + 1)ω)([2J2(m+1)(g)
J0(g) ]

2n

− [2J2m(g)
J0(g) ]2n

)
(212)

� F(J2(m+1)(g) − J2m(g))
(1 + 2m)ωJ0(g) , (213)

which, finally, yields

Y(t) � Y 1(t)F + O(F3)
� F
ω

∑
∞

m�0

J2(m+1)(g) − J2m(g)
(1 + 2m)  cos(2m + 1)ωt + O(F3) ,

(214)

where we have multiplied the result by J0(g) in order to
obtain a normalized solution. The analytical approximation
given by (206), (214) and (208) is surprisingly of good quality
even for relative large values of, say, F

G ∼ 1/4, see Figure 9.

10.3.2 Limit case ω0 � 0 and F → G

The Rabi problemwith circular polarization (F =G) has two
simple periodic (not yet normalized) solutions of
(183)–(185), namely

⎛⎜⎝X(t)
Y(t)
Z(t)

⎞⎟⎠ � ±⎛⎜⎝ ω − ω0

−F cos ωt
−F sin ωt

⎞⎟⎠ , (215)

see, e.g., [57], Equation (69). Let us consider the special
solution for ω0 � 0

⎛⎜⎝Xc(t)
Yc(t)
Zc(t)

⎞⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−F
ω
cos ωt

−F
ω
sin ωt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (216)

and look for corrections in linear order of the parameter δ
describing eccentricity, namely

δ ≡ F − G . (217)

To this end, we insert ω0 = 0 and G = F−δ into the FT
series solution (186)–(188) and expand the FT series co-
efficients up to terms linear in δ. The δ = 0 parts of the
coefficients satisfy

R0,0 � 1 , (218)

S0,0 � −F
ω
 , (219)

Figure9: Theperiodic solutionof the equation ofmotion (183)–(185)
with the values of the parameters F � 1/4,G � ω � 1,ω0 � 0
according to numerical integration (blue curve) and analytical
approximation (206), (208) and (214) (dashed red curve). The green
curve represents the ellipse in the y − z-plane swept by the
magnetic field vector.
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T0,0 � −F
ω
 , (220)

in accordance with (216). The δ-linear parts are given by

Rn, 1 � −3
1−n

2
F2n−1

ω2n
 δ, for n � 1, 2,… , (221)

Sn,0 � −3
1−n

4
F2n

ω2n−1  δ, for n � 1, 2,… , (222)

T0,0 � δ
ω
 , (223)

Tn,0 � 31−n

4
F2n

ω2n+1  δ, for n � 1, 2,… , (224)

Sn, 1 � 3−n

4
F2n

ω2n+1  δ, for n � 1, 2,… . (225)

It is straightforward to perform the summations over n
and to insert the results into (186)–(188) thus obtaining the
analytical approximations

Xa(t) � 1 + 3δF
2(F2 − 3ω2) cos(2ωt) , (226)

Ya(t) � ( − F
ω
+ 3δF2

4ω(F2 − 3ω2))cos(ωt)
− δF2

4ω(F2 − 3ω2) cos(3ωt) , (227)

Za(t) � ( − F
ω
+ δ
F
( 1
ω
− 3F2

4ω(F2 − 3ω2)))sin(ωt)
− δF2

4ω(F2 − 3ω2) sin(3ωt) . (228)

The quality of these approximations is surprisingly
high, see Figure 10, where a deviation between analytical
approximation and numerical integration is only visible

for δ ∼ 1
4.

11 Application: work performed on
a two level system

As an application of the results obtained in the preceding
sections, we consider the work performed on a TLS by an
elliptically polarized magnetic field during one period. For
a related experiment, see [63]. In contrast to classical
physics, this work is not just a number but, following [64],
has to be understood in terms of two subsequent energy
measurements. At the time τ = 0, the TLS is assumed to be
in a mixed state according to the canonical ensemble

W � exp(−βH(0))/Tr(exp(−βH(0))) , (229)

with dimensionless inverse temperature β � ℏ ω
kB  T

and

H(0) � ν
2
(0 1
1 0

) . (230)

Then at the time τ = 0, one performs a Lüders mea-
surement of the instantaneous energy H(0) with the two
possible outcomes ±ν

2. Hence after the measurement the

system is in the pure state P1 with probability Tr(P1W) �
1
Ze

−βν/2 or in the pure state P2 with probability

Tr(P2W) � 1
Ze

βν/2, where P1 and P2 are the projectors onto

the eigenstates of H(0), i.e.,

P1 � 1
2
( 1 1
1 1

) , P2 � 1
2
( 1 −1
−1 1

) , (231)

and Z � e−βν/2 + eβν/2.
After this measurement, the system evolves according

to the Schrödinger Equation (1) with Hamiltonian H(τ). At
the time τ = 2π, the system hence is in the pure state

U(2π,0) P1  U(2π,0)* with probability Tr(P1W) or in the

pure state U(2π,0) P2  U(2π,0)* with probability Tr(P2W).
Then a second measurement of the instantaneous energy

Figure 10: The periodic solution of the equation of motion
(183) – (185) with the values of the parameters F � 1,G � 3/4,
ω � 1,ω0 � 0 according to numerical integration (blue curve) and
(normalized) analytical approximations (226)–(228) (dashed red
curve). The green curve represents the ellipse in the y − z-plane
swept by the magnetic field vector.
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H(2π) � H(0) is performed, again with the two possible
outcomes ±ν

2. Both measurements together have four

possible outcomes symbolized by pairs (i, j)where i, j = 1, 2
that occur with probabilities

pi, j � Tr(W  Pi)Tr(Pj  U(2π,0) Pi  U(2π,0)*) , (232)

such that ∑2
i, j�1pi, j � 1. The differences of the outcomes of

the energy measurements yield three possible values w �
± ν, 0 for the work performed on the system with respective
probabilities that can be calculated by using the mono-
dromy matrix (56). The result is identical to that obtained
for the case of linear polarization in [53] since it depends
only on the parameters α, r of the monodromy matrix.
Using the above probabilities, it is straightforward to
calculate the mean value of the performed work

〈w〉 � ω0(p2,1 − p1,2) � 4 ω0r2(1 − r2)sin2α tanh(βν
2
) ≥ 0 ,

(233)

see [53], Equation (55). A detailed investigation of the work
statistics is beyond the scope of the present article. We will
only give an example of the frequency dependence of 〈w〉
that exhibits resonance phenomena similar to those
mentioned in Section 9, see Figure 11.

However, a clear difference to the situation dealt with in
Section 9 is that for small amplitudes the frequency ωmax

where 〈w〉 is maximal does not approach the eigenfrequency

ω0 of the TLS but some other limit ω(0)
max in the interval

0.8 ω0 < ω(0)
max < 0.9 ω0  , (234)

depending on the eccentricity of the elliptic polarization.
The small amplitude limit 〈w〉(0) of 〈w〉 can be calculated by
using the lowest order approximation derived in Section
10.2 and reads:

〈w〉(0) � 4 ω0(ω2 − ω2
0)2  sin2(πω0

ω
)tanh(βν

2
)(Fω + Gω0)2  ,

(235)

see Figure 11 for an example.

12 Summary and outlook

The time evolution of the TLS subject to a monochromatic,
circularly polarized external field (RPC) can be solved in
terms of elementary functions, and the analogous problem
with linear polarization (RPL) leads to the confluent Heun
functions. However, these two problems are only limit
cases of the general Rabi problem with elliptical polariza-
tion (RPE), and it is a natural question to look for a solution
of the latter valid in the realm where the rotating wave
approximation breaks down. This is done in the present
paper by performing the following steps:
(1) Reduction to the classical RPE,
(2) reduction of the classical time evolution to the first

quarter period,
(3) transformation of the classical equation of motion to

two third order differential equations, and
(4) solution of the latter by power series.

This strategy has been checked by comparison with the
numerical integration of the equations of motion for an
example. Moreover, we have calculated the various Fourier
series of the components of the periodic solution and the
corresponding quantum or classical Floquet exponent (or
quasienergy). Further, we have obtained the first terms of
the power series for the resonance frequencies w. r. t. the
semi-axes F and G of the polarization ellipse. The latter

Figure 11: Themean value 〈w〉 of thework performedof a two level system (TLS) as a function of the normalized driving frequencyω/ω0. The left
panel contains thenumerical results for thefixed values F=0.5,G=0.1,β=10 andshowsaprominentmaximumatωmax ≈ 0.941843 ω0

, aswell
as a large number of smallermaxima. The right panel is devoted to the limit of small amplitudes and contains the numerical results for F=0.05,
G = 0.01, β = 10 (blue dots) that agree well with the analytical limit according to (235) (red curve). For the right panel, the work is maximal at
ω(0)
max ≈ 0.857295 ω0.
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were checked by comparisonwith the partially known results
in the circular (F = G) and in the linear polarization limit
(G = 0). This kind of result could not be obtained by a pure
numerical treatment of RPE and thus justifies our analytical
approach. Analogous remarks apply to the problem of how
much work is performed on a TLS by the driving field. For a
first overviewnumericalmethods are sufficient, see Figure 11,
but analytical methods yield more detailed results, e.g., for
the small amplitude limit, see Section 11.

Other limit cases that can be discussed without recourse
to the third-order differential equation are the adiabatic limit
(ω→ 0), the small amplitude limit (F, G→ 0) and the limit of
vanishing energy splitting of the TLS (ω0 → 0). In the latter
case, it turns out that the exact solution of the special case
ω0 � F � 0 cannot be transferred to the elliptical domain
except for the limit casesF→0andF→G.Moreover,wehave
checked some general statements on the Rabi problem [57]
like the slope relation (132) using our analytical approxima-
tions for some of these limit cases, as well as the power series
solutions mentioned above.

It appears that this completes the set of problems related
to the RPE that can be addressed with the present methods,
with one exception: In principle, it would also be possible to
solve the underlying s � 1/2 Schrödinger equation directly by
a transformation into a third-order differential equation.
However,wehave omitted this topic,firstly because of lack of
space, and secondly because it is not clear which new results
would follow from the direct solution.
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