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Abstract: We consider the solution of the equation of motion
of a classical/quantum spin subject to a monochromatical,
elliptically polarized external field. The classical Rabi prob-
lem can be reduced to third-order differential equations with
polynomial coefficients and hence solved in terms of power
series in close analogy to the confluent Heun equation
occurring for linear polarization. Application of Floquet the-
ory yields physically interesting quantities like the quasie-
nergy as a function of the problem’s parameters and
expressions for the Bloch-Siegert shift of resonance fre-
quencies. Various limit cases are thoroughly investigated.
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1 Introduction

In recent years, theoretical and experimental evidence has
shown that periodic driving can be a key element for
engineering exotic quantum mechanical states of matter,
such as time crystals and superconductors at room
temperature [1-3]. The renewed interest in Floquet
engineering, i.e., the control of quantum systems by peri-
odic driving, is due to (a) the rapid development of laser
and ultrashort spectroscopy techniques [4], (b) the dis-
covery and understanding of various “quantum materials”
that exhibit interesting exotic properties [5, 6], and (c) the
interaction with other emerging fields of physics such as
programmable matter [7] and periodic thermodynamics
[8-22].

One of the simplest system to study periodic driving is
a two level system (TLS) interacting with a classical peri-
odic radiation field. The special case of a constant mag-
netic field in, say, x-direction plus a circularly polarized
field in the y—z-plane was already solved more than eight
decades ago by Rabi [23] and can be found in many text-
books. This case is referred to as Rabi problem with circular
polarization (RPC) in the following. Shortly thereafter,
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Bloch and Siegert [24] considered the analogous problem
of a linearly polarized magnetic field orthogonal to the
direction of the constant field henceforth called, Rabi
problem with linear polarization (RPL) and proposed the
so-called rotating wave approximation. They also investi-
gated the shift of the resonant frequencies due to the
approximation error of the rotating wave approximation,
since then called the “Bloch-Siegert shift.”

In the following decades, one noticed [25, 26] that the
underlying mathematical problem leads to the Floquet
Theory [27], which deals with linear differential matrix
equations with periodic coefficients [28, 29]. Accordingly,
analytical approximations for solutions were worked out,
which formed the basis for subsequent research. In
particular, the groundbreaking work of Shirley [26] has
received widespread attention and many citations. Among
the numerous applications of the theory of periodically
driven TLS are nuclear magnetic resonance [30], ac-driven
quantum dots [31], Josephson qubit circuits [32], and
coherent destruction of tunneling [33]. On a theoretical level,
the methods for solving the RPL and related problems have
been gradually refined and include power series approxi-
mations for Bloch-Siegert shifts [34, 35], perturbation theory
and/or various boundary cases [36—41] and the hybridized
rotating wave approximation [42]. Also, the inverse method
yields analytical solutions for certain periodically driven TLS
[43-46).

In the meantime also the RPL has been analytically
solved [47, 48]. This solution is based on a transformation
of the Schrodinger equation into a confluent Heun differ-
ential equation. A similar approach was previously applied
to the TLS subject to a magnetic pulse [49, 50] and has been
extended to other cases of physical interest [51, 52]. In the
special case of the RPL, the analytical solution has been
further elaborated to include time evolution over a full
period and explicit expressions for the quasienergy [53].

In this paper, we will extend these results to the Rabi
problem with elliptic polarization (RPE) that is also of
experimental interest, see [54, 55]. Here, we will approach the
Floquet problem of the TLS via its well-known classical limit,
see, e.g., [56]. It has been shown that, for the particular
problem of a TLS with periodic driving, the classical limit is
already equivalent to the quantum problem [57, 58]. More
precisely, to each periodic solution of the classical equation
of motion, there exists a Floquet solution of the original
Schrédinger equation that can be explicitly calculated via
integrations. Especially, the quasienergy is essentially given


https://doi.org/10.1515/zna-2020-0181
mailto:hschmidt@uos.de

938 —— H.). Schmidt: The Rabi problem with elliptical polarization

by the action integral over one period of the classical solution.
This is reminiscent of the semiclassical Floquet theory
developed in a study by Breuer et al. [59].

The motion of a classical spin vector S(r) in a mono-
chromatical magnetic field with elliptic polarization and an
orthogonal constant component can be analyzed by
following an approach analogous to that leading to the
confluent Heun equation in a study by Ma and Li [47] and
Xie and Hai [48]. We differentiate the first-order equation of
motion twice and eliminate two components of the spin
vector. The resulting third-order differential equation for
the remaining component x(7) can be transformed into a
differential equation with polynomial coefficients by the
change from the dimensionless time variable T tou = sinzg.
The latter differential equation is solved by a power series
in u such that its coefficients satisfy a six terms recurrence
relation. The second component y(7) can be treated in the
same way, whereas the third component z(7) is obtained in
a different way. As in the RPL case, the transformation from
T to u is confined to the half period O < T < 1t and, and
moreover, the resulting power series diverges for u = 1
corresponding to T = 1. Hence, it is necessary to reduce the
full-time evolution of the classical spin vector to the first
quarter period. This is done analogously to the procedure
in a study by Schmidt [53] utilizing the discrete symmetries
of the polarization ellipse.

The structure of the paper is the following. In Section 2,
we present the scenario of the classical Rabi problem with
elliptic polarization and its connection to the underlying
Schrodinger equation. The abovementioned reduction of
the time evolution to the first quarter period is made in
Section 3. Already in the following Section 4, before solving
the equation of motion, it can be shown that the fully pe-
riodic monodromic matrix depends only on two parame-
ters r and a, which determine the quasienergy and the
initial value of the periodic solution S(7), respectively. The
Fourier series of this solution necessarily have the structure
of an even/odd cos-series for x(7)/y (1) and an odd sin-
series for z(t). The third-order differential equations for
X (u(t)) =x(1) and Y (u(1)) = y(1) and their power series
solutions are derived in Section 5. First consequences of
this solution for the Fourier series coefficients and the pa-
rameters r and a are considered in Section 6. In order to
check our results obtained so far, we consider, in Section 7,
an example of the time evolution with simple values of the
parameters of the polarization ellipse and two different
initial values. On the one hand, we calculate the time
evolution by using 10 terms of the abovementioned power
series solutions for the first quarter period and extend the
result to the full period. One the other hand, we
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numerically calculate the time evolution and find satis-
factory agreement between both methods.

The quasienergy is discussed in more details in Section
8 with the emphasis on curves in parameter space where it
vanishes. The resonance frequencies w % can be expressed
in terms of power series in the variables F and G denoting
the semiaxes of the polarization ellipse and compared with
known results for the limit cases of linear and circular
polarization, see Section 9. The next Section 10 is devoted
to the discussion of further limit cases along the lines of
[57]. In the adiabatic limit of vanishing driving frequency
w — 0, the spin vector follows the direction of the magnetic
field, see Section 10.1. The corresponding quasienergy can
be expressed through a complete elliptic integral of the
second kind. The next two order corrections proportional to
w' and w? can be obtained recursively and yield a kind of
asymptotic envelope of a certain branch of the quasienergy
as a function of w. In the next limit case of F, G — 0 in
Section 10.2, the solution S(f) and the quasienergy can be
written in the form of a so-called Fourier-Taylor series.
This series is also of interest for the limit case of vanishing
energy level splitting wo — O in Section 10.3, where it re-
places the exact solution of the RPL for wg = 0, and allows
analytical approximations for the further limit cases F — 0
and F — G. An application concerning the work performed
on a TLS by an elliptically polarized field is given in Section
11. We close with a summary and outlook in Section 12.

2 The classical Rabi problem:
general definitions and results

We consider the Schrodinger equation

ih %‘I’(t) =H@t)¥ (1), @
of a spin with quantum number s = 1/2, ¥(¢t) = <$l Eg )
2

and a time-dependent, periodic Hamiltonian
h
H(t) = > (wo 01 + Geos(wt) 0, + F sin(wt)os), (2)
where the o;, i = 1, 2, 3, are the Pauli matrices

e (8 $)or(2 Do (5 2) o

Hence H(t) can be understood as a Zeeman term w. r. t. a
(dimensionless) magnetic field

Wo
H(t) = (Gcos wt>. (4)

Fsin wt
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Alternatively, sz 0, can be understood as the zero
field Hamiltonian of a TLS and (4) without the constant
component as a monochromatic, elliptically polarized
magnetic field.

Setting # = 1 and passing to a dimensionless time
variable T = wt we may rewrite (1) in the form

Y\ _1f fsint v-gcost)\( (1)
1_ (1) ) "2\ v+gcost —fsint W, (1) )’
®)

where G = gw, F = fw and wy = vw. The dimensionless period
is always Tw = 2r. Sometimes, we will denote the derivative
w. 1. t. T by an overdot £ =

Let
l/Jl (1) P, (1)
PO = <l/}2 (7) >><< Y, (1) > ©)

denote the one-dimensional time-dependent projector
onto a solution of (5) and
1
P(T)=§ 1+x(1) 01 +y(T) 0,+2(T) 03 7)
its expansion w. t. t. the basis (1, 0,05, 03) of Hermitean
2 x 2-matrices. It follows that the vector S(7)=
(x(1),y(1),z(1))" satisfies the classical equation of motion
iS(‘r) =h(1) xS(1) (8)
dr a ’
and hence S(7) can be viewed as a classical spin vector (not
necessarily normalized). Moreover,

h v
h(T):<h2>=<gcosr> )
hs fsinT

denotes the dimensionless magnetic field vector (4) written
as a function of 1.

Conversely, to each solution of (8) one obtains the
corresponding solution of (5) up to a time-dependent phase
that can be obtained by an integration, see [57] for the
details.

The coefficients of the Taylor series w. r. t. T of x(7), y(1)
and z(t) can be recursively determined by using (8) and the
initial values x(0), y(0) and z(0). Note that h;, and h, are even
functions of T and that h; is an odd one. Hence, there exist
special solutions of (8) such that x(7) and y(r) are even
functions of T and z(r) is an odd one, symbolically:

even
S(1) = (even )
odd

In fact, this is consistent with (8) and (9) since

(10)
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d odd
%S(T) = ( odd ) (11)

even

even even odd
th:<even>x<even>=<odd), (12
odd odd even

and can be proven by induction over the degree of the
Taylor series coefficients of S(7) using the necessary initial
condition z(0) = O.

Analogously, there exist solutions S(7) of type

odd
S(7) = < odd )
even

satisfying x(0) = y(0) = 0. We will state these results in the
following form:

and

(13)

Proposition 1: 1. The solution S(t) of (8) is of type (10) iff
z(0) = 0.

1. Analogously, the solution S(t) of (8) is of type (13) iff
x(0) = y(0) = 0.

For general initial conditions, the solution S(7) of (8)
will be of mixed type.

Next, let S¥ (7),i = 1,2,3, denote the three solutions of
6; and R(t, 7o) be the
3 x 3-matrix with columns S (7). Since the S? (1) are
mutually orthogonal and right-handed for T = 7, this holds for
all T € R and hence R(t, 7o) € SO(3). It satisfies the differential
equation

(8) with initial conditions Sj(i) (To) =

d
ER(T)TO) :H(T) R(T>T0)) (14)
with initial condition
R(TQ,TQ) = 1 (15)

Here, H(1) € so(3) is the real antisymmetric 3 x 3-matrix
corresponding to h(7), i.e.,

0 —fsint gcosT
H(1) = ( fsint 0 -v > (16)

-8 COS T v 0

The differential Equation (14) with initial condition (15)
has a unique solution R(7, T,) for all 7, 7o € R, see, e.g.,
theorem 3.9 in [29]. Obviously, this implies the composition
law

R(15,70) = R(12, 1) R(11,T0), (17)

and hence
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R(1511) " =R(11,T2), (18)

for all 7y, 7, T2 € R.

Usually, we will set o = 0. The matrix H(t) is obviously
2n-periodic. Hence, we may apply Floquet theory to the
classical equation of motion (8). The monodromy matrix
R(2m, 0) has the eigenvalues {1, exp(+i p}) which leads to
the corresponding classical quasienergy (or Floquet
exponent) of the form

p

(ch _
e =0,+—,
2n

19)
uniquely defined up to integer multiples (note that effec-
tively w = 1 in our approach).

The connection to the quasienergy €@ of the under-
lying spins = % Schrodinger Equation (5) can be given in two
ways. Either we may utilize the fact that the classical Rabi
problem can be understood as the “lift” of the spin s =1
problem to spin s = 1. Then Equation (38) of [57] implies

el — 2me‘q“), where m =-1,0, 1. (20)

Taking into account the mentioned ambiguity of €', this
means that we have two possibilities: Either e@ = +le or
€@ =1(1+e). Since we have, modulo integers, only
two values for €@ these two possibilities are generally
exclusive. One way to decide between the two possibilities
would be to utilize the well-known quasienergies for the
RPC, that agree with the case €@ =1(1+¢e®), and to
argue with continuity.

Another way to obtain € would be to follow the
prescription given in the study by Schmidt [57] and write it
as follows:

hyy + h3z>’ @1

1
(qu) _
e == h +
2<1 1+z

where the overline indicates the time average over one
period of a 2n-periodic solution S(t) of (8). An equivalent
expression, that is manifestly invariant under rotations, is
given by

e =h-S—7S.(.S>fS),

S-S @)

see Eq. (46) in [58]. Periodic solutions of (8) can be found by
using the initial value S(0) = r, where r is the normalized
eigenvector of R(2m, 0) corresponding to the eigenvalue 1,
see also in the study by Schmidt et al. [58].

Of course, both ways, (20) and (21), to obtain €(® agree
within the usual ambiguity modulo integers. This will be
explicitly checked in Section 8 for the case of circular
polarization.
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3 Reduction to the first quarter
period

Due to the discrete symmetries of the polarization ellipse, it
is possible to reduce the time evolution of the classical spin

to the first quarter period 7 € [0, 2] This is similar to the

corresponding considerations in [53]. Let T%, i = 1, 2, 3
denote the involutory diagonal 3 x 3-matrices with entries
Tl.(,f) = (-1)% 8y, for example,

-1 0 0
TO = ( 0 1 0 > (23)
0 0 1
and T% = 19 19, for example,
-1 0 O
T® = ( 01 0 ) (24)
0 0 -1

First, we will formulate a proposition that allows us to
reduce the time evolution for the classical spin from the full
period to the first half period 7 € [0, ).

Proposition 2:

R(n+1,0) = TYR(1,0)TYR(m, 0) (25)

forall T e R.
Proof: Let R(t) = TYR(n+1,m)TY such that R(0) =
TOR(mmT® = 1. It satisfies the differential equation

%R(r) <;TR(n +T, n))T(” (26)
YWTOHm+1) R(n+1,m)TY @7

= (T"Hm+DTO)(TOR(M+17,mTYV)  (28)
=H(1)(TYR(n+1,mTY) (29)

= H(t) R(1). (30)

In (29) we have used that sin (1+7) = —sin 7, cos (T+T) = —cos
T and hence

TOHm+1)TY

-1 0 O
0 O)
1
0
0
1

fsint -gcos T
—fsin T 0 -V
gcos T v 0

|
—

(1)

o O
S - O
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0 —fsint gcos T
= ( fsin T 0 -v > =H(1). (32

-gcos T v 0

It follows that R(7) satisfies the same differential equation
and initial condition as R(r,0) and hence T R(m + 7,m)
T = R(1) = R(1, 0). Consequently,

R(m+1,0) PR(n+71,MR(1,0) = TR(r,0)T VR (1, 0),

(33)
which completes the proof of the proposition.
Setting T = 1 in (25) gives
R(2m,0) = TYR(1,0)T"R(m,0) = (T"R(m, 0))’. (34)

Next, we show how to further reduce the time evolution to
the first quarter period 7 € [0,5].

Proposition 3:

R(n-1,0)=TYR(1,0) T R(m,0)

forall T = 0.

Proof: The proof is similar to that of proposition 2
except that an additional time reflection is involved. Let
R(m)=T®R(m -7,m T"™ such that R(0) = TR (n, m)
T = 1. It satisfies the differential equation

(35)

%R(r) = T“3)<d%R(n -1, n)>T<13> (36)
WTB(_H(n-Rm-1,m)T™ 37)

= (T (-Hmn-1)T®)(TPR(m-1,mT®) (38)
=H(D(T®R(n-1,mT"™) (39)
=H(DR(1). (40)

In (39), we have used that sin (m—7) = sin 7, cos (m—7) = —cos
T and hence

T® (-H(n-1))T™

-1 0 O 0 fsint gcos T
=l 0 1 O —fsin T 0 %
0O 0 -1 -gCos T -v 0
-1 0 O
X ( 0O 1 O (41)
0 0 -1

0 —fsin T gcos T
=< fsin T 0 —v >=H(‘r). (42)

-gcos T v 0
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It follows that R (1) satisfies the same differential equation

and initial condition as R(t, 0) and hence
TOR(m-1,mT™ =R(1) = R(1,0). (43)

Consequently,

R(m-1,0) Y R(n-1,MR(m,0) = TR (1,0)T™R(r,0),

(44)
which completes the proof of the proposition.
Setting T = 1 in (43) implies
T™R(0,mT™ = R(m,0), (45)
and hence
R(0,m) ¥'R(m,0)" = TPR(m,0)T™. (46)
Moreover, if we set 7 = T in (35), we obtain
R(g,o) - T(B)R<g,0)T“3)R(n, 0), “7)
and hence, solving for R(m, 0),
R(m,0) = T<13>R<g,0>TT“3’R<g,0>. 48)
Thus (35) can be re-written as
R(n-1,0) = T¥R(x, 0)R<g, O)TT‘B)RG, o), 49)

and hence the evolution data for 7e[%m] can be
completely written in terms of those for 7 € [0,5]. Together
with (25), this shows that the complete time evolution can
be reduced to that in the first quarter period.

4 Fourier series and quasienergy:
preliminary results

First we will re-derive (46) under more general assumptions.

Proposition 4: Let R € SO(3) and T € O(3) be such that T> =1
and hence T" = T. Define R € SO(3) by

R=TR'TR, (50)
then i i
R =TRT (51)
holds.
Proof: R'=(TR"TR =R"TRT =T*R"TRT =

T(TR'TR) T=TRT.
Let us specialize to the case T = T, then (51) is
equivalent to the following three equations:
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RIZ = _RZI: RB = R31, Rza = —Rsz- (52)

A general rotational matrix R € SO (3) can be determined by
three real parameters; by the three Equation (52) the
number of parameters can be reduced to two:

Proposition 5: Every rotational matrix R € SO (3) satisfying
(52) will be of the form

i r + (1-r*)cos (2a) (1-r?)sin(2a) 2rv1 - r2sin(a)
R= -(1-r)sin2a)  (1-r*)cos(2a) -r* 2rvV1-ricos(a) |,
2rvV1 - r2sin(a) -2rv1-r2cos(a) 1-2r?
(53)

wherer € [0, 1] and « € [0, 2n).

Proof: Obviously, the third column R; of R according to
(53) is the most general form of a unit vector. The second
column R, must be a unit vector orthogonal to R; with a
given component R;; = —Ry3 = —2rvV1—r2cos(a). If r > 0
there are only two possibilities for R,: the first one is given
by (53) and the second one is b= (-1 sin(2a),
—-r2 cos(2a) -2 +1,-2rvV1—r2cos(a))". The first column
of R is uniquely given by R; = R, x R3, but R, = b does not
yield a matrix satisfying (52) and hence has to be excluded.

We have still to consider the case r = 0 such that
R; = (0,0,1)". Then the representation (53) reduces to

cos(2a) sin(2a) O
<—sin(2a) cos (2) 0), (54)
0 0 1

which is obviously the most general case satisfying (52) and
Ry = (0,0,1)".

Recall that the “half period monodromy matrix” R(rm,
0) satisfies (46), hence, according to Prop. 4, also (52) and,
by virtue of Prop. 5, must be of the form (53). In the case of
linear polarization (g = 0), this result also follows from the
form of the half period monodromy matrix U(m, 0) of the
corresponding Schrédinger equation, see Equation (30) in
[53], where the parameters r and a have the same meaning
as in this paper. Using (34), we can immediately derive the
form of the full period monodromy matrix

It will be instructive to sketch another derivation of
(55). To this end, we state without proof that the mono-
dromy matrix of the Schrédinger Equation (5) will assume
the form

(1-27) + 4r* (1 - r*)cos (2a)

R(2m,0) = 4r* (1 - r?)sin (2a)
4r(1-2r*)V1-risin(a)

4r?(1-r?)sin (2a)
4(r =1)r2 cos(2a) + (1-2r7)"  4r(1-2r7)V1-r’cos ()
4rvV1-1r2(2r* - 1)cos(a)
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1-2r2

2irv1 - r2e'®

U=U(2Tr,0)=< o

3 _ y2p-ia
2irv1—-r?e >, (56)
completely analogous to Eq. (33) of [53]. U has the eigen-
values exp(+2i arcsinr) with respective eigenvectors
(e*1%,1)". Then the corresponding monodromy matrix p of
the classical RPE is given by the equation

3
UogiU" =} p; 05,0 (57)
j=1
where the g; are the Pauli matrices (3). It is easy to check
that the so defined matrix p coincides with R(2m, 0) given by
(55).

Like R(m, 0) also R(2m, 0) depends only on two pa-
rameters @ and r and satisfies a similar equation that
characterizes the corresponding two-dimensional sub-
manifold of SO(3), to wit,

R(2m,0)" = TOR(2m,0)T?. (58)

This equation can be proven either directly by check-
ing (55) or by applying (34) and (46).

According to the general theory [57], the eigenvalues of
R(2m, 0) that are generally of the form (1, exp (+ip)) yield
the quasienergies eiq”) of the underlying Schrodinger

equation for spin s = % via

exp =+ ip = exp (4mie!™). (59)
As in [53] it follows that
el = 14—11_[ arg(1+8r* - 8r* + 4ir(1-2)Vi-r?)
= J_r% arcsinr. (60)

The eigenvector r corresponding to the real eigenvalue

10of R(2m,0) is
cosa
r= ( sina >
0

Choosing r as the initial value r = S(0) for the time
evolution (8) yields a 2r-periodic solution. Any other unit
vector in the plane P orthogonal to r will, in general, not
return to its initial value after the time 7 = 2m but will be

(61)

4r\1-1r2(2r* - 1)sin(a)
(55)
8ri-8ri+1
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rotated in the plane P by the angle 2re (), This endows the
parameters r and a occurring in (53) and (55) with a
geometrical and dynamical meaning.

Another remarkable result follows from R(m, 0) being
of the form (53):

cos « cos a
R(n,O)( sin a ) = <—sin a>,
0 0

which means that for the initial value S(0) = r the half period
time evolution is equivalent to a reflection at the x—z-plane.
This has further consequences for the Fourier series of the
2r-periodic functions x(7), y(1), and z(r) with initial values
x(0) = cos a,y(0) = sin a, and z(0) = 0. Since x(r) and y(1)
will be even functions of T and z(t) will be an odd one, see
Proposition 1, we can write their Fourier series in the form

(62)

x(1) = i X, €0s (UT), (63)

u=0

y(1) = foyy €08 (uT), (64)
=

x(1) = §zy sin (ut). (65)

p=1
Now consider the sequence of linear mappings

Cos «a Cos a

sin a |*%” [ —sin a L —sin a
0 0 0
-x (1) x (1)
L yo |5 o
-2 (1)
X(M+71)
y(m+1)
Z(M+7)

—COS a
Y=

-z(T)

29

R(m+1,0)r= (66)

From this we conclude

X(M+71) = § X, cos(u(m+1))
u=0

= Y X, cos(UT) - Y X, C0s(uT) =x(T)

M even y odd

= Y x,cos(UT)+ Y X, COS(uT). (67)

M even u odd
Hence, the odd terms of the cos-series must vanish and x(7)
is an even cos-series. Similarly, we conclude from (66) that
y(1) is an odd cos-series and z(7) an odd sin-series. Sum-
marizing, we have proven the following

Proposition 6: The components of the 2n-periodic solution
S(7) of (8) with initial values S(0) = r according to (61) have
the Fourier series
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x(1)= Y xycos(ur), (68)
M even
y(® = Y y,cos(ur), (69)
u odd
z(1) = Y z,sin(ur). (70)

u odd

In particular, the time averages of y(t) and z(t) over one
period vanish.

5 Third order differential equations
for single spin components

We consider again (8) and its higher derivatives that

read
d X gz cost—fysint
ES:()}):( fx sint -vz > (71)

Vy — 8X COST

—sinT (f*x sint+z(g-fv))+y cosT(gv-f)-g°x cos’ T
( cosT(x(f +gv)+f gz sint) -y (f’sin’ T+v?) )

sint (x(fv+g)+fgy cost)-z(g?cos’ T+V?)

_ (72
& X
aS=ly |=x SP+y SP+z 89, 73)
z
with
-3(f* - g%)sinT cost
S? = | —sint(f’ sin’ T+fg’cos’ T+ V2 +f+gv) |,
cosT(f’g sin’> T+ fv+g’cos’ T+gV +g)
(74)
sint(f’sin® 7+ fg?cos® T+ fv? +f - 2gv)
Sy = -3f*sinTcost ,
—f sin® T(fv+2g) -g cos® T(gv-f) -V
(75)
and

f sin®T(fv—g)+g cos® T(2f +gv) +V’

—cosT(f°g sin® T-2fv+g* cos® T+gV*+g)
SY =
3g® sinT cosT
(76)

Itis obvious that x and X depend linearly on y and zand
that this dependence can be inverted to express y and z

in terms of x, x and X. Inserting this result into X yields a
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third-order linear differential equation for x(r), where the
coefficients are trigonometric functions of 7.

Similarly, we can obtain third-order differential equa-
tions for y(t) and z(7). For the preparation of the next step, we
make the restriction to solutions of (71) such that x(r) and y(1)
are even functions of 7, whereas z(7) is an odd one, according
to Prop. 1. In this way, we could obtain two solutions sY and
S® with different initial conditions for x(r) and y(r) and the
initial condition z(0) = 0, the latter being a consequence of the
restriction to odd functions z(t). The third solution S® with
x(1) and y(7) odd and z(t) even is then uniquely determined
by S and S®. For example, if S” and S® are chosen to be
orthogonal for T = 0 then they will be orthogonal for all T and
$® is just the vector product of S” and $?.

Following the study by Xie and Hai [48], we will
consider a transformation 7 — u of the independent vari-
able such that the coefficients of the transformed differ-
ential equations become rational functions of u. This
transformation will be chosen as

u(T) = sin’ = % (1= cos ), 77)

2
the same as in the study by Xie and Hai [48], and maps the
half period 7 € [0, mt]o bijectively onto u € [0, 1]. Since (77)
defines an even function of 17 the corresponding trans-
formation is only appropriate for the even functions x(t)
and y(1). Their transforms will be denoted by X(u) and Y(u)
such that

Xu(1))=x(1), and Y (u(t)) =y(r)forte [0,m]. (78)

The remaining function z(t) has to be calculated differ-
ently, e.g., by using that the length of S(7) is conserved
under time evolution according to (8). This gives the result

2(1) = +yxX (07 +y (0P - x(P -y (@ (79)

where z(0) = 0 has been used, and the sign has to be chosen
in such a way that z(7) remains a smooth function in the
neighborhood of its zeros. An alternative procedure would
be possible if x(7) and y(t) can be written as Fourier series
(maybe only locally valid for 7 € [0, 7/2]). Then z(1) could be
obtained by a direct integration of ZzZ(1)=vy(r)-
gx (1)cos (7). This last procedure will be applied in Section 7.
We come back to the differential equation for X(u) and
write it with polynomial coefficients p,(u) in the form

3
0=7Y p, WX™ (u). (80)
n=0
The coefficients are the following ones:
ps(u) =u(l-w)(4fv(u-u+fg-gv(l-m)?’) (81)
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D, (u)= —% (Qu-1)(4f*v(u-Du+3fg+gv(-4(u-1u-3))
(82)

py (W) =—16f*v (u- 1% - 4f°g (u-u
+4f2v (u— 1)u(2g2 (1-2u)*+ vz)
+fg% (1-2u)? +3fgV? —gzv(g2 (1-2u)* +v*(1-2u)* + 2)
(83)

Po (u)=-2(2u—1)(f ) (f +&)(4f*v (u—u+3fg

-gv(1-m)). (84)

The singular points of the differential equation are the
zeros of ps(u). Except the points u = 0 and u = 1 that occur
also for the confluent Heun equation, see [48] and [53], we
have an additional pair of singular points, real or complex
ones, depending on the parameters f, g and v. The obvious
ansatz to obtain a physically relevant solution of (80) is a
power series

X =73 &u' (85)
n=0

at the singular point given by u = 0. We have not investi-
gated its radius of convergence, but it is clear that the series
diverges at least for the second singular point u = 1, which
has been our motivation to restrict the application of (85) to
|u| <1 corresponding to the first quarter period 7 € [0,7/2].
In contrast to a study by Xie and Hai [48], we need only one
real solution and can neglect further solutions of the
fundamental system. However, due to the degree three of
the differential equation and the additional singular points
we need a six-term recurrence relation for the coefficients
of the power series.

We will not give the details of the recurrence relation

but rather sketch how to obtain it by means of computer-

algebraic aids. We take a finite part Y12 £, u" of the po-

wer series and insert it into the differential Equation (80).
The result is expanded into a u-polynomial and the coef-
ficient of u™ is set to 0. It has been checked that only the
above considered finite part of the power series influences
this coefficient. Thus, we obtain a six-term recurrence
relation of the form

m+1

€m+2 = Z a; {i’

i=m-3

(86)

where the a; have been determined as rational functions of
f, 8, v, but they are too complicated to be presented here.
The next problem is that we need the first five co-
efficients of X (u) = Y’ ,u" to get the next coefficients using
n

the recursion relation. Since the original Equation (8) is of



DE GRUYTER

the first order, we have only two undetermined initial
values x(0) and y(0), taking into account that z(0) = 0. To
solve this problem, we have compared the first terms of the
T-power series of x(1) and X(u(t)), using the differential
Equation (8), and thereby determined &, ...,¢, as func-
tions of x(0) and y(0). This also compensates the enlarge-
ment of the solution space by passing from a first-order
differential equation to a third-order one. To give an
impression of the kind of results, we display the first three
coefficients:

50 =x(0) (87)
& =-2(y(0)(f - gv) +8°x(0)) (88)
&= %(ZX(O)(—3f2—ngV+g2(g2+v2+3)) (89)

+2y(0)(f (8% +3v*) —gv(g” +V* +2))).

Obviously, &, is a linear function of x(0) and y(0) that
can be written as

£, =£9%(0) + £y (0). (90)

After these preparations it is, in principle, possible to
calculate any finite number of power series coefficients &,
as a function of the physical parameters f, g and v and the
initial values x(0) and y(0), although the expressions
become more and more intricate, and finally to obtain a
truncated approximation of X(u(t)). For a comparison to a
numerical solution of (8) see Section 8.

Analogous considerations apply for the case of the
solution y(7) = Y(u(t)). This time we obtain a differential
equation of the form

0= i g, W)Y™ (w), (91)
n=0
where
_ _ _ 3 2
;W) =(u-1) uu-17°(f’g +fv+g?) ©2)

x (4f°g (u - Du - fv-gv?)

0,(0) =5 (1~ 207 (g + fu + ") (4 g (0 ~ D
+fv(-8u-Du-3)+g(-8u-1u-3))
(93)

g, (W) = (1-2u%) u-1)(f’g +fv +gv2)(16f4g(u 122
~4f3v (u - 1)u - 4f?g (u - Hu(g?(1 - 2u)® + 2v?)
+v(3¢% (1 - 2u)* +V?) + gV* (1 - 2u)” + gv*)

(94)
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do () = 2(1 - 2u)* (g + fv + 8V%) (4f*g (u — Du
+fv(-8u-1Du-3)

+f28V2 (4 (u-Du-1)-fr’ —gv*). (95)

The zeros of g3(u) yield five singular points. The power
series solution ansatz

(96)

leads to a 9-term recursion relation and the first eight
coefficients are again determined by calculating the cor-
responding t-power series coefficients. We show the first
three ones.

Mo = y(0) 97)
1n, = 2x(0) (f + gv) - v’y (0) (98)

_1 _ap 2022
My =3 (0 (=31 +2fgv+v(¢* +v' - 1)) 99)

- 20 (0) (f (3g” +V*) + gv(g” + V).

Analogously to (90), 1, is a linear function of x(0) and
y(0) that can be written as

1, = 1% (0) + 1y (0). (100)

The further details are too intricate to be displayed
here, but, in principle, the procedure is completely analo-
gous to the power series solution of the confluent Heun
equation investigated in [53].

6 Fourier series and quasienergy:
results based on the power
series solutions

n
Itis clear that u™ = sinzng = <% 1- cosr)) is a finite Fourier

series including only cos-terms. It explicitly reads

oT _ (2n-1!!
T T o
n2n-D!1(1-p+n) (-1)*
( YL ), ( )cos(yr), (101)
=1 21 (u+n)!

where (a),=a(a+1)... (a+pu —1) denotes the Poch-
hammer symbol. Inserting (101) into the power series (85)
and (96) for x(1) and y(1) yields Fourier series representa-
tions valid within the convergence radius of the power
series. This does not mean that x(7) and y(t) are generally
periodic functions but only that they locally, within the
respective domains of convergence, coincide with periodic
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functions. We may explicitly write down the corresponding
Fourier coefficients of

7) = i X, €os (UT), (102)
u=0

oo

y(D) = ¥ ¥, cos (ur),

u=0

(103)

to wit,

= (n-1)!!
ngo 2"?1!
o 2n-D!(1-p+ n)u(—l)"r

& ey

38 i u=0,
(104)

§(2n—1)!!

n=0 2"n! "

~ (2n-1)! !(1—y+n)y(—1)"
= 271 (u+n)! Tn

Yy = 1 (105)

Recall that the &, and n,, are the coefficients of the power
series (85) and (96) to be determined by means of recur-
rence relations.

The case of z(t) is a bit more complicated. Using the
above local Fourier series representation of x(7) and y(r),
we may directly solve the differential equation

Z(1) = vy(T) — g costx(T), (106)

since the r. h. s. of (106) is again a cos-series. In general,
there will be a nonvanishing constant term z, at ther. h. s.
of (106) that generates a corresponding part z, T of z(7)
taking into account that z(0) = 0.

The complete result is the following:

Z(T) =2 T + § zy,sin (UT), (107)
p=1
g
= :O)
VYo 2X1 u
VY, —8X —‘gx : =1
z, = Vi—8Xo R T p=1 (108)
1
ﬁ(vyy —% (X1t +x,M)> u>1

The expressions (104) and (105) for the Fourier
coefficients still depend, via ¢, and 7,,, on the initial con-
ditions x(0) and y(0). In the special case of x(0)=
cosa, y (0) = sina according to (61) the solutions x(7) and
y(t) will be 2n-periodic functions and hence, according to
proposition 6, can be written as even resp. odd cos-series
valid for all T € R. In particular,
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< 2n-1!!
Yo=0= nzo S n
3 (2n ) ()
= 20 2n2nn1') (n,(l’ocosa + nn(y)sina) . (109)

This equation can be solved for the auxiliary
parameter a:

o (2n-D!! . (x)
n=0_2nn! n

o (n-in (y) ’
ZHO 2nn!

a = —arctan (110)

if the numerator and denominator of this fraction do not
vanish simultaneously. This solution is only determined
modulo 1 in accordance with the fact that x(0) = —cosa,
y(0) = —sina also gives a periodic solution.

The determination of the second auxiliary parameter r
is more involved. We consider the following procedure that
does not presuppose the determination of a. First, we

calculate the quarter period monodromy matrix R(% 0) by

means of the local Fourier series representation considered
above. From this, we obtain R(m, 0) via (48) and finally r by

r=+ l_R(;)O)B,B.

The latter holds since R(m, 0) is of the form (53). It will
be instructive to give some more details.

First consider R(% 0) = x(g), where x(7) has the initial
1,1

(111)

values x(0) = 1, y(0) = z(0) = 0. It follows that

X(E) = i xycos<yg) = Y Xu-
2 u=0 2 u=0,4,...

because the only nonvanishing terms are cos( % | = 1for u
being an integer multiple of 4 and cos| u% ) = —1for even p
such that p/2 is odd. Recall that the Fourier coefficients x,
have to be determined via (104) where the &, have to be
chosenas ¢ ,(1") according to (90) and the above initial values.

The procedure for the calculation of R(g, O) = y(g) is
21

Y X, (112)

U=2,6,...

completely analogous. For R(%,O) :z<§) we employ
3,1
(107) and (108) as well as

m m
zl =) =20 o+ Zy - Zy.

(113)
2 2 u=15,... u=3.7,...

For the second column of R(g,o) the calculation is

again the same as for the first column except that ¢ ,ﬁ") hasto
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($2]

be replaced by ¢ and n( by . As mentioned before,

the third column of R(g, 0) is the vector product of the first

and the second ones. Since we only need a particular ma-
trix element of the half period monodromy, namely
R(m, 0)33, it suffices to use the following equation resulting
from (48):

T \?2 T _\?2 T \?2
R(1,0),, = R(f, o) - R(a o) R(f, 0)
(7. 05 2 /13 2 /23 * 2 /33

T 2
:1_2R(—,o) , (114)
2 23
and hence
- h(3o)
2 /23
n m n m
:R<7,0) R<7,0> —R(7,0> R<7,0> L as
l 2 /31 \2 /12 2 /11 \2 /32 (115)

where the entries from the first and second column of
R( 5,0 ) have been calculated above. This completes the
determination of the auxiliary parameter r and the qua-
sienergy via (60).

We have checked the results (110) and (115) by com-
parison with a numerical solution of the s = 1 Schrédinger
Equation (5) for the choice of the parametersv=1, f=1,and
g =1/2. For this case, both methods come to the same
conclusion

a=140464..., r=0.387328..., and hence

€™ =0.126602 ... . (116)

7 Time evolution: an example

As an example, we consider the time evolution over one
period T € [0, 271] according to (8). We choose the values of
the parameters f =1,g =1/2 and v = 1 and analytically

calculate three mutually orthogonal solutions S (1),i =
1,2,3forte [Og] by evaluating the corresponding power

series solutions with 10 terms. For the remaining three
quarter periods, we adopt the reduction Equations (25) and

(35) for S, where R(r,0) can be expressed through R(%, 0)

via (48). We observe a satisfactory agreement with the
numerical solution of (8), see Figure 1.

The alternative choice of the initial conditions as
x(0) = cos a and y(0) = sin a, whereas z(0) = O remains
unchanged, leads to 2m-periodic solutions, see Figure 2.
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-1.0f

Figure 1: The three components of the classical spin vector as
functions of dimensionless time 7 over one period according to the
equation of motion (8). We have chosen the parametersf = 1,g = 1/2
and v =1and the initial conditions x(0) = 1, y(0) = z(0) = 0. The solid
curves are numerical results; the dashed curve represents x(z) as
calculated analytically, likewise y(7) (dotted curve) and z(7) (dotted-
dashed curve).

XY,z
1.0} .
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Figure 2: The three components of the classical spin vector as
periodic functions of dimensionless time t over one period
according to the equation of motion (8). We have chosen the
parameters f =1,g = 1/2 and v =1 and the initial conditions

x(0) = cos a, y(0) = sin a and z(0) = 0. The dashed curve represents
x(1) as calculated numerically and analytically, likewise y(7) (dotted
curve) and z(7) (dotted-dashed curve).

This calculation uses the value of the auxiliary parameter a
that has been determined according to (110).

The first few terms of the corresponding Fourier series
read as follows:

x (1) = 0.0240019 + 0.144012c0s (2t)

—0.00263811cos (4t) + ... (117)
y (1) = 1.01784cos (t) — 0.0319147cos (3t)
+0.000303923cos (5¢) + ... (118)
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Figure 3: The branch of the quasienergy £ (wo, F, G, w) satisfying
(121) as a function of w and G for fixed values of wo=1and F=1. G
varies from G = 0 (linear polarization) to G = F=1 (circular
polarization). Along the red, dashed curve the quasienergy
vanishes. An analytical approximation of this curve according to
(131) is shown as a black, dashed curve.

z(1) = 0.969835sin (t) — 0.0224197sin (3t)

+0.000192725sin (5¢) + ... (119)

8 Vanishing of the quasienergy
We will discuss the quasienergy in physical units

F G
JF,G,w)=hwe™ @)_,_ —hwe™ (v, f,9),
E(wo w) weE (w o weE (Vfg)
(120)

where usually # is set to 1. Analogously to the ambiguity of
€@ also £ will be only defined up to integer multiples of
hw. A typical plot of the functions w — & (w,, F, G, w) for the
values wy = F = 1 and G varying from G = O (linear polari-
zation) to G = F = 1 (circular polarization) is shown in
Figure 3, where the branch and the sign of the quasienergy
are chosen according to
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05%5(1,1,6,(0)5%. (121)
We notice that these curves qualitatively all look the same.
First we note that the family of curves shows the same
asymptotic behavior of £(wy, F, G, w) for w — oc. In the case
of circular polarization, we have &(wo,F,G,w) — % for
G =F, aswell as £(wo, F, G, w) — % for linear polarization,
see Eq. (269) in [57]. Further, the quasienergy functions
have an infinite number of zeros with a nonvanishing
slope, the largest being slightly below w = 1.

To better understand this behavior in detail, we revisit
the RPC. It is well known that in the special case of circular
polarization the quasienergy can be analytically deter-
mined in a rather simple form. In the context of the present
discussion, we note that the fundamental matrix solution
of (14) with initial condition (15) assumes the form R (7, 0) =
(R1, Ry, R3) with the three columns reading

f? cos(1Q) + (v-1)?

R f<2(v - 1)cos(r)sin2<§) +Q sin(T)sin(TQ))
1 =

>

f<2(v - 1)sin(r)sin2<TZQ) - Qcos (‘r)sin(‘rQ))
(122)

—f (v=1) (cos(TQ)-1)
Ry=| cos()(f*+ (v=1)’cos (1)) - (v—1)Qsin(7)sin(Q) |,
sin (7)(f2+ (v—1)’cos (1Q) ) + (v—1) Qcos (7)sin (1Q)

(123)
fQsin(1Q)

R3= ( —Q((v—1)cos(1)sin (1Q)+Qsin(1)cos (7Q)) ) ,
Q(Qcos(1)cos (1Q) - (v-1)sin (1)sin (1Q))

(124)
where we have used the abbreviation
Q=2+ (1-v), (125)

known as the “Rabi frequency”. The corresponding mon-
odromy matrix R(2m, 0) reads:

f2 cos(2nQ) + (v-1  2f (v - 1)sin®(nQ) f sin(2nQ)
Q? Q? Q
R(2m,0) = 2f (v — )sin® (nQ) 2+ (v-1%cos(2nQ)  (v-1)sin(2nQ) (126)
Q? Q? Q
_f sin (2rQ) (v - 1)sin (2nQ) cos (2nQ)

Q

Q
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Figure 4: The branch of the quasienergy £(wo, F, G, w) satisfying
(121) as a function of w for fixed wy =1, F=1and two values G =1 (red
curves) and G = 0.95 (blue and orange curves). In the circular case
(G =1), we observe level crossing whereas in the case with small
eccentricity (G = 0.95) this crossing is avoided as demonstrated by
the inset. The dashed red line is the tangent of £(1, 1, 1, w) at w = 1.

According to (132), it has the slope &£ = 1.

Its trace is evaluated as Tr(R(2m, 0)) =1+ 2cos(2m Q)
and vyields the eigenvalues (1,exp(+2n31Q)), corre-

sponding to a classical quasienergy
e =q. (127)

On the other hand, we may apply (21) to the periodic

solution
1 v-1
S(1) = ) (fcosr ) (128)
fsint
with the well-known result
e(qu) — # R (129)

that is compatible with (127) and (20).

For G = F = wy = 1, the quasienergy curve has a zero at
w =1, ie., £(1,1,1,1) = 0. For slightly lower values of G,
this zero shifts to lower values of w, see Figures 3 and 4. We
will denote by G = & (w ; F, wo) the position of the largest
zero of the quasienergy.

The vanishing of the quasienergy is in so far interesting
as it means that all solutions of (8) will be 2m-periodic, not
only the special one with the initial condition S(0)=(cos a,
sin a, 0)" according to (61). Moreovet, & (wo,F,G,w) =0
means degeneracy of the Floquet states for the TLS, which
may produce some second-order phase transition in the
parameter space, see [21].

The vanishing of the quasienergy implies that the
linear term z,7 in (107) must vanish and hence

(108

0=z :)vyo—gxl. (130)
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In order to check the consistency, we will evaluate the
condition (130) by using a truncation of the power series
solutions (85) and (96) to the first 10 terms. This yields the
exact first five terms of G = &, (w; 1, 1) expanded into a
power series in terms of w —wp = w - 1:

: _ D212+ B 1y
Eo(w; 1, N=1+2(w-1) 6(w 1)+36(w 1)

577, 58357
240~V * 1060 @ V)
+ 0( (w- 1)6) } 131

The result is shown in Figure 3 as a black dashed curve
and fits to the numerically determined red dashed curve of
vanishing quasienergy in the domain 0.7 < w < 1.

Further we note that according to [57] the quasienergy
€ can be split into a geometrical part £ and a dynamical
part £; such that £ = & + £; and the slope relation

o &

50" (132)
holds, see Eq. (151) in a study by Schmidt [57]. Recall that £,
is the time average of the energy, i. e, £; = %h(t) “S(t) and
&g = ;= ||, where |.«/| denotes the signed area of the Bloch
sphere swept by S(f) over one period. In our case, this im-
plies that for vanishing quasienergy and hence G = &, (w)
we have & +&;=0 and the slope of the curve w~—
E(wo, F,G,w) equals |E| = |E4|. We have illustrated this
relation for the special case of circular polarization in
Figure 4 by drawing the tangent (dashed red line) with the
slope 1. This corresponds to a periodic solution of (8)
tracing a great circle on the Bloch sphere with solid angle
[/ =2m.
In general the quasienergy (129) of the RPC has its first
Frw,
2w
general form as G =&y (w; F,wo) =F+ Y ;2,8, (W —-w)".
It begins with

2
zero at w = w; = —=—2. Hence, the series (131) will assume its

G=¢&) (w)
=F

6 (—~60F*+50F*w,—100F?w? +71F?w} —25wé)<w—#”‘%>

2wo

F(30F*+20F2wo+67F2w} +10w} +65w})

(133)

but the next terms are too intricate to be shown here.

We will consider the case of vanishing quasienergy
along the curve G = &y (w) in more details. As already
mentioned, in this case all solutions of (8) will be 2m-peri-
odic and hence the local Fourier series representations
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(102), (103) and (107) can be extended to all times 7. It turns
out that the slope relation (132) cannot be satisfied by all
periodic solutions of (8) but only by a particular one that is
the limit of the (up to a sign) unique periodic solutions for
nonvanishing quasienergy. Instead of again using Eq. (110)
to determine this limit, we will proceed in a different way.

Recall that for a general periodic, not necessarily
normalized solution S(1) = (x(7),y(1),z(1))" of (8) of the
form (102), (103) and (106) the functions x(t) and y(7) are
represented by cos-series, whereas z(t) will be a sin-series.
Consider the decomposition of x (1) = x. (1) + X, (T) into an
even cos-series and an odd one and analogously for y (1) =
Ve (T) +Y, (1) and z (1) = 2z, (1) + 2, (7). Consequently, the
time derivative x can be uniquely split into an even sin-
series and an odd one:

X =X, + X,
(gcos(1)z. - fsin(1)y,).
(134)

= (gcos(1)z, - fsin(1)y,) +

Analogous decompositions for y and Z lead to a
decomposition of S(1) into two separate solutions

Xe (T) X,T)
S(1)=SY(1)+S? (1) = <yo(r) > + <ye(r) > . (135)

2, (1) ze (T)

It is clear that SV (1) equals the limit of periodic so-
lutions for nonvanishing quasienergies since these peri-
odic solutions have the same even/odd character as S® (),
see Proposition 6. Moreover, the two solutions (135) are
orthogonal for all 7: Their scalar product is constant in
time, on the other hand an odd cos-series and has thus a
vanishing time average. Further, it follows that S (1)
belongs to £; = 0 since h-S? will be an odd COS-series
and thus has a vanishing time average. In contrast, h - §V
will be an even cos-series which is compatible with |£4] > 0
and a positive slope of the quasienergy curves at
G = &y (w), see Figure 3.

For the sake of completeness, we note that the third
solution S® = §Vx$? will be of the following type: x® (1) is
an odd sin-series, yG) (1) is an even sin-series, and z® (1) is
an even cos-series. Hence also for this solution, the time
average of h-S® will be an odd sin-series and hence &
vanishes. An example is shown in Figure 5.

In the case of the periodic solutions $V (1) or S@ (1),
the time average of h-S can be expressed in terms of the first
Fourier coefficients:

(136)
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T /

Figure 5: Three periodic solutions s%),i=1, 2,3 (blue, red and
green curves) of (8) for the parameters wo = F =1,G = % and w = w;
such that the quasienergy vanishes. The magnetic field vector (black
arrow) moves on the black ellipse; the initial vectors s%0),i=1,2,3
are shown as colored arrows. The time average of the energy
vanishes for S? and S®.

where we have again passed to the dimensionless quasie-
nergy and the Fourier coefficients are given in (104), (105)
and (107). The suitable initial conditions x (0) = cosf and

y(0) = sinf} can be derived from the result e,;q“) = 0 analo-
gously to (110):
(X) (%)
B= _arctan— ( ) b d] (y)+ZZ 1(y) ) (137)
vxy +8y 7 + §Z1

Here, the superscript (x) or (y) refers to the dependence of the
Fourier coefficients, via &, and n,,, on the initial conditions
x(0) and y(0). Finally, the initial conditions x (0) = cosa and
y(0) = sina for the first solution (S)™ (1) are given by

azﬁig, (138)

using the orthogonality of $"(r) and S®(r). After some
calculations, it follows that the dynamical part of the
quasienergy of the first solution S¥(r) assumes the value

1—
eq=5h-§7

1
:2<<vx0 +gy1"‘ +];zl(x)>cos a

+ (on(y) +gy1(y) f y)>sm a> (139)
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Figure 6: The branch of the quasienergy E(wo, F, G, w) satisfying
(121) as a function of w for fixed values of wo =F=1and G = %

The function has its largest zero at w, = 0.781665 where the tangent
(dashed red line) has a slope of 0.64787, see the text after Eq. (140).

1
=3 <vx(()") +gy1(") +];Z1

>+<vxéy)+gyl(y) f y))

(140)
As an example we consider the parameters wo = F = 1

and G = 1. The quasienergy curve w 8(1 Liw ) has its

largest zero at w; = 0.781665. This value has been deter-
mined numerically; the analytical approximation (131)
yields w; = 0.781023. At this point, the two solutions "’ and
S? are obtained with initial values x (0) = cosa,
y(0) =sina, and x(0) = cosf,y(0) = sinf, respectively,
where = -0.489254 has been calculated according to (137)
and a = B + 7, see Figure 5. The slope of the tangent of the
quasienergy curve at w = w; has been determined via (140)
and assumes the value €; = 0.64787, see Figure 6.

9 Resonances

The function wy — £ (wy, F, G, w), restricted to the domain
(121), has an infinite number of maxima, see Figure 7. These
satisfy the condition

=ig(w0,F,G,w).

Swe (141)

defining an infinite number of hypersurfaces in the
parameter space .2 with points (wo, F, G, w) € 2. Solving
(141) for w gives the so-called “resonance frequencies”

w=w®(w,F,G,n=123,.. (142)

res (

In the circular case, a smooth representative of the qua-
sienergy £. assumes the form
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Figure 7: The quasienergy E(wo, F, G, w) as a function of w, for fixed
values of w =1, F= 0.5 and G = 0.1 (solid curves) calculated by
numerical solutions of the Schrédinger Equation (5). One observes
maxima of the quasienergy at wg = 1,3,5, .... The dotted curves are
various branches of the analytical form (143) of the quasienergy for
the case of circular polarization, i.e., G=0and w =1, F=0.5.

5c:%(w—Q):%<w—m>,

and has a unique maximum at wq = w, see Figure 7. This
conforms with the intuitive picture that a resonance occurs if
the driving frequency w equals the Larmor frequency wq of
the energy level splitting. The other maxima of the quasie-
nergy, restricted to the domain (121), are represented by in-
tersections of suitable branches of the quasienergy of the
form +&. + nw, n € Z. For example, the next maximimum at
wo = 3w is obtained by the intersection of —-£; and &, + w at

(143)

2
Wo=w+ \/4w2—F2:3a)—f—w+O(F“). (144)
Note that an arbitrarily small admixture of eccentricity to
the polarization leads to an avoided level crossing and a
smooth maximum close to the value w,, of the intersection,
see Figure 7.

According to [26], the time average of the transition
probability between different Floquet states assumes its
maximum value P = % at the resonance frequencies, which
justifies the denotation. Although Shirley’s derivation of the
resonance condition refers to the RPL case, see (1) in [26], one
can easily check that it also holds in the more general RPE
case. Moreover, it has been shown [57] that for w = w{l) the
classical periodic solution of (8) has a vanishing time-average
into the direction of the constant component of the magnetic

field. According to our definitions, this means that

® »)

Xo =Xy €OSA+ X, ’ sina =0, (145)

where a is the auxiliary parameter leading to a periodic
solution given by (110). Together with
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Yo =¥ cosa+yq

()

see (109), this implies that the matrix

has a nonvanishing null-vector and hence

-
=)
=

( X(()X)
(x)
Yo

X )
y&)

sina =0,

detZ = x{° yéy ) _ xéy ) y&¥ =0.

(146)

(147)

(148)

We use truncated versions of (85) and (96) in order to derive
the first terms of the power series representations

(n)

res _

wWo

NG
Qm,k <

mk=0

F\"(G
Wo Wo

).

(149)

analogously to [57]. We will show a few results. The first

resonance w'?

QW =

res

35
131072

0
103

8388608

69
262144

is determined by

13
512

0

611
131072

0

433
2097152

315
32768

0

609
262144
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We note that Q' is a symmetric matrix due to the
symmetry of the Rabi problem under the exchange G < F.
The matrix elements Q\”, vanish for odd m + k. Further,
it is instructive to look at the limit cases of linear or cir-
cular polarization. For G = 0, the first column of Q¥
agrees with the corresponding known results in the
case of linear polarization, see Table 1 in the study by
Schmidt [57]. For F = G, the power series (149) coalesces
into a series of a single variable F with coefficients

Oy =M QW M=0,24,.... On the other hand, the
resonance frequency w}) of the circularly polarized case

is known to be wY) = w,. Hence, the antidiagonal sums of

Q®-entries O\ must vanish for M = 2,4, .... This can be
confirmed for M = 0, 2, ..., 8 in the above shown part of
Q) see (150).

The second resonance is described by the matrix

1 35 103
1024 131072 8388608
27 69
65536 262144
611 433
0 *
131072 2097152
609 . o
262144
19115
- * 0 *
4194304 (150)
0 * 0 * 0
* O * 0 *
0 * 0 * 0
* O * 0 *
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1 0 3 135 2133
3 32 8192 1048576
1 9 3591
0 = 0 - 0 - *
16 2048 524288
3 o 2 o 6075 o .o
32 4096 1048576
9 4095
0 —_— 0 0 * 0 *
o 2048 262144
=1 135 o 6075 . o .o 151)
8192 1048576
3591
0 - * 0 * 0 *
524288
2133
—_— 0 * 0 * 0 * 0
1048576
0 * 0 * 0 * 0 *
Here, analogous remarks apply as in the case of Q, 1 0 £l a5
. 2 ) 5 96 221184
except that the antidiagonal sums of Q'”-entries Q,;,” no 1 125
longer vanish. They can be determined by the following 0 78 ~55296 0
consideration. In the circular limit, the second resonance is 5 205
i — 0 -— 0 *
defined by the level crossing 00 _ 9% 36864 ’
1 1 125
- (~rw+Q)=-CBw-9Q), (152) __2 * 0
2 2 55296
where Q = \/F? + (w, — w)’. (Recall that an arbitrary small A5 0 N 0 N
amount of eccentricity F-G produces an avoided level 221184
crossing and hence a smooth maximum of the quasie- : :
nergy). After some manipulations, the condition (152) can (156)
be transformed into the antidiagonal sums of which are obtained via
w? 1 F\
TS =] -1+ 3<—> +4 (153) w® 1 F\?
wo 3 Wo —res = | —1+ 15<—> +16 (157)
Wo 15 Wo
1= (-)™3n-3)11 F )"
=3+ 2 Prin] o (154) 1,3 (15" (=3 +2m) 11 F\" (158)
5 = 24n-1pl wo
1 1/FY 3(F\" 9 /[F\° F\°
=—+—|—) -=|— —— o0—|. 2 4 6
3+4<w0> 64<w0> +512<w0> "0\ ) - ) _LIEY BF F
=_4 +0 . (159)
5 8\wo 512\ wo Wo

It can be easily checked that the coefficients of the power
series (155) coincide with the antidiagonal sums,
ie, 0 =107 -107- 2 and Q. = 2.

Finally, we consider the third resonance described by

The first nontrivial antidiagonal of Q™ can be given in
closed form. According to the recurrence relation given in
[57], we conjecture that
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2n-1

Q- Qm _ ,
20 7702 T 16(n-1)n

(160)

for n > 1. Employing the circular limit

\j(Zn—B)(Zn—l)(g—%+l)+1—l

Wi
wo 4(n-2)n+3
1 1 FY F\*
_ I - 161
2n—1+4(n—1)<w0> +O<w0> 16y
we obtain
Q““:é, (162)
L 8(n-1)n

for n > 1. These results can be checked for n = 2, 3 by
inspection of (151) and (156).

10 Special limit cases
10.1 Limit case w — 0

This limit case (“adiabatic limit”) has been already treated
in [57] in sufficient generality, such that we only need to
recall the essential issues. We adopt a series representation

w"S" (wt)

D38

S(wt) = (163)

n=0

of the periodic solution of (8) and obtain a recursive system
of inhomogeneous linear differential equations for the S,,.
The starting point is

h(t)

S @0 = o

1 @o
= Gcos wt |,
\/F2 sin’ (wt) + G* cos? (wt) + w3 \ Fsin wt
(164)

that is, the spin vector follows the direction of the slowly
varying magnetic field. The corresponding zeroth term of
the series for the quasienergy

¢ 1<h1+M> =Y &

= — 1
2 1+ Sl n=0 ( 65)

can be obtained as

1
50:§<h1+

. ]
=3 \/F2 sin’ (wt) + G* cos?(wt) + w}

h,S{” + h,S©

166
1+ 51(0) (166)

):;m

(167)
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VG +wi (G -F?

= °E( = , (168)
m G+ w}

where E(...) denoted the complete elliptic integral of the
second kind. Note that in the adiabatic limit the quasie-
nergy &, can be completely reduced to its dynamical part
&4, since the geometrical part &, is proportional to w and
only contributes to the next term &;. For G = 0, the formula
for £, agrees with Eq. (253) in [57]. In the circular case
(¢ = p), the series expansion

Q
£=22
1 1 wo Fw?
=-\F+wi+|=-- w+
2 ’ (2 2w1F2+wé) 4(F2 + w3)”?
+0(«?)

(169)

yields the zeroth order contribution lim,,_o& = lim,_o42 =
14/F? + w} that also follows from (168) and E (0) = .

The next term S of the series (163) is obtained as the
solution of

Ag0 _ s,

T (170)

such that $”-S® = 0 in order to guarantee normalization in
linear w-order. The result is

d h(t)
Wy [ A
wSTO= (dts (t)) I
B V2w
((G* - F?)cos Qwt) + F2 + G* + Zcué)B/2

-FG
x| F wqycos wt (171)

G wy sin wt

It leads to a linear contribution to the quasienergy of

c 1 F‘”OH(l ‘g—iéﬁlﬁ%) -

wéE=w| -— R 172
2 GG + W}

where II(...|...) denotes the complete elliptic integral of

the third kind. According to (171), S;-h = 0 and hence the
dynamical part &4 of £; vanishes. &; consists only of the
geometrical part that can be identified with the Berry phase
[60-62] divided by the period since in the adiabatic limit
the solid angles swept by the elliptically polarized mag-
netic field and by the spin vector are identical. Conse-
quently, &; vanishes in the limit of linear polarization. For
G = F, the limit of (172) and the linear term in the series
expansion (169) agree since I1(0,0) = 5.
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According to [57], the next, quadratic term of (163) is
given by

1d h h
S _ <_ _S(1)> % _ g .gm a73)
w dt Il 2h)?
_ 1
((G* = F?)cos (2tw) + F2 + G* + 2(4%)7/2
S5 +83 cos2wt) +S{7) cos(4wt)
x[ 85 cos(wt) +85) cosBwt) |, (174)
S§7 sin(wt) +S{3 sin(3wt)
where
S = -6V2wo (F* + w3 (F+G?) +G'),  (175)
{7 = 2V2wo (F* - G*)(2F* +2G° + w(),  (176)
S\% = 2V2w, (F* - 62)2 , (177)

SiY = V2G( - 6F* + F2(2G* - Tw}) + 11G°w}, + 8wy) ,
(178)

S =3V2G(F - G)(F + G) (2F* + &), 179)

S\ = V2F (F*(2G* + 11w}) - 6G* - 7G’w}, + 8w}), (180)

S\ =3V2F (F* - G*) (2G* + w}). (181)

The corresponding quadratic correction to the qua-
sienergy is too complicated to be calculated here. We
confine ourselves to determine &, for a special set of
physical parameters, namely F = 3, G = 2, and wg = 1. The
result is

16147
&2=57 30073
1 <4777 T(1) +21036T(2)" 17111(-3) - 1)>
m 240~/10m V5
~0217319 ... .

(182)

The corresponding adiabatic approximation of the
quasienery has been shown in Figure 8 together with the
various branches of the form nw + £. It turns out that the
adiabatic approximation is a kind of envelope of a certain
family of branches that interpolates between the numerous
avoided level crossings of this family. This finding is in-
sofar plausible, since by definition the adiabatic limit of
quasi-energy is an analytical function of w, while the
different branches nw + £ for w — 0 get stronger and
stronger kinks.
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Figure 8: Various branches of the quasienergy £(wo, F, G, w) as a
function of w for fixed values of wg =1, F=3 and G = 2. The different
branches are generated by adding integer multiples of w to +& and
can be distinguished by their color. The black-dashed curve repre-
sents the adiabatic approximation & + w &; + w? &, according to
(168), (172) and (182).

10.2 Limitcase F,G— 0

For sake of comparison with the analogous results in [57],
we rewrite the equation of motion (8) in the form

‘% =AGcos(wt)Z - AFsin(wd)Y, (183)
Y

C;—t:/\Fsin(wt)X—woZ> (184)

%:on—AGcos(wt)X, (185)

where A is a formal expansion parameter that is ultimately
settoA=1.

In the case A = 0, there are only two normalized solutions
of the classical Rabi problem that are T-periodic for all T > 0,
namely X(t) = +(1,0,0)". Hence, for infinitesimal A, we
expect that we still have X (t) = +1+ 0(A?) but (Y (t),Z(t))
will describe an infinitesimal ellipse, i.e., Y () = A cos wt
+0(X%) and Z(t) =B sin wt+ 0(A%), such that A and B
depend linearly on AF and AG. These considerations and
numerical investigations suggest the following Fourier-Tay-
lor (FT) series ansatz, not yet normalized,

X(t)= 3 2" Y Ry (F, G, w, wo)cos 2mawt,

n=0 m=0

(186)

oo

Y(t)= YAy Sy m(F,G,w,wo)cos 2m+Dwt, (187)
n=0 m=0

Z(t)= 3 S Ty (F, G, @, wo)sin (2m + wt. (188)

n=0 m=0

Inserting these series into the differential Equations
(183)—(185) and collecting powers of A yields recurrence
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relations for the functions Ry m,Snm and Ty . As initial
conditions, we use the following choices that result from
the above considerations and the lowest orders A° and A" of
the differential Equations (183)—(185):

Roo (F,G,w,wo) =1, (189)
Ryo(F,G,w,wy) =0 forn=1,2,..., (190)
Fw + Gw,
Soo (F, G, w, = , 191
0.0 ( w, Wo) (@ —wo) (@ +wo) (191)
F G
Too (F, G, w, wo) = Wo * oW (192)

(W - wo) (W +wo)

For n > 0, the FT coefficients R, n, Sy,m and T, ,, can be
recursively determined by means of the following relations:

1
= (FSn,m—l _FSn,m - GTn,m—l - GTnm)

Rn+1,m 4 mw

(193)
fori1sms<n+1,

1

Sum = 2( (@ms Dy - w%) ((- Gwo — F(2m + 1)w)Ry,m

+( - Gwo + F(2m + 1)w)Rp, 1mi1)

for 0O<mz<n,
(194)

1
((@m+ Do) - w3)

((-G(+2m)w — Fwo)Rym

Tom

+(—=G(1+2m)w + Fwo)Ry, m1)

for 0Osmz<n.
(195)

where, of course, we have to set R, ;. =Spn =0 in
(193)-(195). It follows that Ry n(F,G,w,wy),
Som(F,G,w,wo) and T, ,,(F,G,w,wy) are rational func-
tions of their arguments.

X(t)=1-

(F-G)(F+G)
4(w? -
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We will show the first few terms of the FT series for X(¢),
Y(t) and Z(0):

Fw + Gw
Y(t) = < _r(uz())> COos CUt
0

. < _(F-G)(F+0)(Fw - Gw0)> (197)

8(w?- wf))2

xcos 3 wt+0(X),

Gw +Fwy\ .
Zty=| ———n t
© ( (wz—wé)>smw

. ( (F-G)(F+G)(-Gw+ Fa)o)> (198)

8(w? - cu%,)2

xsin 3 wt+0(X°),

where A stands for any linear combination of Fand G. We
note that the coefficients contain denominators of the
form @’ - w} and 9w® - w) due to the denominator
(2m +1y’w? - w? in the recursion relations (194) and
(195). Hence, the FT series breaks down at the resonance
frequencies w(™ = 522. This is the more plausible since
according to the above ansatz z, = 1 which is not
compatible with the resonance condition z, = 0
mentioned above.

Using the FT series solution (186)-(188), it is a
straightforward task to calculate the quasienergy £ = ag as

the time-independent part of the FT series of

L wWo +
2 0
Jnwt

=day+ Y ae”,
nez
n#0

G cos(wt)Y (t) + F sin(wt)Z (t)
R+Z(t)

(199)

according to (21). The first few terms of the result are given
by

cos 2 wt +

wg)
(F - G)(F + G)(BF?w? + 3G°w? - 4FGww, - F?w? - G’w})

cos 2 wt

8(w?- (4)5)2(9a)2 - wd)

(196)

3(F - G)*(F + G)?
64 (w? — w) (9w? -

w})

)cos 4 wt +0(1°%),
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wo 2FGw + Fw, + G’wy

5 -

8(w?-wd)

4FG(F? + G)w’ + (F* + 22F*G* + G")w*w, + 12FG (F? + G*)ww? + (3F* + 2F?G* + 3G")w}
+

This is in agreement with the result for linear polari-
zation, see [57], Equation (198), if we set G = 0.

It will be instructive to check the first two terms of (200)
by using the decomposition of the quasienergy into a
dynamical and a geometrical part. In lowest order in A, the
classical RPE solution is a motion on an ellipse with semi
axes

_Fw + Gw,
|wr-wl]

Gw + Fwy

andb:m.

(201)

Hence, the geometrical part of the quasienergy reads

£ = W oabs o) = w (Gw +Fa)0)(Fa)2+ Gwo) o).
in 4(w? - w})
(202)
The dynamical part is obtained as
wo X + Geos(wt) Y + Fsin(wt) Z
Ea=
2R
wo  —4FGw’ -3(F* + G)w’w, + (F* + G*)w]
2 8(w? - wp)’
+0(AY). (203)
The sum of both parts together correctly yields
2 2
ogyrg, Yo 2O FxG)ao 6o (04

2 8(w? - w})

Moreover, the slope relation (132) is satisfied in the
considered order,

of  (Gw + Fuwo) (Fw + Gwo)

o ot (205)

% rop =,
in accordance with [57], Equation (202).

However, as mentioned above, the FT series for the
quasienergy has poles at the values w = w™ =1 m =
1,2, ... and hence the present FT series ansatz is not suited
to investigate the Bloch—Siegert shift for small A. We have
thus chosen another approach in Section 9.

S +0(1°).

128 (w? — wj)

(200)

10.3 Limit case wy — 0

It is well known, see, e.g., [57] or [53], that for wy = 0 and
linear polarization (F = 0) the equation of motion (183) —
(185) has the exact solution

G . (G > G
X(t) = cos<a smwt) = ]0<a> + Zmz_ljz,n(a) cos2mwt,
(206)

Y =0, (207)

Z(t) = —sin(i sin wt) =-2 n§012m+1<660> sin 2m + 1wt,
(208)

where the J; (...) denote the Bessel functions of the first
kind and the series representation results from the Jacobi—
Anger expansion. Upon inserting the Taylor series of J;(x),
that starts with the lowest power x¥, into (206) and (208), we
would obtain the FT series of X(f) and Z(t). On the other
hand, we have considered an FT series of X(¢), Y(¢t) and Z(¢t)
in Section 2 that can be specialized to w, = F = 0. (We will
indicate the specialization to wy = F = 0 by using the no-
tation X (t), Y (t) and Z(t)) The only difference is normali-
zation: The solution (206)—(208) is already normalized and
satisfies X(t) = J, (g), whereas the ansatz (186)-(188) as-
sumes X (¢) = 1. It follows that the FT series (186)-(188),
specialized to wo, = F = 0 is identical with the FT series
obtained by (206)—(208) upon division by J, (%). We have
checked this for a couple of examples. Especially, it follows
that

(209)

Yo .
Rym (g) = [ L (g)] g,
2n

Jo(8)

where g =$ and [f(x)], denotes the coefficient a, of the
Taylor series f (x) = > qa, x".

Unfortunately, it does not seem possible to generalize
the above wy =0 solution obtained for the linear
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polarization case to the elliptical case. However, its FT
series is already known: We have only to specialize
(186)—(188) to the case wg = 0. But unlike in the case of
wo = F = 0, the summation over n involved in this FT series
cannot be performed to obtain a result in closed form.

10.3.1 Limit case wo=0and F - 0

We can only get a result for “almost linear” polarization,
i.e., in the lowest linear order of F. To achieve this result, we
first note that for wg = 0 the functions X (t) and Z (t) will be
even functions of F and Y (¢) will be an odd one. This is
compatible with the above-mentioned fact that Y (t) van-
ishes for F = 0 and can be shown by induction over n using
the recurrence relations (193)-(195). It follows that the
linear part Yi(t) of Y(£) = Y1 () F+Y3(t)F? + ... can be
obtained by applying the recurrence relation (194) that
reduces to

F

Sum = 3ram s Dg) Remt ~Ram) - (210)
(229) ngn < [2]2(m+1) (g)] _ 2]2m (g)] ) (211)
20@m+ D)\ | Jo® |, L[ Jo(® |5/

Now we can perform the sum overn =0, ..., oo without any
problems:

< s Fg*™ <[2]2(m+1) (g):| [ZIZm (g)] )
Som= _
rZ:O ' ngoz( (2m +Nw) Jo(®) [ L Jo(® s

(212)

_ F(]z(m+1) (g) _]2m (g)) (213)

(1+2m)w]y (8)

which, finally, yields

Y(t) =Y (F + O(F°)

"o X A2 cos(2m + Nwt + O(F°),
(214)

where we have multiplied the result by J,(g) in order to
obtain a normalized solution. The analytical approximation
given by (206), (214) and (208) is surprisingly of good quality
even for relative large values of, say, g ~ 1/4, see Figure 9.

10.3.2 Limit case wo=0and F - G
The Rabi problem with circular polarization (F = G) has two

simple periodic (not yet normalized) solutions of
(183)-(185), namely
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Figure9: The periodic solution of the equation of motion (183)-(185)
with the values of the parameters F =1/4,6=w =1,wo =0
according to numerical integration (blue curve) and analytical
approximation (206), (208) and (214) (dashed red curve). The green
curve represents the ellipse in the y —z-plane swept by the
magnetic field vector.

X (t) W — Wy
(Y(t)>=i<—F cos wt), (215)
Z(t) —F sin wt

see, e.g., [57], Equation (69). Let us consider the special
solution for wy = 0

1
X (1) F
(Yc(t) ) = WY, (216)
——sin wt
w

and look for corrections in linear order of the parameter §
describing eccentricity, namely

6=F-G. 217)

To this end, we insert wy = 0 and G = F-6 into the FT
series solution (186)—(188) and expand the FT series co-
efficients up to terms linear in §. The § = O parts of the
coefficients satisfy

R0,0 = 1, (218)
F

Soo=—, (219)
w
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F

Too=—, 220
00 =" (220)

in accordance with (216). The 6-linear parts are given by

Ryi= —i; g 6, forn=12..., (221)
Sno= —31: sz—i 6, forn=1,2,..., (222)
Too = g s (223)
Tn,ozi:sz—:lﬂd, forn=1,2,..., (224)
Sn,1=34:wF2—jlﬂ5, forn=1,2,.... (225)

It is straightforward to perform the summations over n
and to insert the results into (186)—(188) thus obtaining the
analytical approximations

36F
Xa (t) = 1+mcos(2wt), (226)
F 36F?
Y, (t) = ( - a + 4(1)(1:,2_3(02))(:05((00
OF?
- mcos (3wt) , (227)
F 6/(1 3F?
Zy(t) = ( o F (5 40 (P 3w 3w2)>)sin(wt)
6F?

The quality of these approximations is surprisingly
high, see Figure 10, where a deviation between analytical
approximation and numerical integration is only visible
for 6 ~ 7.

11 Application: work performed on
a two level system

As an application of the results obtained in the preceding
sections, we consider the work performed on a TLS by an
elliptically polarized magnetic field during one period. For
a related experiment, see [63]. In contrast to classical
physics, this work is not just a number but, following [64],
has to be understood in terms of two subsequent energy
measurements. At the time 7 = 0, the TLS is assumed to be
in a mixed state according to the canonical ensemble
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Figure 10: The periodic solution of the equation of motion

(183) — (185) with the values of the parameters F = 1,G = 3/4,
w=1,wo =0according to numerical integration (blue curve) and
(normalized) analytical approximations (226)-(228) (dashed red
curve). The green curve represents the ellipse in the y — z-plane
swept by the magnetic field vector.

W = exp(-BH(0))/Tr(exp(-BH (0))), (229
with dimensionless inverse temperature f§ = ,f’B—“’T and
vio 1
H(O):2<1 0). (230)

Then at the time 7 = 0, one performs a Liiders mea-
surement of the instantaneous energy H(0) with the two
possible outcomes +3. Hence after the measurement the
system is in the pure state P; with probability Tr (P;W) =
le#2 or in the pure state P, with probability
Tr(P,W) = 1e#2, where P, and P; are the projectors onto

the eigenstates of H(0), i.e.,

1/1 1 1/1 -1
pel(1) ned(h ),

and Z = e 2 4 o2,

After this measurement, the system evolves according
to the Schrédinger Equation (1) with Hamiltonian H(t). At
the time 7 = 2m, the system hence is in the pure state
U (2m1,0) P, U(2m,0)" with probability Tr(P;W) or in the
pure state U (271, 0) P, U (271, 0)" with probability Tr (P, W).
Then a second measurement of the instantaneous energy

(231)
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Figure11: The mean value (w) of the work performed of a two level system (TLS) as a function of the normalized driving frequency w/wy. The left

panel contains the numericalresults for the fixed values F=0.5,6G=0.1, B

=10 and shows a prominent maximum at Wyax ~ 0.941843 wy’ as well

as alarge number of smaller maxima. The right panelis devoted to the limit of small amplitudes and contains the numerical results for F=0.05,
G =0.01, B =10 (blue dots) that agree well with the analytical limit according to (235) (red curve). For the right panel, the work is maximal at

w0 ~0.857295 wy.

max

H (2m) = H(0) is performed, again with the two possible
outcomes +%. Both measurements together have four
possible outcomes symbolized by pairs (i,j) wherei,j=1, 2
that occur with probabilities

p;; = Tr (W P)Tr (P, U (2m,0) P U (21,0)"), 232)

such that ¥} jaPij = 1. The differences of the outcomes of
the energy measurements yield three possible values w =
+v, 0 for the work performed on the system with respective
probabilities that can be calculated by using the mono-
dromy matrix (56). The result is identical to that obtained
for the case of linear polarization in [53] since it depends
only on the parameters a,r of the monodromy matrix.
Using the above probabilities, it is straightforward to
calculate the mean value of the performed work

(W) = wo (P, — P1a) = bwor’ (1 - rz)sinzatanh<%v> =0,

(233)

see [53], Equation (55). A detailed investigation of the work
statistics is beyond the scope of the present article. We will
only give an example of the frequency dependence of (w)
that exhibits resonance phenomena similar to those
mentioned in Section 9, see Figure 11.

However, a clear difference to the situation dealt with in
Section 9 is that for small amplitudes the frequency wmax
where (w) is maximal does not approach the eigenfrequency
wo of the TLS but some other limit w %), in the interval

wl (234)

max

O.8(Uo< <0.9(U0,

depending on the eccentricity of the elliptic polarization.
The small amplitude limit (w) ©) of (w) can be calculated by
using the lowest order approximation derived in Section
10.2 and reads:

ﬂz sin2<@)tanh B (Fw + Gwo)?,
~ W) w 2

0 _
W™= (w? - wd
(235)

see Figure 11 for an example.

12 Summary and outlook

The time evolution of the TLS subject to a monochromatic,
circularly polarized external field (RPC) can be solved in
terms of elementary functions, and the analogous problem
with linear polarization (RPL) leads to the confluent Heun
functions. However, these two problems are only limit
cases of the general Rabi problem with elliptical polariza-
tion (RPE), and it is a natural question to look for a solution
of the latter valid in the realm where the rotating wave
approximation breaks down. This is done in the present
paper by performing the following steps:

(1) Reduction to the classical RPE,

(2) reduction of the classical time evolution to the first
quarter period,

transformation of the classical equation of motion to
two third order differential equations, and

solution of the latter by power series.

€)
(4)

This strategy has been checked by comparison with the
numerical integration of the equations of motion for an
example. Moreover, we have calculated the various Fourier
series of the components of the periodic solution and the
corresponding quantum or classical Floquet exponent (or
quasienergy). Further, we have obtained the first terms of
the power series for the resonance frequencies w. r. t. the
semi-axes F and G of the polarization ellipse. The latter
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were checked by comparison with the partially known results
in the circular (F = G) and in the linear polarization limit
(G = 0). This kind of result could not be obtained by a pure
numerical treatment of RPE and thus justifies our analytical
approach. Analogous remarks apply to the problem of how
much work is performed on a TLS by the driving field. For a
first overview numerical methods are sufficient, see Figure 11,
but analytical methods yield more detailed results, e.g., for
the small amplitude limit, see Section 11.

Other limit cases that can be discussed without recourse
to the third-order differential equation are the adiabatic limit
(w — 0), the small amplitude limit (F, G — 0) and the limit of
vanishing energy splitting of the TLS (wy — 0). In the latter
case, it turns out that the exact solution of the special case
wo = F =0 cannot be transferred to the elliptical domain
except for the limit cases F — 0 and F — G. Moreover, we have
checked some general statements on the Rabi problem [57]
like the slope relation (132) using our analytical approxima-
tions for some of these limit cases, as well as the power series
solutions mentioned above.

It appears that this completes the set of problems related
to the RPE that can be addressed with the present methods,
with one exception: In principle, it would also be possible to
solve the underlying s = 1/2 Schrédinger equation directly by
a transformation into a third-order differential equation.
However, we have omitted this topic, firstly because of lack of
space, and secondly because it is not clear which new results
would follow from the direct solution.
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