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Abstract: Based on Biot’s model for saturated porous
media, the governing equation of fluid-saturated porous
rectangular plates is presented, in which the compress-
ibility of solid particles and fluid and the viscosity of pore
fluid is taken into account. A series solution is given for
simply-supported fluid-saturated porous plates. The ac-
curacy of the solution is validated by degenerating the
fluid-saturated porous rectangular plates into single-phase
solid rectangular plates. As a numerical example, the free
vibration characteristic and the dynamic response under
harmonic loads are analysed. The influence of surface
infiltration conditions, porosity, pore fluid permeability
coefficient and loading frequency on the free vibration
frequency is discussed.

Keywords: dynamic response; free vibration; power series
method; rectangular plates; saturated porous media.

1 Introduction

Since Biot (1956) [1, 2] put forward the basic equations
describing the dynamic characteristics of saturated porous
media, the theory of porous media has become the founda-
tion for studying the dynamic characteristics and performing
dynamic analysis of saturated porous media, and has been
widely used in different engineering of a variety of fields.

To date, research on saturated porousmedia in the fields
of geotechnical engineering, earthquake engineering and
geophysical has mainly focused on geotechnical materials
whose geometric characteristics are associated with the half-
space domain or an infinite horizontal layer, including
theoretical analysis and numerical simulation of dynamic
responses [3–10] and wave propagation characteristics [11–
14]. However, few studies have been focused on flexible
structures, such as porous media beams, plates and shell

structures. On the one hand, the behaviour of flexible porous
structures is an important issue in biomechanics [15, 16], such
as themechanical analysis of cartilage tissue and the stems of
plants. On the other hand, porous materials such as poly-
urethane foams and fibrous materials have been widely used
in the automotive and aerospace industries for damping and
sound absorption [17, 18]. Therefore, it is necessary to further
study the static and dynamic mechanical behaviours of
flexible porous structures.

In terms of fluid-saturated porous plate structures,
considering the lateral diffusion of fluid, Taber [19] estab-
lished the solid-phase and fluid-phase governing equation
of the isotropic fluid-saturated porous media based on
Biot’s model to analyse the dynamic bending of simply
supported rectangular porous plates using the Laplace
transformation and the perturbationmethod. Leclaire et al.
[20] analysed the transverse vibration problem of rectan-
gular thin plates for four-edge-clamped porous media us-
ing the Rayleigh–Ritz method, which takes the effect of
fluid viscosity on energy dissipation into account. Based on
the research of Theodorakopoulos and Beskos [21] on the
bending vibration of porous elastic plates and Biot’s the-
ory, Anke and Heinz [22] established the dynamic mathe-
matical model of saturated porous elastic Mindlin plates
and gave the principle of virtual work using the deflection,
angle and pore stress as basic unknown quantities. Based
on the classical theory of homogeneous plates and Biot’s
stress–strain relations in an isotropic porous medium with
a uniformporosity, Feng-xi andXiao-lin [23] researched the
dynamic bending mathematical model of saturated porous
elastic plates, and the influence of porosity, tortuosity and
permeability on the resonances was studied to determine
the condition of maximum damping considering these
parameters. Nagler and Schanz [24], using the series
approximation method, obtained another plate shear
deformation theory of porousmaterial plates.Many studies
on the mechanical response of fluid-saturated porous
plates used various simplified plate theories, such as
classical thin plate theory and Reissner–Mindlin thick
plate theory. Rezaei and Saidi [25] presented an exact so-
lution for the free vibration analysis of porous rectangular
plates under undrained conditions, and the results show
that the effect of coupled fluid–solid deformation may not
be disregarded. However, other studies have shown that
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the mechanical quantity cannot be a polynomial of coor-
dinate variables in the thickness direction. In various
simplified theories, incompatibility among the funda-
mental equations can be found, that is, some mechanical
quantities can meet only some and not all of the basic
equations, and the error will increase greatly with
increasing thickness [26].

Based on Biot’s model of porous media and three-
dimensional elastic theory, the dynamic governing equation
of fluid-saturated porous rectangular plates is established in
this paper. The free vibration and forced vibration responses
of simply supported fluid-saturated porous rectangular
plates are researched. The influence of the surface infiltra-
tion conditions, porosity, pore fluid permeability coefficient
and loading frequency parameters on the free vibration
frequency, the solid skeleton stress, the pore fluid pressure,
the solid skeleton displacement andpore fluiddisplacement
of plates are analysed via numerical examples.

2 The governing equation of
fluid-saturated porous
rectangular plates

Arectangularplateoccupying the region [0,L1]× [0,L2]× [−H/
2, H/2] in the unstressed reference configuration is described
in rectangular Cartesian coordinates xi (i = 1, 2, 3). Based on
Biot’s model of porous media, the basic equations of homo-
geneous saturated porous media are as follows.

The constitutive equations for a fluid-saturated porous
media are

σij � λεkkδij + 2μεij − αpδij (1)

 p � Mζ − αMεkk (2)

The strain tensor for infinitesimal deformations is
related to the displacements ui by

εij � 1
2
(ui, j + uj, i) (3)

The equilibrium equations in the absence of a body
force are

σij, j � ρüi + ρf ẅi (4)

−p, i � ρf üi +mẅi + bẇi (5)

where σij and p are the total stress components and pore
fluid pressure (i, j = 1, 2, 3), respectively. ui and wi are the
displacement components of the solid skeleton and pore
fluid, that is e = ui,i, and ζ = −wi,i. λ and μ are the Lame
constants and εij is the strain vector of the solid skeleton. b

is a parameter accounting for internal friction due to the
relative motion between the solid and the pore fluid and
b = η/kf, where kf is the dynamic permeability and η is the
viscosity of the fluid. α and M are the Biot parameters
considering compressibility of the two-phasematerial, and
α = 1 − K/Ks, 1/M = (α−n)/Ks + n/Kf, where K, Ks and Kf are
the bulk modulus of the solid skeleton, solid particles and
pore fluid, respectively, while n is the soil porosity. ρ is the
total density of the saturated soil and can be represented by
ρ = (1 − n)ρs + nρf, where ρs and ρf are the densities of the
solid phase and liquid phase, respectively. m is a para-
metric representation related to the mass density of the
pore fluid and pore geometry features m = ρf/n.

Combining Eqs. (1)–(5), the governing equations of the
dynamic response of the saturatedmedia canbe obtained as

μ∇2u + (λ + μ + α2M) ∇e − αM∇ζ � ρü + ρf ẅ (6)

∇(αMe −Mζ ) � (ρf ü +mẅ) + bẇ (7)

Considering the simply supported boundary condi-
tions, that is

σ11 � 0, u2 � u3 � 0,w2 � w3 � 0,  at x1 � 0, L1;

σ22 � 0, u1 � u3 � 0,w1 � w3 � 0,  at x2 � 0, L2.
(8)

3 The exact solution for
fluid-saturated porous
rectangular plates

A solution for the displacement field in the fluid-saturated
porous rectangular plate is sought in the form.

u1 � ∑
∞

m1�0,n1�0
U1(x3) cos m1πx1

L1
 sin 

n1πx2
L2

 eiwt ,

w1 � ∑
∞

m1�0,n1�0
W 1(x3) cos m1πx1

L1
 sin 

n1πx2
L2

 eiwt

u2 � ∑
∞

m1�0,n1�0
U2(x3) sin m1πx1

L1
 cos 

n1πx2
L2

 eiwt ,

w2 � ∑
∞

m1�0,n1�0
W2(x3) sin m1πx1

L1
 cos 

n1πx2
L2

 eiwt

u3 � ∑
∞

m1�0,n1�0
U3(x3) sin m1πx1

L1
 sin 

n1πx2
L2

 eiwt ,

w3 � ∑
∞

m1�0,n1�0
W3(x3) sin m1πx1

L1
 sin 

n1πx2
L2

 eiwt

(9)

where ω denotes the angular frequency. Assume that
ξ1 = m1π/L1, ξ2 = n1π/L2 and that m1 and n1 are positive in-
tegers. The chosen displacement field described by Eq. (9)
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satisfies the homogeneous boundary conditions described
by Eq. (8) at simply supported boundaries. Substituting Eqs.

(3) and (9) into the constitutive equation of Eq. (1), the
stresses can be given in terms of displacements as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11 � ∑
m1 ,n1

[ − (λ + 2μ + α2M) ξ 1U1 − αMξ 1W 1 − (λ + α2M) ξ 2U2 − αMξ 2W2 + (λ + α2M) U ′
3 + αMW ′

3] sin ξ 1x1  sin ξ 2x2eiωt
σ22 � ∑

m1 ,n1
[ − (λ + α2M) ξ 1U1 − αMξ 1W 1 − (λ + 2μ + α2M) ξ 2U2 − αMξ 2W2 + (λ + α2M) U ′

3 + αMW ′
3] sin ξ 1x1  sin ξ 2x2eiωt

σ33 � ∑
m1 ,n1

[ − (λ + α2M) ξ 1U1 − αMξ 1W 1 − (λ + α2M) ξ 2U2 − αMξ 2W2 + (λ + 2μ + α2M) U ′
3 + αMW ′

3] sin ξ 1x1  sin ξ 2x2eiωt
σ12 � ∑

m1 ,n1
μ(ξ 2U1 + ξ 1U2) cos ξ 1x1  cos ξ 2x2eiωt

σ13 � ∑
m1 ,n1

μ(U ′
1 + ξ 1U3) cos ξ 1x1  sin ξ 2x2eiωt

σ23 � ∑
m1 ,n1

μ(U ′
2 + ξ 2U3) sin ξ 1x1  cos ξ 2x2eiωt

p � ∑
m1 ,n1

(αMξ 1U1 +Mξ 1W1 + αMξ 2U2 +Mξ 2W2 − αMU ′
3 −MW ′

3) sin ξ 1x1  cos ξ 2x2eiωt (10)

where a prime denotes differentiation with respect to x3.
Substituting Eq. (9) into Eqs. (6) and (7), the following
coupled system of second-order ordinary differential
equations can be obtained:

[ρω2 − (ξ 21 + ξ 22) μ − (λ + μ + α2M)] ξ 21U1 + μU ′​′
1

+ (ρfω2 − αMξ 21) W 1 − (λ + μ + α2M) ξ 1ξ 2U2 − αMξ 1ξ 2W2

+ (λ + μ + α2M) ξ 1U ′
3 + αMξ 1W

′
3 � 0

(11a)

− (λ + μ + α2M) ξ 1ξ 2U1 − αMξ 1ξ 2W 1

+ [ρw2 − (ξ 21 + ξ 22) μ − (λ + μ + α2M) ξ 22]U2 + μU ′​′
2

+ (ρf w2 − αMξ 22) W2 + (λ + μ + α2M) ξ 2U ′
3 + αMξ 2W

′
3 � 0

(11b)

− (λ + μ + α2M) ξ 1U ′
1 − αMξ 1W

′
1 − (λ + μ + α2M) ξ 2U ′

2

− αMξ 2W
′
2 + [ρω2 − μ(ξ 21 + ξ 22)] U3 + (λ + 2μ + α2M) U ′​′

3

+ ρfω
2W3 + αMW ′​′

3 � 0

(11c)

(ρfω2 − αMξ 21) U1 + (mω2 − bωi −Mξ 21) W1 − αMξ 1ξ 2U2

−Mξ 1ξ 2W2 + αMξ 1U
′
3 +Mξ 1W

′
3 � 0

(11d)

− αMξ 1ξ 2U1 −Mξ 1ξ 2W 1 + (ρfω2 − αMξ 22) U2

+ (mω2 − bωi −Mξ 22) W2 + αMξ 2U
′
3 +Mξ 2W

′
3 � 0

(11e)

− αMξ 1U
′
1 −Mξ 1W

′
1 − αMξ 2U

′
2 −Mξ 2W

′
2 + ρfω

2U3 + αMU ′​′
3

+ (mω2 − bωi) W3 +MW ′​′
3 � 0

(11f)

The power series method is used to obtain the solution
for Eq. (11). According to a general method, we assume a
power series solution for the displacement functions Ui(x3)
and Wi(x3) as

Ui(x3) � ∑
∞

β�0
Ũ(β)i xβ3 ,Wi(x3) � ∑

∞

β�0
W̃(β)

i xβ3 (12)

Substituting Eq. (12) into Eq. (11) yields the following
coupled recurrence algebraic relations:

W̃(β+1)
1 � − ρfω2

mω2 − bωi
 Ũ(β+1)1 + ρfω2ξ 1

(mω2 − bωi)(β + 1)  Ũ(β)3

+ ξ 1
β + 1

 W̃(β)
3

(13a)

W̃(β+1)
2 � − ρfω2

mω2 − bωi
 Ũ(β+1)2 + ρfω2ξ 2

(mω2 − bωi)(β + 1)  Ũ(β)3

+ ξ 2
β + 1

 W̃(β)
3

(13b)

W̃(β+1)
3 � αM(ξ 21 + ξ 22) − ρfω2

Mξ 1(β + 1)  Ũ(β)1

+ ρfω2ξ 2 − αξ 2(mω2 − bωi)
ρfω2(β + 1)  W̃(β)

2

+ (αMξ 22 − ρfω2)(mω2 − bωi) + ρfω2Mξ 21
ρfω2Mξ 1(β + 1)  W̃(β)

1

− αŨ(β+1)3

(13c)
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Ũ(β+2)1 � (αρf − ρ) ω2 + (ξ 21 + ξ 22)(λ + 2μ)
μ(β + 2)(β + 1)  Ũ(β)1

− (λ + μ) ξ 1ξ 2(mω2 − bωi)
μρfω2(β + 2)(β + 1)  W̃(β)

2

+ [αρfω2 + (λ + μ)ξ 22](mω2 − bωi) − (ρfω2)2
μρfω2(β + 2)(β + 1)  W̃(β)

1

− (λ + μ) ξ 1
μ(β + 2)  Ũ(β+1)3

(13d)

Ũ(β+2)2 � ξ 2[(λ + 2μ)(ξ 21 + ξ 22) + (αρf − ρ) ω2]
μξ 1(β + 2)(β + 1)  Ũ(β)1

− (λ + μ)ξ 2
μ(β + 2)  Ũ(β+1)3

+ (mω2 − bωi) ξ 2[(αρf − ρ)ω2 + (ξ 21 + ξ 22) μ + (λ + μ) ξ 22]
μρfω2ξ 1(β + 2)(β + 1)  W̃(β)

1

− (mω2 − bωi)[ρω2 + μ(ξ 21 + ξ 22) + (λ + μ) ξ 22] − (ρfω2)2
μρfω2(β + 2)(β + 1)  W̃(β)

2

(13e)

Ũ(β+2)3 � (λ + μ) ξ 1(λ + 2μ)(β + 2)  Ũ(β+1)1 + (λ + μ) ξ 2(λ + 2μ)(β + 2)  Ũ(β+1)2

+ (αρf − ρ) ω2 + μ(ξ 21 + ξ 22)(λ + 2μ)(β + 2)(β + 1)  Ũ(β)3

+ α(mω2 − bωi) − ρfω2

(λ + 2μ)(β + 2)(β + 1)  W̃(β)
3

(13f)

Clearly, the recurrence relations described in Eq. (13)

are evaluated successively for β = 0, 1, … , to obtain Ũ
(β)
i

and W̃
(β)
i In terms of the eight arbitrary constants Ũ

(0)
1 ,

W̃
(0)
1 , W̃

(0)
2 , Ũ

(0)
3 , W̃

(0)
3 , Ũ

(1)
1 , Ũ

(1)
2 , and Ũ

(1)
3 and the angular

frequency ω as

Ũ(β)i � A(β)i1 (ω)Ũ(0)
1 + A(β)i2 (ω)W̃(0)

1

+ A(β)i3 (ω)W̃(0)
2 + A(β)i4 (ω)Ũ(0)

3 + A(β)i5 (ω)W̃(0)
3

+ A(β)i6 (ω)Ũ(1)
1 + A(β)i7 (ω)Ũ(1)

2 + A(β)i8 (ω)Ũ(1)
3

(14a)

W̃(β)
i � B(β)i1 (ω)Ũ(0)

1 + B(β)i2 (ω)W̃(0)
1 + B(β)i3 (ω)W̃(0)

2

+ B(β)i4 (ω)Ũ(0)
3 + B(β)i5 (ω)W̃(0)

3 + B(β)i6 (ω)Ũ(1)
1

+ B(β)i7 (ω)Ũ(1)
2 + B(β)i8 (ω)Ũ(1)

3

(14b)

Here, A(β)
ij (ω) and B(β)

ij (ω) are known polynomials in

ω and they are determined by the recurrence formula in
Eq. (13).

Substituting Eq. (14) into Eq. (12) gives the rewritten
displacement expression as

Ui(x3) � Ai1(x3)Ũ(0)
1 + Ai2(x3)W̃(0)

1 + Ai3(x3)W̃(0)
2

+ Ai4(x3)Ũ(0)
3 + Ai5(x3)W̃(0)

3 + Ai6(x3)Ũ(1)
1

+ Ai7(x3)Ũ(1)
2 + Ai8(x3)Ũ(1)

3

(15a)

Wi(x3) � Bi1(x3)Ũ(0)
1 + Bi2(x3)W̃(0)

1 + Bi3(x3)W̃(0)
2

+ Bi4(x3)Ũ(0)
3 + Bi5(x3)W̃(0)

3 + Bi6(x3)Ũ(1)
1

+ Bi7(x3)Ũ(1)
2 + Bi8(x3)Ũ(1)

3

(15b)

where Aij(x3) � ∑∞

β�0A
(β)
ij xβ3, and Bij(x3) � ∑∞

β�0B
(β)
ij xβ3. The

degree of each of the polynomials increases as more terms
are retained in the series expansion in Eq. (12).

Substituting the expressions of displacement in
Eq. (15) into the stress components in Eq. (10) repre-
sented by displacement yields the following expression
of stress:

S � QijŨ (16)

where S = [σ33 σ13 σ23 p]T, Ũ � [ Ũ(0)
1 W̃

(0)
1 Ũ

(0)
2

W̃
(0)
2 Ũ

(0)
3 W̃

(0)
3 Ũ

(1)
1 Ũ

(1)
3 ]T , and the matrix of coeffi-

cientsQij is a 4 × 8 matrix for each i, j given in Appendix A.
At this point, a series solution of the displacement and

stress components are obtained.

3.1 The free vibration of fluid-saturated
porous rectangular plates

If the upper and lower surfaces of the plate are both freely
permeable, and the boundary conditions for the free vi-
bration are:

σ33 � 0, σ13 � σ23 � 0, p � 0 at x3 � −H/2
σ33 � 0, σ13 � σ23 � 0, p � 0 at x3 � H/2 (17)

Therefore, substituting Eq. (16) into the boundary
conditions in Eq. (17) yields the frequency equation in
matrix form:

Qij(x3) Ũ � 0 (18)

where Qij(x3) is an 8 × 8 matrix and given in Appendix B.
If the upper and lower surfaces of the plate are

impermeable, the boundary conditions for the free vibra-
tion change to be:

σ33 � 0, σ13 � σ23 � 0,w3 � 0 at x3 � −H/2
σ33 � 0, σ13 � σ23 � 0,w3 � 0 at x3 � H/2 (19)

Similarly, Eqs. (15b), (16) and (19) can obtain thematrix
form of Eq. (20):
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Gij(x3) Ũ � 0 (20)

where Gij(x3) is an 8 × 8 matrix and given in Appendix C.
The left coefficient determinant of the above equation

needs to be set to zero to ensure that a nontrivial solution of
Eq. (18) or Eq. (20) exists. Thus, the free vibration frequency
of fluid-saturated porous rectangular plates can be ob-
tained if the upper or lower surfaces are either freely
permeable or completely impermeable.

3.2 The forced vibration of fluid-saturated
porous rectangular plates

Since an arbitrary load function can be expanded as a
double Fourier series in x1 and x2, considering the upper
and lower surfaces of the plate to be freely permeable, the
boundary conditions for the forced vibration with the
harmonic load can be expressed as:

σ33 � qeiωt  sin ξ 1x1  sin ξ 2x2,σ13 � σ23 � 0,p � 0 at x3 � −H/2
σ33 � 0,σ13 � σ23 � 0,p � 0 at x3 � −H/2

(21)

where q is the amplitude of the normal loads applied on the
top surfaces.

Eqs. (16) and (21) can be combined to obtain

Qij(x3) Ũ � P (22)

where P � [−q 0 0 0 0 0 0 0 ]T is a vector of length 8.
If the upper and lower surfaces of the plate are imper-

meable, theboundary conditions for the forcedvibrationare:

σ33 � qeiωt  sin ξ 1x1  sin ξ 2x2,σ13 � σ23 � 0,w3 � 0 at x3 � −H/2
σ33 � 0,σ13 � σ23 � 0,w3 � 0 at x3 � −H/2

(23)

Similarly, Eq. (24) can be obtained:

Gij(x3)Ũ � P (24)

After determining the constants Ũ
(0)
1 , W̃

(0)
1 , W̃

(0)
2 , Ũ

(0)
3 ,

W̃
(0)
3 , Ũ

(1)
1 , Ũ

(1)
2 , and Ũ

(1)
3 with Eq. (22) or Eq. (24), the

transient response of fluid-saturated porous rectangular
plates with harmonic load can be computed by combining
Eqs. (15) and (16).

4 Results and discussion

4.1 Results validation

To verify the validity of the presented solution in this pa-
per, the fluid-saturated porous rectangular plates are

degenerated into single-phase solid rectangular plates by
ignoring the pore fluid pressure p and setting n = 0, ρf = 0
and η = 0. Then, Eq. (18) transforms into

Q′
ij(x3)Ũ′ � 0 (25)

where Q′
ij(x3) is a 6 × 6 matrix and given in Appendix D.

Ũ
′ � [ Ũ(0)

1 Ũ
(0)
2 Ũ

(0)
3 Ũ

(1)
1 Ũ

(1)
2 Ũ

(1)
3

]T .
The parameters selected for the numerical simulation

of a fluid-saturated porous rectangular plate are as follows
[24]:

E � 1.44 × 1010  Pa, ν � 0.2, ρs � 2.458 kg/m3,

ρf � 1.000 kg/m3,Ks � 3.6 × 1010  pa, L1 � L2 � 1 m,

Kf � 3.3 × 1010  pa, n � 0.19 and H � 0.1 m

where E is Young’s modulus and ν is Poisson’s ratio.

The dimensionless fundamental frequencies ω �
ωL21
H

�
ρ
E

√
obtained from Eq. (25) are given in Table 1. The listed

values in Table 1 indicate that our results are in excellent
agreement with those presented by Senthil and Bara [27].
We have also listed the natural frequencies computed from
the three plate theories in Table 1 to compare the exact
results with those obtained from classical plate theory
(CPT) [28], first-order shear deformation theory (FSDT) [29]
and third-order shear deformation theory (TSDT) [30]. The
comparative results show the validity of the proposed
algorithm.

4.2 Free vibration

To analyse the influence of the surface infiltration condi-
tions on the frequency of the fluid-saturated porous rect-
angular plates, the above calculation parameters are
adopted to calculate the natural frequencies of plates ac-
cording to Eqs. (18) and (20), and the finite series truncated
term is β = 10. The boundary conditions on the upper and
lower surfaces are permeable and completely imperme-
able, respectively. The results are listed in Table 2, showing

Table : Comparison of exact natural frequencies with natural fre-
quencies from the literature with  terms in the series solution.

Theory ω()
; ω()

; ω()
;

L/H = 

Present analysis . . .
Senthil S.Vel [] . . .
CPT [] . . .
FSDT [] . . .
TSDT [] . . .
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that the surface infiltration conditions have a great influ-
ence on the basic natural frequency of vibration but have
little impact on the higher-order frequency.

The natural frequencies are calculated according to
Eqs. (18) and (20) under different porosities, permeability
coefficients and boundary permeability conditions. The
results are listed in Tables 3–6. Tables 3 and 4 show that the
natural frequencies of the fluid-saturated porous plates
increase with the permeability coefficient whether the up-
per and lower surfaces are permeable or completely
impermeable. Furthermore, the permeability coefficient
has more of an influence on the natural frequencies if the
upper and lower surfaces are freely permeable. Tables 5
and 6 indicate that the natural frequencies decrease with
increasing porosity, whether the upper and lower surfaces
are permeable or completely impermeable, and that the
porosity has a greater influence on the natural frequencies.
These phenomena result from the effect of deformation
coupling between the solid and fluid.

4.3 Harmonic vibration

The response of the fluid-saturated porous rectangular
plates under the dynamic load is analysed with the har-
monic load q = 1000 pa. The results for the forced vibration
are plotted in Figure 1 with the harmonic load and forcing
frequencies ω = 5, 10, 20 and 50. The solid skeleton stress,
the pore fluid pressure, the solid skeleton displacement
and the pore fluid displacement of the fluid-saturated
porous rectangular plates decrease with increasing forcing

frequencies whether the upper and lower surfaces are
permeable or completely impermeable, but the transverse
shear stress σ23 and the transverse normal stress σ33 of the
solid skeleton are influenced only slightly. Due to the
strong transverse pressure gradients that occur on the
beam sections and are undertaken by both the solid skel-
eton and pore fluid as the beam bends, the transverse
bending deformation causes compression in the upper
beam for x3 < h/2 and tension in the lower beam for x3 > h/2,
which is similar to the stress distribution in a single-phase
continuous elastic beam. The relationship between the
total pressure and pore pressure leads to positive pore
pressures in the compression zone of the upper beam and
negative pore pressures in the tension zone of the lower
beam, resulting in pore suction, as shown in Figure 1.

Considering different values of porosity, the variations
in the solid skeleton stress, pore fluid pressure and dis-
placements of the solid skeleton and fluid in the thickness
direction are shown in Figure 2 with a frequency of ω = 10.

Table : Natural frequencies of the fluid-saturated porous rectan-
gular plateswith permeable and completely impermeable upper and
lower surfaces.

L/H =  ω()
; ω()

; ω()
; ω()

; ω()
;

Free
permeable

. . . . .

Completely
impermeable

. . . . .

Table : Variations in the natural frequencies of fluid-saturated
porous rectangular plateswith kf under freely permeable conditions.

L/H =  ω()
; ω()

; ω()
; ω()

; ω()
;

kf =  × 
−

. . . . .
kf =  × 

−
. . . . .

kf =  × 
−

. . . . .
kf =  × 

−
. . . . .

kf =  × 
−

. . . . .
kf =  × 

−
. . . . .

Table : Variations in the natural frequencies of fluid-saturated
porous rectangular plates with kf under freely impermeable
conditions.

L/H =  ω()
; ω()

; ω()
; ω()

; ω()
;

kf =  × 
−

. . . . .
kf =  × 

−
. . . . .

kf =  × 
−

. . . . .
kf =  × 

−
. . . . .

kf =  × 
−

. . . . .
kf =  × 

−
. . . . .

Table : Variations in the natural frequencies of fluid-saturated
porous rectangular plates with n under freely permeable conditions.

L/H =  ω()
; ω()

; ω()
; ω()

; ω()
;

n = . . . . . .
n = . . . . . .
n = . . . . . .
n = . . . . . .
n = . . . . . .

Table : Variations in the natural frequencies of fluid-saturated
porous rectangular plates with n under freely impermeable
conditions.

L/H =  ω()
; ω()

; ω()
; ω()

; ω()
;

n = . . . . . .
n = . . . . . .
n = . . . . . .
n = . . . . . .
n = . . . . . .
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Figure 1: The variations in the solid skeleton stress, pore fluid pressure, solid skeleton displacement and pore fluid displacement in the
thickness direction with ω.
(1), (3), (5), (7), (9), (11), (13) and (15) are under freely permeable conditions, and (2), (4), (6), (8), (10), (12), (14) and (16) are under completely
impermeable conditions.
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Figure 1: Continued.
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Figure 2: The variations in the solid skeleton stress, pore fluid pressure, solid skeleton displacement and pore fluid displacement in the
thickness direction with n.
(1), (3), (5), (7), (9), (11), (13) and (15) are under freely permeable conditions, and (2), (4), (6), (8), (10), (12), (14) and (16) are under completely
impermeable conditions.
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Figure 2: Continued.
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Figure 3: The variations in the solid skeleton stress, pore fluid pressure, solid skeleton displacement and pore fluid displacement in the
thickness direction with kf.
(1), (3), (5), (7), (9), (11), (13) and (15) are under freely permeable conditions, and (2), (4), (6), (8), (10), (12), (14) and (16) are under completely
impermeable conditions.
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The results indicate that porosity affects the solid skeleton
stress, pore fluid pressure and solid skeleton and fluid
displacements, although the upper and lower surface
infiltration conditions have a more significant effect.

To analyse the influence of the permeability coeffi-
cient on the dynamic responses of plates, Figure 3 shows
the variations in the solid skeleton stress, pore fluid

pressure and solid skeleton and fluid displacements in
the thickness direction. The results indicate that the
permeability coefficient has an impact on the solid
skeleton stress, pore fluid pressure and solid skeleton
and fluid displacements. Moreover, these factors can
be affected significantly by the surface infiltration
conditions.
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5 Conclusions

A series solution is presented for the dynamic responses of
a simply supported fluid-saturated porous rectangular
plate. Considering the compressibility of solid particles
and fluid and the viscosity of pore fluid, the dynamic re-
sponses of simply supported fluid-saturated porous rect-
angular plates and the influence of the surface infiltration
conditions, porosity and pore fluid permeability coefficient
on the free vibration frequency of porous plates are dis-
cussed. Parametric studies indicate that the effect of

coupling between a solid and fluid is important for
increasing the frequency and must be considered in the
case of dynamic responses.
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Appendix A

Q11 � [−(λ + α2M) ξ 1A11(x3) − (λ + α2M) ξ 2A21(x3) + (λ + 2μ + α2M) A31(x3)′
−αMξ 1B11(x3) − αMξ 2B21(x3) + αMB31(x3)′ ]

Q12 � [−(λ + α2M) ξ 1A12(x3) − (λ + α2M) ξ 2A22(x3) + (λ + 2μ + α2M) A32(x3)′
−αMξ 1B12(x3) − αMξ 2B22(x3) + αMB32(x3)′ ]

Q13 � [−(λ + α2M) ξ 1A13(x3) − (λ + α2M) ξ 2A23(x3) + (λ + 2μ + α2M) A33(x3)′
−αMξ 1B13(x3) − αMξ 2B23(x3) + αMB33(x3)′ ]

Q14 � [−(λ + α2M) ξ 1A14(x3) − (λ + α2M) ξ 2A24(x3) + (λ + 2μ + α2M) A34(x3)′
−αMξ 1B14(x3) − αMξ 2B24(x3) + αMB34(x3)′ ]

Q15 � [−(λ + α2M) ξ 1A15(x3) − (λ + α2M) ξ 2A25(x3) + (λ + 2μ + α2M) A35(x3)′
−αMξ 1B15(x3) − αMξ 2B25(x3) + αMB35(x3)′ ]

Q16 � [−(λ + α2M) ξ 1A16(x3) − (λ + α2M) ξ 2A26(x3) + (λ + 2μ + α2M) A36(x3)′
−αMξ 1B16(x3) − αMξ 2B26(x3) + αMB36(x3)′ ]

Q17 � [−(λ + α2M) ξ 1A17(x3) − (λ + α2M) ξ 2A27(x3) + (λ + 2μ + α2M) A37(x3)′
−αMξ 1B17(x3) − αMξ 2B27(x3) + αMB37(x3)′ ]

Q18 � [−(λ + α2M) ξ 1A18(x3) − (λ + α2M) ξ 2A28(x3) + (λ + 2μ + α2M) A38(x3)′
−αMξ 1B18(x3) − αMξ 2B28(x3) + αMB38(x3)′ ]

Q21 � μA11(x3)′ + μξ 1A31(x3), Q22 � μA12(x3)′ + μξ 1A32(x3), Q23 � μA13(x3)′ + μξ 1A33(x3)
Q24 � μA14(x3)′ + μξ 1A34(x3), Q25 � μA15((x3)′ + μξ 1A35(x3), Q26 � μA16(x3)′ + μξ 1A36(x3)

Q27 � μA17(x3)′ + μξ 1A37(x3), Q28 � μA18(x3)′ + μξ 1A38(x3)
Q31 � μA21(x3)′ + μξ 2A31(x3), Q32 � μA22(x3)′ + μξ 2A32(x3), Q33 � μA23(x3)′ + μξ 2A33(x3)
Q34 � μA24(x3)′ + μξ 2A34(x3), Q35 � μA25(x3)′ + μξ 2A35(x3), Q36 � μA26(x3)′ + μξ 2A36(x3)

Q37 � μA27(x3)′ + μξ 2A37(x3), Q38 � μA28(x3)′ + μξ 2A38(x3)
Q41 � αMξ 1A11(x3) + αMξ 2A21(x3) − αMA31(x3)′ +Mξ 1B11(x3) +Mξ 2B21(x3) −MB31(x3)′
Q42 � αMξ 1A12(x3) + αMξ 2A22(x3) − αMA32(x3) +Mξ 1B12(x3) +Mξ 2B22(x3) −MB32(x3)′
Q43 � αMξ 1A13(x3) + αMξ 2A23(x3) − αMA33(x3)′ +Mξ 1B13(x3) +Mξ 2B23(x3) −MB33(x3)′
Q44 � αMξ 1A14(x3) + αMξ 2A24(x3) − αMA34(x3)′ +Mξ 1B14(x3) +Mξ 2B24(x3) −MB34(x3)′
Q45 � αMξ 1A15(x3) + αMξ 2A25(x3) − αMA35(x3)′ +Mξ 1B15(x3) +Mξ 2B25(x3) −MB35(x3)′
Q46 � αMξ 1A16(x3) + αMξ 2A26(x3) − αMA36(x3)′ +Mξ 1B16(x3) +Mξ 2B26(x3) −MB36(x3)′
Q47 � αMξ 1A17(x3) + αMξ 2A27(x3) − αMA37(x3)′ +Mξ 1B17(x3) +Mξ 2B27(x3) −MB37(x3)′
Q48 � αMξ 1A18(x3) + αMξ 2A28(x3) − αMA38(x3)′ +Mξ 1B18(x3) +Mξ 2B28(x3) −MB38(x3)′
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Appendix B

Qij(x3) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11(−H/2) Q12(−H/2) Q13(−H/2) Q14(−H/2)
Q21(−H/2) Q22(−H/2) Q23(−H/2) Q24(−H/2)
Q31(−H/2) Q32(−H/2) Q33(−H/2) Q34(−H/2)
Q41(−H/2) Q42(−H/2) Q43(−H/2) Q44(−H/2)

 

Q15(−H/2) Q16(−H/2) Q17(−H/2) Q18(−H/2)
Q25(−H/2) Q26(−H/2) Q27(−H/2) Q28(−H/2)
Q35(−H/2) Q36(−H/2) Q37(−H/2) Q38(−H/2)
Q45(−H/2) Q46(−H/2) Q47(−H/2) Q48(−H/2)

Q11(H/2) Q12(H/2) Q13(H/2) Q14(H/2)
Q21(H/2) Q22(H/2) Q23(H/2) Q24(H/2)
Q31(H/2) Q32(H/2) Q33(H/2) Q34(H/2)
Q41(H/2) Q42(H/2) Q43(H/2) Q44(H/2)

    

Q15(H/2) Q16(H/2) Q17(H/2) Q18(H/2)
Q25(H/2) Q26(H/2) Q27(H/2) Q28(H/2)
Q35(H/2) Q36(H/2) Q37(H/2) Q38(H/2)
Q45(H/2) Q46(H/2) Q47(H/2) Q48(H/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Appendix C

Gij(x3) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11(−H/2) Q12(−H/2) Q13(−H/2) Q14(−H/2)
Q21(−H/2) Q22(−H/2) Q23(−H/2) Q24(−H/2)
Q31(−H/2) Q32(−H/2) Q33(−H/2) Q34(−H/2)
B31(−H/2) B32(−H/2) B33(−H/2) B34(−H/2)

 

Q15(−H/2) Q16(−H/2) Q17(−H/2) Q18(−H/2)
Q25(−H/2) Q26(−H/2) Q27(−H/2) Q28(−H/2)
Q35(−H/2) Q36(−H/2) Q37(−H/2) Q38(−H/2)
B35(−H/2) B36(−H/2) B37(−H/2) B38(−H/2)

Q11(H/2) Q12(H/2) Q13(H/2) Q14(H/2)
Q21(H/2) Q22(H/2) Q23(H/2) Q24(H/2)
Q31(H/2) Q32(H/2) Q33(H/2) Q34(H/2)
B31(H/2) B32(H/2) B33(H/2) B34(H/2)

    

Q15(H/2) Q16(H/2) Q17(H/2) Q18(H/2)
Q25(H/2) Q26(H/2) Q27(H/2) Q28(H/2)
Q35(H/2) Q36(H/2) Q37(H/2) Q38(H/2)
B35(H/2) B36(H/2) B37(H/2) B38(H/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Appendix D

Q′
ij(x3) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11(−H/2) Q12(−H/2) Q13(−H/2)
Q21(−H/2) Q22(−H/2) Q23(−H/2)
Q31(−H/2) Q32(−H/2) Q33(−H/2) 

Q14(−H/2) Q15(−H/2) Q16(−H/2)
Q24(−H/2) Q25(−H/2) Q26(−H/2)
Q34(−H/2) Q35(−H/2) Q36(−H/2)

Q11(H/2) Q12(H/2) Q13(H/2)
Q21(H/2) Q22(H/2) Q23(H/2)
Q31(H/2) Q32(H/2) Q33(H/2)    

Q14(H/2) Q15(H/2) Q16(H/2)
Q24(H/2) Q25(H/2) Q26(H/2)
Q34(H/2) Q35(H/2) Q36(H/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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