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Abstract: The Snyder-de Sitter (SdS) model which is
invariant under the action of the de Sitter group, is an
example of a noncommutative space-time with three
fundamental scales. In this paper, we considered the
massless Dirac fermions in graphene layer in a curved
Snyder space-time which are subjected to an external
magnetic field. We employed representation in the mo-
mentum space to derive the energy eigenvalues and the
eigenfunctions of the system. Then, we used the deduced
energy function obtaining the internal energy, heat ca-
pacity, and entropy functions. We investigated the role of
the fundamental scales on these thermal quantities of the
graphene layer. We found that the effect of the SdS model
on the thermodynamic properties is significant.

Keywords: curved Snyder space; graphene; partition
function; Snyder model; thermodynamic functions.

1 Introduction

Recently, an increasing interest is dedicated to the study of
classical and quantum mechanics on a quantized space-
time [1–10]. HistoricallyHartland S. Snyderwas the pioneer
of this idea. In 1947, he proposed a fundamental length and
stated noncommutative operators of the quantized space-
time coordinates with four translation generators of the
algebra [11]. Originally, this attempt was solely aimed to
solve the problems connected to ultraviolet (UV) di-
vergences in quantum field theory. In the same year, he
published a second article in which he discussed the effect
of quantized space-time on the electromagneticfield theory
[12]. However, this article was his last published article on

this subject. Meanwhile, due to the development of
renormalization techniques, the UV divergences problem
in quantum field theory has resolved. For this reason,
Snyder’s idea was not used more than some articles [13–
18]. The curved space selected by Snyder is the (3+1) de
Sitter space, fabricated as the homogeneous space:

dS(3+1) � G/H � SO(4, 1)/SO(3, 1), (1)

where SO (4, 1) is the group of isometriesf, H = SO (3, 1) is
the Lorentz group while the Snyder-Galilean models are
achieved as the nonrelativistic limit of the Snyder–Lor-
entzian models. The relativistic modified quantum algebra
proposed by Snyder is based on the following commutation
relations:

[Xμ ; Pν] � iℏ(ημν + βPμPν) ;   [Xμ ; Xν] � iℏβJμν ;   [Pμ ; Pν]
� 0.

(2)

Here, ημν is the metric tensor where its signature is
[ημν] = diag(−1111). β is a coupling constant proportional
to the Planck length, Jμν are the generators of Lorentz
transformations, while μ and ν are the space-time indices
with μ, ν = 0, 1, 2, 3. Via the presence of a fundamental
constant, β, the model is seen to be an example of doubly
(or deformed) special relativity [19]. Depending on the
positive or negative values of the beta parameter, the
model is called as Snyder and anti-Snyder model,
respectively [2].

In 1947, in order to make Snyder’s theory invariant
under the group of translations that are based on the
conformal group SO (1, 5), Yang extended Snyder’s
model to a de Sitter space-time background [13]. The
resulting model is characterized by three invariant
scales, the speed of light in vacuum, c, the Snyder
parameter β, and the cosmological constant Λ. Therefore
sometimes, that model is preferred to be named as triply
special relativity instead of the Snyder-de Sitter (SdS)
model. In momentum space a one-to-one correspon-
dence between the Snyder/anti-Snyder model and the de
Sitter/anti-de Sitter space-time is reported in a study by
Guo et al. [20].

The SdS model’s algebra is constructed with the posi-
tion Xμ, momentum Pμ and Lorentz generator Jμν operators,
which obey the following algebra [21, 22].
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[Jμν ; Xσ] � iℏ(ημσXν − ηνσXμ);
 [Jμν ; Pσ] � iℏ(ημσPν − ηνσPμ),[Xμ ; Pν] � iℏ(ημν + αXμXν + βPμPν

+ 



αβ
√ (PμXν + XνPν − Jμν)),[Xμ ; Xν] � iβℏJμν ; [Pμ ; Pν] � iαℏJμν.

(3)

This algebra can be regarded as a nonlinear realization
of Yang model. It should be noted that α and β are the
coupling constants with dimension of inverse length and
inverse mass, they are defined as the square root of the

cosmological constant



α

√
∼ 10−24cm−1 and with mass of

Planck



β
√

∼ 105g−1 [19]. In the limits α→ 0, and β→ 0 the
algebra (3) reduces to the Snyder model in flat space and to
the de Sitter algebra, respectively [23, 24]. The SdS phase
space can be realized in six-dimensional space as SO (1, 5)/
SO (1, 3) × O (2) if α, β > 0 and SO (2, 4)/SO (1, 3) × O (2) if α,
β < 0 [5]. Recently, many authors have condensed their
studies on the discussions over the deformed canonical
commutation relations [5, 25–36].

In the last decade, Graphene has attracted the atten-
tion of theoretical and experimental physicists [37–39]. A
graphene material has a two-dimensional structure that is
constituted from carbon atoms in the honeycomb lattice
form which yields superior mechanical properties in
addition to optical and electronic properties [40–43]. In the
theoretical perspective, a low energy excitation in a single
graphene layer is described by themassless Dirac equation
[44, 45].

In this paper, we consider massless fermions located
in a graphene layer under the effect of a perpendicular
external magnetic field. We solve the Dirac equation in
the SdS model and obtain the energy eigenvalue func-
tion. Then, we explore the thermodynamic functions in
order to discuss the effects of the fundamental scales of
the SdS model. We present the manuscript as follows: In
section 2, we introduce the SdS model briefly. In section
3, we solve the massless Dirac equation. We obtain the
energy spectrum function analytically. Next, in section 4
we define the partition function. At the high-temperature
limit, first, we derive the internal energy functions, and
then, the heat capacity and the entropy functions. We
demonstrate the thermodynamic functions versus tem-
perature and discuss the effect of the fundamental
coupling constants of the SdS model. We end the
manuscript with a brief conclusion.

2 Curved Snyder model

In the nonrelativistic curved Snyder model, the modified
commutation relations between the position and mo-
mentum operators are given by [22, 36]:[Xj ; Pk] � iℏ(δjk + αXjXk + βPjPk +





αβ
√ (PjXk + XkPj)),[Xj ; Xk] � iβℏJjk , [Pj ; Pk] � iαℏJjk ,

(4)

where Jjk = (XjPk−XkPj). In [22, 36], one set of the Xj and Pj
operators which satisfies the algebra is expressed in the
canonical coordinates as

Xj � X j + λ




β
α

√
Pj � iℏ








1 − βp2
√

∂

∂pj
+ λ




β
α

√
pj







1 − βp2
√ , (5)

Pj � −



α
β

√
X j + (1 − λ)Pj

� −iℏ



α
β

√ 






1 − βp2
√

∂

∂pj
+ (1 − λ) pj







1 − βp2
√ . (6)

Here, λ is an arbitrary real parameter. Note that pj is

bounded in the range of − 1

β

√ < pj <
1

β

√ . If we consider a

case, where (〈Pj〉 = 〈Xj〉 = 0), we obtain the uncertainty
relation as

(ΔX)j(ΔP)k ≥ ℏ2 (δjk + α(ΔX)j(ΔX)k + β(ΔP)j(ΔP)k
−




αβ
√ ((ΔP)j(ΔX)k + (ΔX)j(ΔP)k)). (7)

In one dimension case, Eq. (7) reduces to

(ΔX)(ΔP) ≥ ℏ
2

(1 + α(ΔX)2 + β(ΔP)2)
1 + ℏ





αβ
√ . (8)

As a conclusion, the modification in the algebra pro-
duces the following minimal uncertainties in both position
and momentum measurements

(ΔX)min � ℏ



β
√










1 + 2ℏ




αβ
√√ ∼ ℏ




β
√

; 

(ΔP)min � ℏ



α

√









1 + 2ℏ





αβ
√√ ∼ ℏ




α

√
. (9)
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We note that, if α, β < 0 minimal uncertainties do not
emerge and all real values of Pi are allowed. Before we
proceed through the next section, it is worth remarking the
change of the definition of the scalar product with the
following form of [22],

〈φ
∣∣∣∣∣∣∣∣ψ〉 �∫ d3p







1 − βp2
√ φ*(p)ψ(p). (10)

3 Graphene in an external
magnetic field

In this section, we solve the (2+1)-dimensional massless
Dirac equation in the curved Snyder model in the presence
of the uniformmagnetic field B, which is directed along the

z axis. We assume B > 0 and employ A � B
2 ( −X2,X1) gauge.

We start with the Dirac equation

iℏ
∂

∂t
Ψ � HΨ. (11)

Here, ψ is a two-dimensional wave function that de-
scribes the electron states between the two Dirac points A
and B, while the Dirac Hamiltonian is

H � VFα
→
⋅ (P→ − e

c
A
→), (12)

where VF = (1.12 ± 0.02)×106 ms−1 is the Fermi velocity. We
define a fundamental length scale, ℓB, in the presence of an
external magnetic field via ℓB �




ℏc
eB

√
, and express the

Hamiltonian in the matrix form

H � (HA 0
0 HB

), (13)

with two Hamiltonian operators for the two Dirac points A
and B as

HA �

VF

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 (P1 − iP2) + ℏ

2ℓ 2B
(X2 + iX2)

(P1 + iP2) + ℏ

2ℓ 2B
(X2 − iX2) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
(14)

HB �

VF

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 (P1 + iP2) + ℏ

2ℓ 2B
(X2 − iX2)

(P1 − iP2) + ℏ

2ℓ 2B
(X2 + iX2) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
(15)

We write the two-component wave function as

Ψ � e
iE
ℏ t(ψA

ψB ), (16)

where ψA and ψB are two-dimensional eigenstates. To
obtain the energy eigenvalue equation of thewave function
at the Dirac point A, we solve the following system of two
coupled equations:

[P1 − iP2 + ℏ

2ℓ 2B
(X2 + iX1)]ψB � E

VF
ψA, (17)

[P1 + iP2 + ℏ

2ℓ 2B
(X2 − iX1)]ψA � E

VF
ψB. (18)

Out of the coupled system, we obtain the following
decoupled differential equation for the component ψA.

⎡⎣P2
1 + P2

2 + ( ℏ

2ℓ 2B
)2(X2

2 + X2
1) + i[P1 ; P2]

+i( ℏ

2ℓ 2B
)2

[X1 ; X2] + ℏ

2ℓ 2B
(P1X2 + X2P1 − X1P2 − P2X1)

+ iℏ
2ℓ 2B

[X1 ; P1] + iℏ
2ℓ 2B

[X2 ; P2]]ψA � E2

VF
2ψ

A. (19)

Then, we employ the position and momentum opera-
tors given in Eqs. (5) and (6). We find

⎧⎪⎨⎪⎩⎡⎣βα( ℏ
2ℓ 2B
)2

+ 1⎤⎦⎛⎝ 


α
β

√
X j⎞⎠2

+⎛⎝1 − 2λ + λ2⎡⎣β
α
( ℏ
2ℓ 2B
)2

+ 1⎤⎦⎞⎠P2
j − ⎡⎣βα( ℏ

2ℓ 2B
)2

+ 1⎤⎦αℏLz

−⎛⎝1 − λ⎡⎣β
α
( ℏ

2ℓ 2B
)2

+ 1⎤⎦⎞⎠ 


α
β

√ (X jP j + PjX j)
−ℏ

2

ℓ 2B
(1 + Lz

ℏ
+ β
2
P2

j)⎫⎬⎭ψA � E2

VF
2ψ

A. (20)

In order to simplify the differential equation we
assume

λ � ⎡⎣β
α
( ℏ

2ℓ 2B
)2

+ 1⎤⎦−1 (21)

Then, (X jP j + PjX j) term vanishes and Eq. (20)
becomes
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{ − (1 − βp2)( ∂
2

∂p2
+ 1
p

∂

∂p
− μ2

p2
) + βp

∂

∂p
+ 1
2ℓ 2B
( 1
2ℓ 2B

− 1) β2p2

1 − βp2
− βμ − β

ℓ 2B
(μ + 1)}ΦA

� βE2

ℏ2VF
2Φ

A, (22)

where

ψA � eiμφ



2π

√ ΦA ; (μ � 0,±1,±2,…), (23)

and

1
ℓ 2B � α

λ
1
ℓ 2B

; B ≡
λB
α

; E2 ≡
λE2

α
. (24)

We perform a change of the variable

ρ � sin−1



β
√

p


β
√ , (25)

which maps the allowed range from −1

β

√ < p < 1

β

√ to
−π

2


β

√ < ρ < π
2


β

√ . Equation (22) reduces to the form of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ∂2

∂ρ2
+



β
√

cot ( 

β√ ρ) ∂

∂ρ
− βμ2 cot2 ( 

β√ ρ) − β

2ℓ 2B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
2ℓ 2B

−1⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠tan2( 

β√ ρ) + βμ + β(μ + 1)
ℓ 2B

+ βE2

ℏ2VF
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ΦA � 0.
(26)

By ansatz, we assume ΦA � sinμ( 


β
√

ρ)cosδ( 


β
√

ρ)Ϝ.
Then, Eq. (26) becomes

{ ∂
2

∂ρ2
+



β
√ [(1 + 2μ) cot ( 

β√ ρ) − 2δ tan ( 

β√ ρ)] ∂

∂ρ

+β[δ(δ − 1) − 1
2ℓ 2B
( 1
2ℓ 2B

− 1)]tan2( 

β√ ρ)
+( 1

ℓ 2B
− 2δ)β(μ + 1) + βE2

ℏ2VF
2}Ϝ � 0 (27)

We fix the parameter δ by requiring the coefficient of

the tan2( 


β
√

ρ) to vanish:

δ(δ − 1) − 1
2ℓ 2B
( 1
2ℓ 2B

− 1) � 0. (28)

We determine the roots of the quadratic equation of δ
as

δ � 1
2ℓ 2B

; δ′ � 1 − 1
2ℓ 2B

. (29)

We note that the second root does not lead to a phys-
ically acceptable wave function unless we impose the

condition ℓ 2B > 1/2. However, this condition is valid only for
small enough field strengths. Therefore, we use the first
root in Eq. (29). We find the reduced equation in the form of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ∂2

∂ρ2
+



β
√ [(1 + 2μ) cot ( 

β√ ρ) − 2δ tan( 

β√ ρ)] ∂

∂ρ

+ βE2

ℏ2VF
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦Ϝ � 0.
(30)

Wedefine a new variable q � sin2( 


β
√

ρ). Then, Eq. (30)
turns into the form of the hypergeometric equation [46].

[q(1 − q) ∂2

∂q2
+ [(1 + μ) − (3

2
+ μ + δ)q] ∂

∂q
+ E2

4ℏ2VF
2]Ϝ

� 0.

(31)

This equation has a regular solution at q = 0 that is
written in terms of hypergeometric functions as

Ϝ � F(a, b, 1 + μ ;  q), (32)

with the following parameters:

a � 1
4
+ δ + μ

2
+ 1
2

































1
4
+ μ(1 + μ) + 2μδ + δ(δ + 1) + E2

ℏ2VF
2

√√
,

(33)

b � 1
4
+ δ + μ

2
− 1
2

































1
4
+ μ(1 + μ) + 2μδ + δ(δ + 1) + E2

ℏ2VF
2

√√
.

(34)

The hypergeometric function F(a, b, c; q) is deter-
mined by the hypergeometric series [46] as follows:

F(a, b, c, q) � ∑
n�0

(a)n(b)n
(c)n

qn

n!
, (35)

where the parameters of the hypergeometric series are
given by

(a)n � Γ(a + n)
Γ(a) ; (b)n � Γ(b + n)

Γ(b) ; (c)n � Γ(c + n)
Γ(c) .

(36)
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The series reduces to a polynomial if a or b is a negative
integer. Using the expressions of b, we finally obtain

En � ±ℏVF
























4θn2 + 2θn(1 + 1

ℓ 2Bθ
+ 2μ)√

, (37)

where θ � α + ℏ2β
4ℓ 4B

. We would like to emphasize that the
latter equation represents the main result of our paper.
We observe that the introduced deformed Heisenberg
algebra has influence on results. We also note that the
energy spectrum depends on n2, which is a feature of
hard confinement. Furthermore, the energy spectrum
values increase proportional to n for the large quantum
number n. It should be pointed out that for n = 0, the
energy level En = 0, which means the energy level at
higher levels (n = 1, 2,…) are distributed symmetrically
around n = 0. In addition, the energy level is propor-
tional to




n2

√
, which implies the energy spacing between

adjacent levels is not constant. For large n the energy
spacing becomes constant

lim
n→∞

ΔEn �
∣∣∣∣∣∣∣En+1 − En

∣∣∣∣∣∣∣ � ℏωc, (38)

whereωc � 2VF



θ

√
can be interpreted as classical cyclotron

frequency. As α and β are small in comparison with the
other quantities in the theory, we expand (37) to first order
in α and β, we obtain

En � ± ℏVF

ℓB




2n

√
± θℏVF














2n(n + μ + 1

2
)2√
. (39)

Here, the first term represent the Landau levels of
electrons in graphene while the second term is the quan-
tum gravity correction. Now, let us consider the following
particular cases.
(1) In the limit β → 0, we recover the results for anti-de

Sitter space [47].

En � ±ℏVF






















4αn2 + 2αn(1 + 2μ) + 2n

ℓ 2B

√
. (40)

(1) In the limit α→ 0, we obtain the energy spectrum in the
Snyder space.

En � ±ℏVF
























ℏ2β
ℓ4B

n2 + ℏ2β
2ℓ4B

n(1 + 2μ) + 2n
ℓ 2B

√
. (41)

(1) In anti–Snyder-de Sitter model where α < 0 and β < 0,
the energy spectrum is,

En � ±ℏVF






























2n
ℓ 2B

− (α + ℏ2β
4ℓ4B
)[4n2 + 2n(1 + 2μ)]√

. (42)

in this case the energy spectrum En becomes complexwhen

the quantum number n is large. This stipulates an upper
bound on the allowed values of n.
(1) In the limit β → 0 and α → 0, we get the ordinary

quantum mechanical result [48, 49].

En � ± ℏVF

ℓB




2n

√
. (43)

(1) If δ � 1 − 1
2ℓ 2B

, the energy spectrum is,

En � ±ℏVF



θ

√ 



































4n2 + 4nμ + 6n + 2μ + 2 − (1 + 2μ + 2n) eB

ℏc

√
.

(44)

On another side, if a or b is a nonnegative integer, the
hypergeometric series converges absolutely for all values
of |q| < 1 [50] and,

(a)n(b)n
(c)n � Γ(c)

Γ(a)Γ(b)n
δ − 3

2[1 +O(n−1)]. (45)

For to make the hypergeometric function to be regular

at q= 1,wemust impose ℓ 2B > 1 ,which is valid only for small
enough field strengths. In the case where the particles
cannot be bounded, only scattering solutions occur and the
energy spectrum becomes continuous.

In order to demonstrate the influence of the modified

algebra on the energy levels, we plot the energy levels ϵ �
En, μ�0
ℏVF

versus the quantumnumber, n, by employing different

values of the deformation parameters in Figure (1). We
observe that the contribution of the α parameter is more
significant than the β parameter.

It should be noted that the dependence of the energy
levels on SdS parameters is only through θ, and this can be
easily quantified. For weak magnetic fields, the parameter
θ identified as the cosmological constant, θ∼α∼10−48. If the

Figure 1: En, μ�0
ℏVF

versus the quantum number n for different values of
the deformation parameters.
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magnetic field is extremely strong the parameter θ take the

value θ ∼ e2B2β
c2 ∼ 10−44B2.

4 Thermodynamic functions

It is a well-known fact that an electron gas obeys the
Fermi–Dirac quantum statistic. However, in high tem-
peratures or with the consideration of the electron gas in
a low density, the Maxwell–Boltzmann statistic can be
used instead [51]. In this section we aim to determine the
thermodynamic properties of the of the graphene under
a magnetic field in SdS space. We suppose only fermions
with positive energy (E ≥ 0) constitute the thermody-
namic ensemble. Since we ignore the particle–particle
interactions, we take neither negative-energy excited
states nor the phenomenon of creation of particles into
account [49, 52]. Therefore, we assume the partition
function contains only a sum over positive-energy
states. We note that this is an enormous simplification
characteristic. We begin by computing the partition
function of a single particle of the system, Z, for the fixed
angular momentum (μ = 0):

Z � ∑
+∞

n�0
e−

En
KT . (46)

Here, K denotes the Boltzmann constant, T represents
the thermodynamic temperature and En is the energy ei-
genvalues. We use the derived energy eigenvalue function
given in Eq. (39) in Eq. (46). We obtain the partition func-
tion in the form of

Z � ∑
+∞

n�0
e−

ℏVF
KT
















2θ(2n2 + 1) + 2n

ℓ 2B

√
. (47)

Since α and β are small in comparison with the other
quantities in the theory, we expand Eq. (47) till to the first
order of α and β. We obtain

Z � ∑
+∞

n�0
[1 − ℏVFθ

2




2n

√ − ℏVFθ
4

(2n)32]e−β̄ 
n√
, (48)

where β̄ � 1
τ , and τ is the reduced temperature definedwith

τ � KTℓB
ℏVF



2

√ � T
T0

. (49)

Here, T0 � ℏVF


2

√
Kℓ B

is the temperature reference value, for

instance when B = 18T, the value of this temperature be-
comesT0 = 3551 K. It isworth noting that thefirst term in Eq.
(48) is the ordinary partition function of the graphene un-
der a magnetic field

Z0 � ∑
+∞

n�0
e−β̄


n

√ � 1

β̄2
+ ζ(0) � 1

β̄2
− 1
2
. (50)

We calculate the second and third terms of Eq. (48) by
using the derivatives of Eq. (50) as follows:

∑
+∞

n�0
[ ℏVFθ

2




2n

√ + ℏVFθ
4

(2n)32]e−β̄ 
n√

� ⎡⎢⎣ − ℏVFθ


2

√
2

∂

∂β̄
− ℏVFθ



2

√ ∂
3

∂β̄
3
⎤⎥⎦Z0. (51)

After all, we obtain the total partition function of the
system in the SdS space in the form of

Z � τ2 − 1
2
− ℏVFθ



2

√
τ3(1 + 24τ2). (52)

Next, we derive the thermal properties of our system,
such as the internal energy and the specific heat through
the numerical partition function Z via the following
relations:

U � ℓB
ℏVF



2

√ U � τ2
∂

∂τ
lnZ, C � ∂U

∂τ
. (53)

We take ℓB � ℏ � c � K � 1, and demonstrate all pro-
files of the thermodynamic quantities as a function of τ for
various values of the SdS parameters.

First, we plot the partition function versus τ in
Figure (2).We observe amonotonic increase in the partition
function in the ordinary quantum mechanic limit. This
characteristic behavior drastically changes in the existence
of the SdS model parameters. We observe a decrease in the
partition function while the temperature increases at the
high-temperature values. The amount of the decrease in
the partition function value increaseswhen de Sitter space-
time is taken into account instead of the Snyder model.

Figure 2: Partition function versus the reduced temperature.
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We present the characteristic behavior of the internal
energy function versus the dimensionless reduced tem-
perature for different values of the SdS parameters in
Figure (3). In the ordinary quantum mechanic limit, we
observe a linear increase. When we consider a comparison
between the role of the and parameters, we observe that the
internal energy is being modified significantly in the de
Sitter space, rather than the Snyder model because of the
dependence on the strength of the magnetic field. We also
see that in the vicinity of zero, there is no difference be-
tween the standard and the modified internal energy,
which implies that the effects of quantum gravity become
more obvious only at high temperatures.

Finally, we illustrate the heat capacity function versus
the reduced temperature in Figure (4) by considering
different values of the SdS parameters. In the ordinary
quantummechanic limit, we observe that the heat capacity
will tend to a constant value at high temperature. We also
see a decrease in the heat capacity function for high-
temperature in the existence of (α, β). When we consider a
comparison in between the parameters, like the other
cases, we realize that the role of the parameter α is more
significant than the β parameter.

It is worthwhile to note that all thermodynamic
quantities obtained numerically in our work show that the
effects of the curved Snyder model on the statistical prop-
erties of graphene are important only in the high-
temperature regime, contrary the case at low tempera-
tures. The effect of the SdS model becomes insignificant
and the curves join rapidly as the temperature decreases.
Our conclusion that the quantum gravity effects have
concrete effects specifically at high-temperature limits.

Finally, when SdS parameters α = β = 0 our results
agrees exactly with that of [48]. One of the biggest issues in

physics at present is to combine the quantum theory and
the theory of general relativity into a unified framework,
different approaches toward such a theory of quantum
gravity have been elaborated. Despite that, one major
obstacle is the absence of experimental confirmation of
quantum gravitational effects [53]. The results we pre-
sented here may afford a source of information to probing
Planck-scale physics in future experiments.

5 Conclusion

In this paper, we considered a graphene layer which is
under the influence of an external magnetic field. We
assumed the applied field to be perpendicular to the layer
and solved the massless Dirac equation in the (2+1)
dimension in the SdS model. We derived an analytic so-
lution to the wave and energy eigenvalue functions. The
essential characteristic of energy levels is the existence of
zero-energy states.

Then, we investigated some of the statistical charac-
teristics of the considered system at high temperatures by
comparison of the thermodynamic functions. We found
that the fundamental scales of the model have an impor-
tant role on the thermal quantities. We comprehended that
the contribution of the deformation parameter of the de
Sitter space-time is more significant than the Snyder model
parameter. We also found the influence of SdS model can
be seen only at high-temperatures limits.
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