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Abstract: The electronic structure of yttrium trihydride
(YH3) under pressure has been explored by using the first-
principle calculation. The existence of semiconductor
phase of YH3 is predicted at low pressure with symmetry
group p3c1 (165). In the range of 10–24 GPa, electron- and
hole-like bands near the Fermi level are overlapped and
form a snake-like nodal ring around Γ point. Different from
previous literature (D. Shao, T. Chen, Q. Gu, et al., “Non-
symmorphic symmetry protected node-line semimetal in
the trigonal YH3,” Sci. Rep., vol. 8, 2018.; J.Wang, Y. Liu, K.-
H. Jin, et al., Phys. Rev. B, vol. 98, p. 201112, 2018), which
assumes the band degeneracy is protected by mirror sym-
metry, we argue that the nodal line is protected by the
space inversion symmetry and the time reversal symmetry.
Forweak spin-orbital coupling (SOC), the fermionmodes at
the band crossings are real 3D Majorana fermions. This is a
typical double charged nodal-line semimetal, meaning
that there are two topological invariants of this nodal line:
a 1D Berry’s phase and a Z2 monopole charge, which are
related to the first and the second Stiefel-Whitney classes of
the Berry bundle and can be given by the first-principle
calculation. It turns out that the 1D Berry’s phase is
nontrivial, but the Z2 monopole charge is trivial. Therefore,
this nodal line can shrink to a point and gapped out
without breaking the topological constraints.

Keywords: double charged nodal line; real Hamiltonian;
topological semimetal.

1 Introduction

Since the discovery of the topological insulators [3, 4], the
topological phases of matter have became one of the most

active domains of condensed matter physics. More
recently, it was understood that electrons in some gapless
materials may emulate various high-energy physics parti-
cles such as the massless Weyl and Majorana fermions.
Even though these particles have not been found in high-
energy experiments yet, they can emerge as a quasiparticle
in certain crystals. These condensed matter realizations
offer a platformwhere one can test high energy theories [5].
Besides that, a hallmark of these systems is the linear band
dispersion at the band touching points, which leads to
unconventional transport and optical phenomena and
therefore has great potential in device application [6, 7].
Usually, despite being a gapless metal, many semimetals
are characterized by topological invariants, broadening
the classification of topological phases of matter beyond
insulators. The presence of topological protection often
requires certain symmetries. For gapped topological pha-
ses, the non-spatial symmetries, namely, time reversal
symmetry (T ), particle-hole symmetry (P ) and chiral
symmetry (C ) are most crucial. Based on these symme-
tries, the gapped topological phases can be classified in a
tenfold way [8–10]. For gapless phases, owing to the
complexity nature of the band touching near the Fermi
level, the classification task is much harder than those of
insulators.

Instead looking at the whole family of gapless phases,
it is reasonable to focus on certain special subcategories,
for example, the centrosymmetric systems, that is, crystals
with space inversion symmetry (I ). For such systems,
band touching protected by non-spatial symmetries can be
classified in a similar way like the insulators, which is
called tenfold AZ + I classification [11, 12]. The involving
of space inversion symmetry is crucial for two reasons:
first, the band touching nodes only protected by C ,P ,T
symmetries turns out to be very rare and not interesting;
second, space inversion symmetry, like nonspacial sym-
metries, is more stable than other crystalline symmetries
(for example, against straining). Therefore, including
space inversion symmetry on the one hand will lead to
more interesting semimetals, but on the other hand, will
not compromise the robustness of the nodes [12].

Our main goal is to find a realistic material belonging
to class AI of the AZ + I classification. By definition, the
band touchings of AI class are protected by I and T
symmetries. In three spatial dimensions, the band touch-
ings of AI class can form various lines in the BZ and this is
corresponding to nodal-line semimetals, which already
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attract many attentions recently [13–17]. Besides all the
common features of nodal-line semimetals, there is a spe-
cial perk for class AI: the combined IT symmetry will
impose a reality condition on the band structure of spinless
systems. This is in particular interesting for finding real
Dirac fermions, which can be viewed as real counterparts
of Weyl semimetals [18].

From first-principle calculations, we predict that, by
imposing a hydrostatic pressure, YH3 can change from a
semiconductor at zero pressure to a IT protected nodal-
line semimetal at 10–24 GPa. In fact, it is already known
that the structure of yttrium hydride can be affected by
pressure significantly. The electronic structural of YH3 has
been calculated long time ago [19, 20]; however, the results
indicated a gapless ground state at zero pressure which is
not consistent with the experimental [21, 22]. Later it was
predicted that YH3 undergoes a structural transformation
by applying pressure [23, 24]. The experimental observa-
tion [25, 26] also found that there is an intermediate state
for YH3 undergoing an hcp-fcc structural transition in the
range of 10–24 GPa. The topological properties of the
electronic structure of YH3 have also been studied recently.
For example, Shao et al [1] pointed out that YH3 is a topo-
logical semimetal with a nodal line protected by the glide-
plane symmetry under zero pressure. However, in another
study [2], the authors argue that if YH3 is under a
compressive strain along the c axis, then it will become a
pseudo-nodal-surface semimetal protected by two mirror
symmetry and inversion symmetry. By pseudo they mean
that only three nodal rings in the kx(y,z) = 0 planes are truly
degenerated; away from these nodal lines, the band gap is
just approximately zero. Although these studies give
different results, they all suggest that it is the crystalline
symmetries that play a key role to protect the band cross-
ings. As we will show later, time reversal symmetry should
be taken into account and the nodes of YH3 are actually
protected by the combined IT symmetry.

Knowing that the structure parameters of YH3 can
change under pressure, and there are electron- and pole-
like bands near the Fermi level, we want to engineer the
band structure of YH3 by implementing hydrostatic pres-
sure. Also noticing that YH3 already has I and T sym-
metries, it is important to check whether or not YH3 under
certain pressure can fall into the class AI as mentioned
before. Our results strongly suggest that the band crossings
are not protected by themirror symmetries. But, in fact, the
nodal line seems like fitting exactly into the AI class,
similar to the nodal line of Mg3Bi2 without spin-orbital
coupling (SOC) [13], and the most similar example may be
the snake-like nodal line found in the alkaline-earth com-
pounds [27]. As a result, there can be two distinct

topological invariants associated to the nodal line: a 1D
Berry’s phase and a Z2 monopole charge [11], which are
related to the first and the second Stiefel-Whitney classes of
the Berry bundle [28]. In the following sections, we will
show that, between 10 and 24 GPa, YH3 should be classified
as an AI nodal-line semimetal with a nontrivial 1D Berry’s
phase but a trivial Z2 monopole charge.

2 Computation details

The electronic properties and crystal structure of hydrogen
hydride can be changed by hydrogenation and pressuri-
zation. Driven by the hydrogenations, the concentration x
of YHx changes from 2 to 3. At zero pressure, YH3 is pre-
dicted to have the energy-favored structure with symmetry

group p3c1 (165) [24], which is hexagonal close-packed,
and the metal Y plane has an ABA stacking sequence as
shown in Figure 1.

The lattice parameters and band structure are obtained
by performing the first-principle calculation based on
density functional theory (DFT) [29, 30] implemented by
the Vienna ab initio simulation package [31, 32] with the
projector augmented wave (PAW) method [33, 34]. The
hybrid functional HSE06 (25% HF) [35] is used to avoid
underestimating the band gap, which correctly reproduced
the insulating ground state [25, 26]. Another approach to
obtain the correct gapped ground state is by using the
DFT + U method [36–39] to include the effects of orbital-
dependent exchange and Coulomb interactions between
the electrons. To simplify the calculation, the exchange
correction J is fixed at 0.5 eV. Thus, the Hubbard correc-
tions Ueff = U − J = 3.5 eV are added in the d-orbital for Y
atomby the linear-response approach [40, 41]. This leads to
similar results as for HSE06; the only difference is that the
maximum band crossing happens at 16 GPa for DFT + U,
rather than 18 GPa for HSE06. The detailed comparison of
PBE [42], HSE06 and DFT + U can be found in the supple-
mentary material [43]. The kinetic energy cutoff, which
determines the whole set plane waves with small energy
included in the basis set, has been chosen to be
Ecut = 450 eV. The SOC is very weak and can be safely
ignored because of the lightness of Y and H atoms [2]. We
have double-checked this fact and showed the results in
Figure 3, where the band structure with and without SOC
are almost the same. The reciprocal space sampling was
performed using 9 × 9 × 9 Monkhorst-Pack meshes [44].
Optimization of structural parameters was achieved by a
minimization of atomic forces and stress tensors applying
the conjugate gradient technique, where the lattice
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parameters and the position of all atoms are also relaxed
when the pressure is turned on. At zero pressure, the

structure parameters are given by a � b � 6.232 Å and

c � 6.444 Å. All bands are plotted with VASPKIT code [45].

3 Results and discussion

3.1 The band structure and the pressure
effect

The comparison of band structure at 0 and 18 GPa are
plotted in Figure 2. The system is gapped at zero pressure
but transits into a metallic phase at 18 GPa. More detailed
calculation shows that the hydrostatic pressure will drive
the electron- and hole-like band toward each other and the
two bands overlapped at about 10 GPa. If we continue
increasing the pressure, the electron- and hole-like band
start separating from each other at about 18 GPa, and the
band structure will be gapped again when the pressure is
larger than 24 GPa. This process is described in Figure 4.
One can see that, in the range of 10–24 GPa, the minimal of
the hole-like band is larger than the maximal of the
electron-like band, indicating that these two bands are
overlapped and result in the accidental band degeneracies
[46]. This is the semimetal phase we are interested in.
Because the nodal structures are essentially the same at
any pressure in the range of 10–24 GPa, without loss of
generality, we choose 18 GPa as an example to analyze the
nodal line structure and the associated surface state.

The structure of band crossings can be readily
analyzed if one knows theHamiltonian. It can be generated
numerically by using the maximally localized Wannier
functions (MLWFs) implemented by the Wannier90 pack-
age [47]. Then one can use the WannierTools package [48]
to analyze the Hamiltonian. The first advantage to having
this numerical tight-binding Hamiltonian is to locate the
band-crossing points, by using WannierTools, one can
search for the nodes by comparing the lowest unoccupied

conducting band (LUCB) and the highest occupied valence
band (HOVB) within a small range of tolerable er-
ror, that is, the nodes can be defined as the k-points
satisfying ELUCB(k) − EHOV B(k) < Eerror. In Figure 5a, with
Eerror = 0.005 eV, the scatter plot of the nodes indicates a

Figure 1: The unit cell of YH3. The different
colors of H atoms indicate three different
Wyckoff positions.

Figure 2: The band structure of YH3 at 0 and 18 GPa, respectively.
The inset is an enlarged plot of band structure along Γ–A line. The
small band gap indicates that the nodal line is not intersecting with
the Γ–A line but rather very close to it.

Figure 3: The band structure is calculated by using HSE06
functional with and without SOC turned on.
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closed ring surrounding the Γ point. Intriguingly, this kind
of snake-like nodal line has also been found in various
alkaline-earth compounds [27].

Now we should explain that our result does not agree
with the earlier studies [1, 2], where the time reversal
symmetry is ignored and the authors suggest that the nodal
line is protected by the crystalline symmetry only. Espe-
cially, in the study byWang et al [2], the authors argue that,
because of the inversion symmetry and two mirror sym-
metries of SG.165, the local Hamiltonian could have band
crossings located at the mirror plane where the two bands
near Fermi level have opposite eigenvalues of the mirror
symmetry. However, we should notice that, the band
crossings are actually not pinned on the Γ point or any
other high symmetric lines or planes. Therefore, even if the
band crossings are protected by any symmetries, they are
most likely not the crystalline symmetries. The only exact
symmetry exists everywhere in BZ is the combined time
reversal and space inversion symmetry IT . Hence, we
claim that this nodal ring is protected not by the crystalline
symmetry, but by the combined symmetry IT . Without
considering SOC, this statement is equivalent to say that
the nodal ring is belonging to class AI in the AZ + I clas-
sification [49].

Moreover, based on the tight-binding model con-
structed with MLWFs and surface Green function methods,
we can obtain the surface states of YH3 at 18 GPa without
SOC. As shown in Figure 6, in the ⟨001⟩ direction, there
exists a bright curve connecting two band touching points.
This signature can be used to identify the particular semi-
metal state of YH3 from angle-resolved photoemission
spectroscopy (ARPES) measurements.

3.2 Majorana modes near band crossings

The combination of time reversal and space inversion
symmetry IT puts a very interesting constraint on the
fermion modes near the band crossings. Separately, these
two symmetries require the two bands Hamiltonian H (k)
to satisfy

TH (k)T −1 � H ( − k), T 2 � 1
IH (k)I −1 � H (−k). (1)

Notice that these two symmetries acting globally on the
BZ, in a sense that they relate Hamiltonians at different
k-points. On the other hand, the combination of the two
symmetries is local, meaning

(IT )H (k)(IT )−1 � H (k), (IT )2 � 1, (2)

which is a symmetry for every Hamiltonian at any k-point
in the BZ. For spinless systems, IT is just the complex
conjugation IT � K . Hence, the relation (2) is nothing
but saying that both the HamiltonianH and its eigenstates
are real. By usingDiracmatrices, themost general form of a
real two-bands Hamiltonian is given by [49, 18]

H (k) � a(k)σ0 + b(k)σ1 + c(k)σ3, (3)

where σ0 is the two-dimensional identity matrix and σ1, 2, 3

are the Dirac matrices. The coefficients a(k), b(k) and c(k)
are some real functions. The two eigenvalues are given by
a(k) ±

������������
b(k)2 + c(k)2

√
. Therefore, the band crossings are

defined by two equations b(k) = c(k) = 0, indicating that
this is a nodal line formed by intersection of two surfaces in
three dimension, as shown in Figure 5b. Therefore, the
nodal line is stable in the presence of the combined IT
symmetry.

Other crystalline symmetries, such as the C3 rotations
about the kz axis and the C2 rotations about the Γ–K line,will
not protect the nodal line but rather define the shape of it.
Because the nodal line is very close to the center of the BZ,
we canuse these crystalline symmetries to furtherfix the two
functions b(k) and c(k) up to O(k3). To do so, we need to
figure out the representations of C3 and C2 in the two-
dimensional Hilbert space of the two-band system. This can
be doneby calculating theband representations accordingly
[50, 51], which are listed in Table 1. The two bands near the
Fermi level, which form the band touchings, have exactly
the opposite eigenvalues of C3 and C2 rotations. Therefore,
the relevant symmetric operations can be represented by
C3 � σ3, C2 � σ3. This is enough to fix b(k) and c(k) as

b(k) � Akz + B(k2xky − kxk
2
y) + C(k2x + k2y − kxky)kz + Dk3z ,

(4)

Figure 4: The maximal of the hole-like band and the minimal of the
electron-like band evolve with pressure changing.
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Figure 5: (a) The left picture shows the scatter
plot of the nodes in the BZ. The dashed
purple line indicates the path where we
calculate the Berry’s phase. The right
picture is the enlarged version of the nodal
ring. (b) and (c) calculated nodal line based
on the effective Hamiltonian (3), (4) and (5).
In b, the red ellipsoid represents the surface
c(k) = 0 and the cyan surface represents
b(k) = 0. (c) is the intersection.

Figure 6: The surface band structure and
Fermi surface at 18 GPa: (a, c) for (001)
surface and (b, d) for (010) surface, where
the color indicates the density of state. Note
that there is a bright curve that connects the
nodal points across the boundary of BZ.
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c(k) � E + F(k2x + k2y − kxky) + Gk2z . (5)

The nodal line is the intersection of the two surfaces
b(k) = 0 and c(k) = 0. This can be illustrated schematically
in Figure 5b and c. Note that the shape of the nodal line is
the same as in Figure 5a obtained from the first-principle
calculation.

To simplify things a little bit, we can remove a(k) by
shifting the Fermi energy to zero. Now we expand the

remaining terms in the Hamiltonian near the nodes k*;
after removing some constants and higher-order terms, the
Hamiltonian looks like [52]

H̃ (k) � ∇b(k) ⋅ (k − k∗)σ1 + ∇c(k) ⋅ (k − k∗)σ3. (6)

Because the nodal ring is a 1D line embedded in a 3D
space, one can always choose a locally orthogonal coor-
dinate system inherited from the 3D space. Without loss of
generality, we can choose the three axis to p1, p2, p3 and
define k − k∗ ≡ p, which can be viewed as a linear com-
bination ofp1,p2,p3. Then, we can rewrite the Hamiltonian
as

H̃ (p) � v1 ⋅ pσ1 + v2 ⋅ pσ3, (7)

where v1 ≡ ∇b(k) and v2 ≡ ∇c(k).
On the other hand, the 3D massless Dirac equation is

given by

i
∂

∂t
ψ � −ic∑

2

i�1
γ0γi

∂ψ
∂xi

, (8)

where c is the speed of light. In 3D, the γmatrices can also
be represented by Dirac matrices [53]:

γ0 � iσ2, γ1 � σ1, γ2 � γ0γ1 � σ3. (9)

Hence, the Hamiltonian for the massless Dirac equa-
tion in 3D is given by

H � cp1σ1 + cp2σ3, (10)

Comparing with the local Hamiltonian (7) at the band
crossings, with the replacement cp1 → v1 ⋅ p and
cp2 → v2 ⋅ p, one can see that they are essentially the
same. As a result, for a IT symmetric two-band system,
the fermion modes near the band crossings are similar to
the 3DMajorana fermions. The only difference is that they
can propagate at velocities v1 and v2 along different
directions.

2.3 Two topological invariants of
IT -protected nodal line

To define the topological invariants more precisely, we
need to clarify the mathematical data we are looking at,
which is the Hilbert space attached to each k-points in the
BZ. As a consequence ofIT symmetry, this is indeed a real
vector bundle. There are plenty mathematical tools to deal
with the topological properties of the vector bundles. For
example, one can use homotopy theory or the cohomology
theory of vector bundles, namely, the K-theory [9, 54] to
study or classify the bundles based on distinct topological
invariants.

Simply speaking, one can start with the flattened
gapped Hamiltonian sign(T (k)) at a specific k, which
defines a map from the BZ to the classification space Mcl

sign(T (k)) : BZ →Mcl � O(M + N)
O(M) × O(N), (11)

Table : The irreducible band representations near the Fermi level.

Bands M Γ A H K L

HOVB+ Mþ


Γþ


A A () HH() K L ()
HOVB+ M�


K ()

HOVB+ Mþ


Γ�


L ()
HOVB+ M�


Γ�

ðÞ K ()

HOVB+ M�


A () HH() L ()
HOVB Mþ


Γ�


K

Fermi surface

LUCB M�


Γþ


A () HH() K () L ()
LUCB- Mþ


Γ�


LUCB- Mþ


Γþ


A () K L ()
LUCB- M�


Γþ


K ()

LUCB, lowest unoccupied conducting band; HOVB, highest occupied valence band.
The numbers in the parentheses denote the degeneracy of the bands.
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whereM(N ) denotes the number of unoccupied (occupied)
bands. The group of such topologically distinct mappings
is given by the homotopy groups [49]

πd( O(M + N)
O(M) × O(N)), (12)

where d is the dimension of a closed submanifold in the BZ.
Note that the d dimensional submanifold cannot be chosen
arbitrarily. It must not intersect with the nodal line but
enclose it. This is because the mappings (11) are not well
defined at the band-crossing points. For example, like the
Dirac semimetal, a point-like node can only be surrounded
by a two-dimensional sphere S2. Accordingly, the homo-
topy group is

π2( O(M + N)
O(M) × O(N)) � Z2. (13)

In fact, this is the same as the reduced orthogonal K

group K̃O(S2) � Z2, also known as the monopole charge of
IT symmetric real Dirac point [18].

As for a nodal line, there are two choices of the sub-
manifold: one is an 1D closed path interlocked with the
nodal ring, as denoted by the purple line in Figure 5a; the
other is a 2D closed surface surrounding the nodal ring,
which may be a sphere or a torus. It turns out that the
difference between torus and sphere does not matter for
defining the topological invariants [28]. Therefore, the
system (3) can be classified by two distinct topological
charges π1(Mcl) × π2(Mcl) � Z2 × Z2, which is also called
doubly charged [49].

These two abstract definitions is good for organized
thinking but not for calculation. Before setting about the
numerical calculation, we need to clarify some subtleties
first for π1(Mcl), which is nothing but the real Berry’s
phase. Based on adiabatic theorem, the conventional way
to calculate this subject is to define an abelian Berry’s
connection [55]

Aμ(k) � i∑
N

i
〈a,k| ∂

∂kμ
|a,k〉, (14)

where the summation is for the occupied bands. Then the
one-dimensionalZ2 number is the Berry’s phasemodulo 2π

c1 � ∮
​
Aμdk

μ mod2π. (15)

The problem for a IT symmetric system is that,
because |a,k〉 is real, the Berry’s connection (14) will
vanish. Notice that this does not mean we have a trivial
Berry’s curvature, but rather a bad gauge choice. We must
relax the reality condition and “analytically continue” the

real eigenstates |a,k〉 to a complex one, then the Berry’s
phase (15) can be still well defined. Actually, c1 defined in
this way coincides with the first Stiefel-Whitney class
which characterizes the orientation of the real vector
bundle on a circle S1. To perform the first-principle calcu-
lation, we need to interpret the abelian Berry’s connection
in terms of the Wannier charge centers [56]. This has been
implemented by the software package WannierTools [48].
We have chosen a closed path interlocked with the nodal
line as the purple line in Figure 5a. The Berry’s phase is
easily obtained and is nontrivial as expected.

However, as discussed by Fang et al [11], the topological
charge c1 cannot prohibit the nodal line from shrinking to a
point and disappearing. We still need to check the second
topological invariant c2 ∈ π2(Mcl),which isalso knownasZ2

monopole charge [11]. It is related to the second Stiefel-
Whitney class of the real vector bundle on S2, which char-
acterizes whether or not one can define a consistent spin
structure on the bundle. Rather surprisingly, there exists a
beautiful relationbetween c2 and the linkingnumber of lines
of band touching [28], which is given by

c2 � ∑
j
Lk(γ1, γ̃j) mod 2, (16)

where γ1 is the nodal ring at the Fermi level and γ̃j are lines
of band touching between the first and the second
topmost occupied bands. From the band structural shown
in Figure 2, the first and the second topmost bands are far
from each other around Γ point; the degeneracy only oc-
curs at the boundary of BZ, that is, there is no linking.
Hence, the second Stiefel-Whitney class for YH3 is trivial.
This is understandable from another view of point:
because the BZ is a closed orientable manifold, similar to
the proof the Nielsen-Ninomiya theorem [57], the total
monopole charge should be always zero; therefore, the
nodal lines with nontrivial c2 can only be created or
annihilated pairwise. For the semimetal phase of YH3,
there is only one nodal line and accordingly c2 must be
trivial.

4 Conclusion and outlook

By using the first-principle calculation, we have studied
the electronic structure of YH3 under hydrostatic pres-
sure in the range 0–30 GPa. At zero pressure, the YH3

is gapped. By increasing the hydrostatic pressure, we
find that YH3 undergoes a pressure-induced semi-
conductor-semimetal transition at about 10 GPa. In the
range of 10–24 GPa, there are electron- and hole-like
bands overlapped and result in accidental band
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degeneracies at the Fermi level. The band crossings
turn out to be an IT -protected nodal line surrounding
the Γ point. The effective Hamiltonian of such two
bands system is also given, and near the band-crossing
points, the fermion mode looks like the 3D Majorana
fermion. There are two topological invariants for such

nodal line: one is Z2 Berry’s phase associated with a S1

interlocked with the nodal line, which is topological
nontrivial in accordance with the calculations; the
other is the Z2 monopole charge associated with a
closed surface enclose the nodal line, which on the
other hand is topological trivial, meaning that this
nodal line can shrink to a point without destroying any
topology structure.

Our results also suggest that pressure effect may
play an important role in searching for topological
semimetals. Especially for centrosymmetric systems in
the category of AZ + T classification, where the nodes
are protected by nonspacial symmetries plus space
inversion symmetry. These symmetries are stable
against straining and consequently the nodes will be
more robust in a sense [49]. Therefore, one can use
pressure effect as a tool to engineer the band structure
of the centrosymmetric systems to find robust topo-
logical semimetals. Another interesting point is that, for
systems with IT symmetries, because of the reality
condition, they may have very interesting quasiparticle
excitations such as Majorana fermions.
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