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Abstract: In this paper, we provide simple expressions for
the permanent solutions corresponding to some oscillatory
motions of two classes of Newtonian fluids with power-law
dependence of viscosity on the pressure between two infinite
horizontal parallel plates. The fluidmotion is generatedby the
lower plate that applies an oscillatory shear stress to the fluid.
Suchsolutions,whichare lack in theexisting literature, canbe
useful both for those who want to eliminate the transients
from their experiments and as tests to verify numerical
schemes that are developed to study complex unsteady flow
problems of these fluids. The similar solutions corresponding
to the motion due to a constant shear stress on the boundary
are also determined and, contrary to our expectations, the
shear stresses are constant on the whole flow domain
although the associated velocity fields depend both of the
spatial variable and the dimensionless pressure-viscosity co-
efficient. Finally, for validation, some comparative graphical
illustrations are included and the convergence of starting so-
lutions to the permanent solutions is graphically proved.
Spatial profiles of starting solutions are also provided.

Keywords: oscillatory motions; permanent solutions;
pressure-dependent viscosity; shear stress on the
boundary.

1 Introduction

The fact that the fluid viscosity can depend on the pressure
was early recognized by Stokes [1] and many experimental
studies have certified this dependence (see for instance the

authoritative book of Bridgman [2] for the pertinent literature
prior to 1931 and Cutler et al. [3], Johnson and Cameron [4],
Johnson and Tewaarwerk [5] and Bair andWiner [6] with the
therein references for later). The viscosity-dependence of
pressure is important inmany applications like the food pro-
cessing, pharmaceutical tablet manufacturing, fuel oil
pumping, fluid film lubrication, microfluidics, polymeric
materials, geophysics and it is a direct result of gravity. Un-
fortunately, in the existing literature, there are very few
studies containing exact solutions for unsteady motions of
fluidswith pressure-dependent viscosity inwhich the gravity
to be taken into consideration and thefirst exact solutions for
steadymotionsofsuchfluidsseemtobethoseofHronetal. [7].

Kannan and Rajagopal [8] studied the motion of such
fluids between two parallel plates and found that the gravity
has a significant influence on the flow characteristics as the
viscosity changes with the depth. Le Roux [9] also found that
the boundary layers develop in an orthogonal rheometer
when slip boundary conditions are taken into consideration.
Such boundary layers also develop when such fluids flow
along an inclined plane and the gravity effects are taken into
consideration (see Rajagopal [10]). Kannan and Rajagopal
[11] shown that, due to the gravity, the viscosity of the rock
glacier meaningfully varies with the depth. Interesting ex-
pressions for permanent solutions (steady-state or long time
solutions) of the motion of fluids with pressure-dependent
viscosity have been established by Rajagopal [12] and Prusa
[13]. Prusa also showed that the starting solutions, that have
been numerically obtained, converge to the steady-state so-
lutions presented in terms of Kelvin functions.

Themost general solutions formotions of the fluidswith
exponential or power-law dependence of viscosity on the
pressurebetween two infinitehorizontalparallelplateswhen
the gravity effects are taken into consideration have been
established byRajagopal et al. [14] under series form in terms
of the eigenfunctions of some suitable boundary value
problems. The fluid motion is generated by both plates that
aremoving in their planes. Some uniqueness and qualitative
results regarding the nature of obtained solutions are also
provided.Otherexact solutions for steadyflowsof suchfluids
in cylindrical or spherical domains have been established by
Kalagirou et al. [15], respectively Housiadas et al. [16]. A
steady extension to the couple stress fluids with exponential
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dependence of viscosity on the pressure has been presented
by Lin et al. [17].

It is worth pointing out the fact that in all motion prob-
lems that havebeenabovementioned the velocity is givenon
the boundary although in many practical situations what is
specified is the shear stress on the boundary (see Renardy
[18–20]). In addition, some polymeric fluids can slip or slide
on the boundary and the no-slip boundary condition is not
applicable. Consequently, boundary conditions on stresses
are meaningful and Renardy [20] showed how well-posed
boundary value problems can be formulated. Actually, in
Newtonian mechanics force is the cause and kinematics is
the effect (see Rajagopal [21] for a detailed discussion on the
problem) and prescribing the shear stress on the plate is
tantamount to prescribe the force (shear) applied to move it.
The first exact solutions for motions of fluids in which the
shear stress is givenon theboundaryhavebeenearly enough
obtained by Waters and King [22]. During the time a lot of
similar solutions have been established (see for instance
Jamil and Fetecau [23], Fetecau et al. [24], Zafar et al. [25] and
therein references) but none of them for fluids with pressure
dependent viscosities.

The purpose of this note is to provide exact expressions
for the permanent components of the starting solutions
corresponding to some motions with engineering applica-
tions of two classes of fluidswith power-law dependence of
viscosity on the pressure. The fluid motion between two
infinite horizontal parallel plates is generated by the lower
plate that applies oscillatory shear stresses to the fluid. The
obtained solutions are independent of the initial condition
but satisfy the boundary conditions and governing equa-
tions. To validate the results that have been obtained, three
limiting cases are considered and some comparative
graphical representations are included. Furthermore, the
similar solutions for the motion induced by the lower plate
that applies a constant shear stress to the fluid are also
determined. In both types of fluids, the dimensionless
steady shear stress corresponding to thismotion is constant
on the whole flow domain although the adequate velocity
fields are functions both of the spatial variable y and the
pressure-viscosity coefficient α.

2 Constitutive and governing
equations

The constitutive equation of incompressible Newtonian
fluids with pressure-dependent viscosity is given by (see
for instance Rajagopal [12] and [10])

T � −pI + S � −pI + η(p)A, (1)

where T is the Cauchy stress tensor, S is the extra stress
tensor, A is the first Rivlin–Ericksen tensor, I is the unit
tensor, p is the hydrostatic pressure and η(p) is the fluid
viscosity which, for the present study, will have anyone of
the forms

η(p) � μ[α(p − ph) + 1]1/2 or η(p) � μ[α(p − ph) + 1]2. (2)

In the last two relations, μ is the fluid viscosity at the
reference pressure ph while the positive constant α is the
dimensional pressure-viscosity coefficient. This coeffi-
cient, whose values have been obtained from measure-
ments, is a measure of the pressure dependence of the
viscosity of the liquid in elastohydrodynamic lubrication.
Making α→ 0 in Eq. (2), η(p)→ μ and Eq. (1) reduces to
the constitutive equation of the ordinary incompressible
Newtonian fluids. Furthermore, both relations (2) implies
η(p)→∞ if p→∞, a feature that has been experimen-
tally proved (see Bridgman [2]).

In the following, we shall determine simple exact
expressions for the permanent solutions (steady-state or
long time solutions) corresponding to some oscillatory
motions of fluids defined by Eqs. (1) and (2)1 or (2)2. Let us
assume that such a fluid is at rest between two infinite
horizontal parallel plates at the distance h apart. At the
moment t = 0+, the lower plate begins to apply an oscil-
latory shear stress S cos(ωt) or S sin(ωt) to the fluid. Here, S
and ω are the amplitude, respectively the frequency of
oscillations. Due to the shear, the fluid is gradually moved
and following Prusa [13] and Rajagopal et al. [14] we are
looking for a solution of the form

v � v(y, t) � u(y, t)i, p � p(y), (3)

where v is the velocity vector and i is the unit vector along
the x-direction of a suitable Cartesian coordinate system
whose upward y-axis is perpendicular to the plates.

Substituting Eq. (3) in (1) and the result in the balance
of linear momentum, we attain to the following relevant
partial or ordinary differential equations

τ(y, t) � η(p) ∂u(y, t)
∂y

, ρ
∂u(y, t)

∂t
� ∂τ(y, t)

∂y
, 

dp(y)
dy

+ ρg � 0.
(4)

Into above relations, τ(y,t) = Syx(y,t) is the non-trivial
component of the extra-stress tensor S, ρ is the fluid density
and g is the acceleration due to the gravity. In order to get
Eq. (4)3, we used the fact that the specific body force is −gj,
with j the unit vector along the y-axis. Of course, the con-
tinuity equation is identically verifiedwhile Eq. (4)3 implies

p � p(y) � ρg(h − y) + ph, (5)
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where ph = p(h) is the dimensional pressure at the upper
plate.

Now, replacing p(y) from Eq. (5) in (2), introducing the
results in Eq. (4)1 and eliminating τ(y,t) we find the gov-
erning equations for the velocity field corresponding to the
motion of the two types of fluids with pressure-dependent
viscosity, namely

μ
������������
αρg(h − y) + 1

√
∂
2u(y, t)
∂y2

− μαρg

2
������������
αρg(h − y) + 1

√ ∂u(y, t)
∂y

� ρ
∂u(y, t)

∂t
;  0 < y < h, t > 0,

(6)

respectively

μ[αρg(h − y) + 1]2∂2u(y, t)
∂y2

− 2μαρg[αρg(h − y) + 1] ∂u(y, t)
∂y

� ρ
∂u(y, t)

∂t
;  0 < y < h, t > 0.

(7)
The non-trivial shear stresses corresponding to these

motions of fluids in consideration can be obtained using
the relations

τ(y, t) � μ
������������
αρg(h − y) + 1

√
∂u(y, t)

∂y
 or τ(y, t)

� μ[αρg(h − y) + 1]2∂u(y, t)
∂y

.

(8)

In addition, the initial condition

u(y,0) � 0 ; 0 ≤ y ≤ h (9)

and the following boundary conditions

τ(0, t) � μ
������������
αρg(h − y) + 1

√
∂u(y, t)

∂y

∣∣∣∣∣∣∣∣∣∣y�0
� S cos(ωt), u(h, t) � 0 ;  t > 0,  or

τ(0, t) � μ
������������
αρg(h − y) + 1

√
∂u(y, t)

∂y

∣∣∣∣∣∣∣∣∣∣y�0
� S sin(ωt), u(h, t) � 0 ;  t > 0,

(10)

respectively

τ(0, t) � μ[αρg(h − y) + 1]2∂u(y, t)
∂y

∣∣∣∣∣∣∣∣y�0
� S cos(ωt), u(h, t) � 0 ;  t > 0,  or

τ(0, t) � μ[αρg(h − y) + 1]2∂u(y, t)
∂y

∣∣∣∣∣∣∣∣y�0
� S sin(ωt), u(h, t) � 0 ;  t > 0,

(11)

have to be satisfied.

Introducing the next non-dimensional variables,
functions and parameter

y∗ � y
h
, t∗ � S

μ
t, u∗ � μ

hS
u, τ∗ � τ

S
, α∗ � αρgh (12)

and dropping out the star notation, the governing Eqs. (6)
and (7) for the fluid velocity take the dimensionless forms

����������
α(1 − y) + 1

√
∂
2u(y, t)
∂y2

− α

2
����������
α(1 − y) + 1

√ ∂u(y, t)
∂y

� Re
∂u(y, t)

∂t
; 0 < y < 1, t > 0,

(13)

[α(1 − y) + 1]2∂2u(y, t)
∂y2

− 2α[α(1 − y) + 1] ∂u(y, t)
∂y

� Re
∂u(y, t)

∂t
;  0 < y < 1, t > 0,

(14)

wherer Re = hV/v (V = hS / μ being a characteristic velocity)
is the Reynolds number.

The corresponding initial and boundary conditions are

u(y,0)�0 ; 0≤y≤1, (15)

∂u(y,t)
∂y

∣∣∣∣∣∣∣∣y�0� cos(ωt)����
α+1√ or

∂u(y,t)
∂y

∣∣∣∣∣∣∣∣y�0� sin(ωt)����
α+1√ ,u(1,t)�0 ; t >0,

(16)

respectively,

∂u(y,t)
∂y

∣∣∣∣∣∣∣∣y�0� cos(ωt)
(α+1)2 or

∂u(y,t)
∂y

∣∣∣∣∣∣∣∣y�0� sin(ωt)
(α+1)2 , u(1,t)�0 ; t>0.

(17)

The adequate non-dimensional shear stresses, which
are given by

τ(y, t) � ����������
α(1 − y) + 1

√
∂u(y, t)

∂y
 or τ(y, t)

� [α(1 − y) + 1]2∂u(y, t)
∂y

,

(18)

allow us to determine the dimensionless permanent fric-
tional forces per unit area exerted by the fluid on the upper
plate.

3 Permanent solutions

It is well known the fact that the starting solutions uc(y,t)
and us(y,t) corresponding to oscillatory motions induced
by the lower plate that applies shear stresses of the form
S cos(ωt), respectively S sin(ωt) to the fluid can be written
as sums of the permanent and transient components,
namely
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uc(y, t) � ucp(y, t) + uct(y, t), us(y, t) � usp(y, t) + ust(y, t).
(19)

Some time after the motion initiation the fluid moves
according to the starting solutions uc(y,t) or us(y,t). After
this time, when the transients disappear or can be
neglected, the fluid motion is characterized by the per-
manent solutions ucp(y,t), respectively usp(y,t). This is the
required time to reach the permanent state. It is important
for those who want to eliminate the transients from their
experiments. Generally, in order to determine this time for
different fluid motions, it is necessary to know exact ex-
pressions at least for their permanent solutions because the
corresponding starting solutions can be numerically
determined.

This is the reason that, in the following, we shall
establish exact expressions for the permanent components
ucp(y,t) and usp(y,t) corresponding to themotions of the two
types of fluids with pressure-dependent viscosity. Their
expressions are independent of the initial condition (15)
but satisfy the boundary conditions and governing equa-
tions. In order to do determine them in a simple way, we
introduce the dimensionless complex velocity field

vp(y, t) � ucp(y, t) + iusp(y, t), (20)

where i is the imaginary unit. In order to determine vp(y,t)
for the oscillatory motions of the two types of fluids with
power-law dependence of viscosity on the pressure, we
shall use suitable changes of the spatial variable and the
method of separating variables.

3.1 Case η(p) � μ
�����������
α(p − ph) + 1

√
In this case, the corresponding dimensionless complex
velocity field vp(y,t) has to satisfy the partial differential
equation (see Eq. (13))����������

α(1 − y) + 1
√

∂
2vp(y, t)
∂y2

− α

2
����������
α(1 − y) + 1

√ ∂vp(y, t)
∂y

� Re
∂vp(y, t)

∂t
;  0 < y < 1, t ∈ R,

(21)

and the boundary conditions

∂vp(y, t)
∂y

∣∣∣∣∣∣∣∣y�0 � 1
a
eiωt , vp(1, t) � 0 ;  t ∈ R, (22)

where a � ����
α + 1

√
.

Making the change of independent variable

y � α + 1 − r2

α
 or equivalently r �

����������
α(1 − y) + 1

√
, (23)

the partial differential Eq. (21) takes the simpler form

α2

4r
∂
2vp(r, t)
∂r2

� Re
∂vp(r, t)

∂t
;  1 < r < a,  t ∈ R, (24)

while the boundary conditions (22) become

vp(1, t) � 0, 
∂vp(r, t)

∂r

∣∣∣∣∣∣∣r�a � − 2
α
eiωt ;  t ∈ R. (25)

For the mixed boundary value problems (24) and (25),
we are looking for a separable solution, namely

vp(r, t) � V(r)T(t). (26)

Introducing vp(r,t) from Eq. (26) in (24), we find that

α2

Re
d2V(r)
dr2

− 4λrV(r) � 0, 
dT(t)
dt

− λT(t) � 0, (27)

where λ is constant. Bearing in mind, the boundary con-
ditions (25) it results that λ = iω and the function V(r) has to
satisfy the conditions

V(1) � 0, 
dV(r)
dr

∣∣∣∣∣∣∣r�a � − 2
α
. (28)

Eq. (27)1 is an ordinary differential equation of Airy
typewhose general solution is (see for instance Zill [26], the
exercise 34 on the page 251)

V(r) � �
r

√ [C1J1/3(br �
r

√ ) + C2Y 1/3(br �
r

√ )],
b � 4

3α
������−iωRe√

, (29)

where J1/3(⋅) and Y 1/3(⋅) are standard Bessel functions of the
first and second kind of order 1/3 while C1 and C2 are con-
stants. Using the boundary conditions (28) and the prop-
erty (A1) from Appendix we find that

V(r) � 4
�
r

√
3abα

J1/3(b)Y 1/3(br
�
r

√ ) − Y 1/3(b)J1/3(br
�
r

√ )
Y 1/3(b)J−2/3(ab

��
a

√ ) − J1/3(b)Y−2/3(ab
��
a

√ ) .

(30)

Finally, bearing in mind the definition of the complex
velocity vp(y,t) and the previous analysis, it results that the
dimensionless permanent solutions ucp(y,t) and usp(y,t)
corresponding to the two oscillatory motions of the fluids
under consideration are given by

ucp(y,t)�
��������
α(1−y)+14

√
���������
ωRe(α+1)√

×Real
⎧⎪⎪⎨⎪⎪⎩
J1/3Y 1/3(b �����������[α(1−y)+1]34

√ )−Y 1/3(b)J1/3(b �����������[α(1−y)+1]34
√ )

Y 1/3(b)J−2/3(b ������
(α+1)34

√ )−J1/3(b)Y−2/3(b ������
(α+1)34

√ ) ei(ωt+π/4)
⎫⎪⎪⎬⎪⎪⎭,

(31)
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usp(y,t)�
��������
α(1−y)+14

√
���������
ωRe(α+1)√

×Im
⎧⎪⎪⎨⎪⎪⎩
J1/3(b)Y 1/3(b �����������[α(1−y)+1]34

√ )−Y 1/3(b)J1/3(b �����������[α(1−y)+1]34
√ )

Y 1/3(b)J−2/3(b ������
(α+1)34

√ )−J1/3(b)Y−2/3(b ������
(α+1)34

√ ) ei(ωt+π/4)
⎫⎪⎪⎬⎪⎪⎭,

(32)
where Im denotes the imaginary part of that which follows.

These solutions, as we already mentioned before, are
independent of the initial condition (15) but satisfy the
boundary conditions (16) and the governing Eq. (13). In
order to determine the exact expressions of the dimen-
sionless permanent frictional forces per unit area exerted
by the fluid on the upper plate, namely

τcp(1, t) � 1����
α + 1

√ Real
⎧⎪⎪⎨⎪⎪⎩ J1/3(b)Y−2/3(b) − Y1/3(b)J−2/3(b)
J1/3(b)Y−2/3(b �������

(α + 1)34
√ ) − Y1/3(b)J−2/3(b �������

(α + 1)34
√ ) eiωt

⎫⎪⎪⎬⎪⎪⎭,

(33)

τsp(1, t) � 1����
α + 1

√ Im
⎧⎪⎪⎨⎪⎪⎩ J1/3(b)Y−2/3(b) − Y 1/3(b)J−2/3(b)
J1/3(b)Y−2/3(b �������

(α + 1)34
√ ) − Y 1/3(b)J−2/3(b �������

(α + 1)34
√ )eiωt

⎫⎪⎪⎬⎪⎪⎭  ,

(34)
we have introduced Eqs. (31) and (32) in (18)1 and took y = 1.

3.2 Case η(p) � μ[α(p − ph) + 1]2

The complex velocity field vp(y,t) corresponding to this
case has to satisfy the partial differential equation (see Eq.
(14))

[α(1 − y) + 1]2∂2vp(y, t)
∂y2

− 2α[α(1 − y) + 1] ∂vp(y, t)
∂y

� Re
∂vp(y, t)

∂t
;  0 < y < 1, t ∈ R, (35)

with the boundary conditions

∂vp(y, t)
∂y

∣∣∣∣∣∣∣∣y�0� 1

(α+ 1)2 e
iωt , vp(1, t)�0 ; t ∈R. (36)

Making the change of independent variable

y � α + 1 − er

α
 or equivalently r � ln[α(1 − y) + 1], (37)

Eq. (35) reduces to the next partial differential equation
with constant coefficients

∂
2vp(r, t)
∂r2

+ ∂vp(r, t)
∂r

− Re
α2

∂vp(r, t)
∂t

;  0 < r < c,  t ∈ R, (38)

where c � ln(α + 1).
Looking again for a separable solution as in the pre-

vious case, we find that the corresponding function V(r)
has to satisfy the ordinary differential equation

d2V(r)
dr2

+ dV(r)
dr

− iωRe
α2

V(r) � 0, (39)

whose general solution is given by

V(r) � C1er1r + C2er2r ; r1,2 � −α ±
���������
α2 + 4iωRe

√
2α

. (40)

Coming back to the original variables, it results that

vp(y, t) � {C1[α(1 − y) + 1]r1 + C2[α(1 − y)] + 1]r2}eiωt (41)

and using the boundary conditions (36) we find that

vp(y, t) � 1
α(α + 1)

[α(1 − y) + 1]r2 − [α(1 − y) + 1]r1
r1(α + 1)r1 − r2(α + 1)r2

× eiωt .
(42)

Consequently, the dimensionless permanent solutions
corresponding to this case are

ucp(y, t)
� 1
α(α + 1)Real{[α(1 − y) + 1]r2 − [α(1 − y) + 1]r1

r1(α + 1)r1 − r2(α + 1)r2 eiωt},
(43)

usp(y, t) � 1
α(α + 1) Im{[α(1 − y) + 1]r2 − [α(1 − y) + 1]r1

r1(α + 1)r1 − r2(α + 1)r2  eiωt},
(44)

while the permanent frictional forces per unit area exerted
by the fluid on the upper plate are

τcp(1, t) � 1
α(α + 1)Real{

���������
α2 + 4iωRe

√
r1(α + 1)r1 − r2(α + 1)r2 e

iωt}, (45)

τsp(1, t) � 1
α(α + 1) Im{ ���������

α2 + 4iωRe
√

r1(α + 1)r1 − r2(α + 1)r2  e
iωt}. (46)

Finally, we would like to point out the fact that inter-
esting results regarding the start-up of the stress-controlled
oscillatory flow have been theoretically and experimentally
obtained by Lee et al. [27] and Hassager [28]. In both papers,
the shear stress on the boundary oscillates sinusoidal, i.e.
τ(0, t) � S sin(ωt + φ). The phase φ of the applied stress
varies between 0 and 2π. Our boundary conditions can be
obtained for φ = 0 or π/2. An analytical expression for the
non-trivial value aroundwhich the resulting strain oscillates
is determined by Lee et al. [27], while a transiently decaying
contribution is provided by Hassager [28] in the case of the
theory of linear viscoelasticity.

4 Limiting cases

In order to certify the correctness of results that have been
here obtained, as well as to get some physical insight of
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them, we consider some particular cases whose solutions
are well known in the existing literature or can be easily
determined and include a few comparative graphical
representations.

4.1 Case α = 0 (Ordinary incompressible
Newtonian fluids)

The dimensionless permanent velocity fields uNcp(y,t) and
uNsp(y,t) corresponding to incompressible Newtonian
fluids performing the samemotions as in previous sections
have the simple forms (see Javaid et al. [29, Eqs. (42)
without porous and magnetic effects])

uNcp(y, t) � − 1����
ωRe

√ Real{sh[(1 − y) �����
iωRe

√ ]
ch( �����

iωRe
√ ) eiωt�

i
√ }, (47)

uNsp(y, t) � − 1����
ωRe

√ Im{sh[(1 − y) �����
iωRe

√ ]
ch( �����

iωRe
√ ) eiωt�

i
√ }, (48)

while the adequate frictional forces exerted by the fluid on
the upper plate are given by

τNcp(1, t) � Real{ 1
ch( �����

iωRe
√ )eiωt},

 τNsp(1, t) � Im{ 1
ch( �����

iωRe
√ )eiωt}.

(49)

Now, we show that the Newtonian solutions uNcp(y,t)
and uNsp(y,t) can be obtained as limiting cases of ucp(y,t)
and usp(y,t) given by Eqs. (31), respectively (32) when
α→ 0. Indeed, using the asymptotic approximations (A2)
from Appendix, we can easy prove that

ucp(y, t)
≈

1����
ωRe

√ �����������������
(α + 1)[α(1 − y) + 1]8

√ Real
⎧⎪⎨⎪⎩sin{b[1 − ������������[α(1 − y) + 1]34

√ ]}
cos{b[1 − �������

(α + 1)34
√ ]} eiωt��−i√

⎫⎪⎬⎪⎭,

(50)

usp(y, t) ≈ 1����
ωRe

√ �����������������
(α + 1)(α(1 − y) + 1)8

√ Im
⎧⎪⎨⎪⎩sin{b[1 − ������������[α(1 − y) + 1]34

√ ]}
cos{b[1 − �������

(α + 1)34
√ ]} eiωt��−i√

⎫⎪⎬⎪⎭ ,

(51)
for small enough values of the non-dimensional pressure-
viscosity coefficient α. Using the Maclaurin series expan-
sions for [1 + α(1 − y)]3/4 and (1 + α)3/4 and the identities
(A3) from Appendix and taking the limit of Eqs. (50) and
(51) when α→ 0 we recover Eqs. (47), respectively (48).
Furthermore, following the sameway as before, it is easy to
show that the frictional forces τNcp(1,t) and τNsp(1,t) given
by Eqs. (49) can be also obtained as limiting cases of τcp(1,t)
and τsp(1,t) given by Eqs. (33), respectively (34) when
α→ 0.

As regards the dimensionless permanent solutions
ucp(y,t) and usp(y,t) given by Eqs. (43) and (44) corre-
sponding to the same oscillatory motions of the second
type of fluids with power-law dependence of viscosity on
the pressure, we provide Figures 1 and 2. From these fig-
ures, as expected, it clearly results the convergence of
these solutions to the Newtonian solutions uNcp(y,t),
respectively uNsp(y,t) when the dimensionless pressure-
viscosity coefficient α→ 0. In addition, Figures 3 and 4
show that the diagrams of τcp(1,t) and τsp(1,t) given by Eqs.
(45) and (46) tend to superpose over those of τNcp(1,t),
respectively τNsp(1,t) given by Eq. (49)1 and 2 when the same
parameter α→ 0. As expected, in both cases the oscilla-
tions’ amplitude is the same and the phase difference is
obviously observed.

4.2 Caseω = 0 (flow due to a constant shear
stress S on the boundary)

Dimensionless permanent velocity fields corresponding to
this motion of the two different types of fluids with

η(p)�μ[α(p−ph)+ 1]1/2 or η(p)�μ[α(p−ph)+ 1]2, namely

uSp1(y) � 2
α
[1 − ����������

α(1 − y) + 1
√ ], respectively 

uSp2(y) � 1
α
[ 1
α(1 − y) + 1

− 1], (52)

are immediately obtained solving the ordinary differential
equations (see Eqs. (13) and (14))

d
dy

[ ����������
α(1 − y) + 1

√ duSp(y)
dy

] � 0, respectively 

d
dy

{[α(1 − y) + 1]2duSp(y)
dy

} � 0,

(53)

with the boundary conditions

duSp(y)
dy

∣∣∣∣∣∣∣∣y�0 �1, uSp(1) � 0. (54)

Figure 5 show that, for decreasing values of the os-
cillations’ frequencyω, the diagrams of the dimensionless
velocity field ucp(y,t) given by Eq. (43) tend to superpose
over the profile of the velocity uSp2(y) given by Eq. (52)2
when ω→ 0. More exactly, the dimensionless velocity
field uSp2(y) corresponding to the motion induced by
the lower plate that applies a constant shear stress S to
the fluid can be obtained as a limiting case of ucp(y,t)
given by Eq. (43) when ω→ 0 and this convergence can
be also proved by direct computations. In addition, the
fluid velocity in absolute value smoothly decreases from
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Figure 1: Profiles of the permanent solutions
ucp(y, t) for three values of the pressure-
viscosity coefficient α and uNcp(y) given by
Eqs. (43) and (47), for ω = π/6 and t = 10.

Figure 2: Profiles of the permanent solutions
usp(y,t)for three values of the pressure-
viscosity coefficient α and uNsp(y)given by
Eqs. (44) and (48), for ω = π/6 and t = 10.

Figure 3: Time evolution of frictional forces
τcp(1, t)for three values of the pressure-
viscosity coefficient α and τNcp(1, t) given by
Eqs (45) and (49)1, forω = π/6 and Re = 100.

Figure 4: Time evolution of frictional forces
τsp(1, t)for three values of the pressure-
viscosity coefficient α and τNsp(1, t)given by
Eqs. (46) and (49)2, for ω = π/6 and
Re = 100.
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maximum values on the lower plate to the zero value on
the stationary plate.

Finally, it is worth pointing out the fact the dimen-
sionless shear stresses corresponding to this motion of the
two types of fluids with power-law dependence of viscosity
on the pressure are constants on the whole flow domain.
They are equal with the non-dimensional shear stress
applied by the lower plate to the fluid, namely τSp1=τSp2 = 1,
although the adequate velocity fields given by Eqs. (52)1 and 2

are functions both of the spatial variable y and the dimen-
sionless pressure-viscosity coefficient α.

4.3 Case α = ω = 0 (flow of an
incompressible Newtonian fluid induced
by a constant shear stress S on the
boundary)

Making ω→ 0 in Eq. (47) or α→ 0 in anyone of the
equalities (52)1 and 2, and bearing in mind the final remark
from the previous subsection, we recover the dimension-
less permanent velocity and shear stress fields (see Javaid
et al. [29])

uNSp(y) � y − 1, τNSp � 1, (55)

corresponding to the motion of incompressible Newto-
nian fluids induced by the lower plate that applies a
constant shear stress S to the fluid. The sign difference
between the present results and those of Javaid et al. [29]
appears due to the boundary conditions on the lower
plate which are taken with opposite signs. The conver-
gence of the velocity fields given by Eqs. (52)1 and 2 to
uNSp(y) is also shown in Figure 6. Indeed, from these
figures, it is clearly results that for α→ 0 the diagrams of
the two solutions tend to the same straight line whose
equation is given by Eq. (55)1. Moreover, as expected, the
fluid velocity in absolute value is a decreasing function
with regard to the pressure-viscosity coefficient α. This is

normal because if α increases the viscosity increases and
the fluid flows slower.

5 Conclusions

In this paper, we established exact expressions for the
dimensionless permanent solutions corresponding to some
unsteady motions of two classes of incompressible Newto-
nian fluids with power-law dependence of viscosity on the
pressure between two infinite horizontal parallel plates. The
fluid motion is induced by the lower plate that applies an
oscillatory shear stress to the fluid and the gravity effects are
taken into consideration. These solutions, which are new in
the literature, are presented in simple forms under the
polynomial form or in terms of some standard Bessel func-
tions of the first and second kind. They can be useful for
those who want to eliminate the transients from their ex-
periments or can be used as tests to verify different numer-
ical methods that are developed to study more complex
motion problems. In addition, these solutions have been
already used here to determine dimensionless permanent
frictional forces per unit area exerted by the fluid on the
upper plate. Another relevant physical entity such as the
vorticity can be also determined.

In order to demonstrate the correctness of results that
have been obtained, as well as to get some physical insight
of them, three special cases are considered and some
comparative graphical representations are presented in
Figures 1–6. From Figures 1 and 2, it clearly results that the
diagrams of velocity fields ucp(y,t) and usp(y,t) given by Eqs.
(43) and (44) tend to superpose over those of uNcp(y,t),
respectively uNsp(y,t) given by Eqs. (47) and (48) when the
dimensionless pressure-viscosity coefficient α→ 0. More
precisely, as it was to be expected, the dimensionless
permanent velocity fields corresponding to oscillatory
motions of fluids with power-law dependence of viscosity
on the pressure converge to those of ordinary Newtonian
fluids performing the same motions if α→ 0. The

Figure 5: Profiles of the permanent solutions
ucp(y, t) for three values of the frequency ω
and uSp2(y) given by Eqs. (43), respectively
(52)2, for α = 0.9 and Re = 100.
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convergence of the first two solutions ucp(y,t) and usp(y,t)
given by Eqs. (31) and (32) to uNcp(y,t), respectively uNsp(y,t)
has been analytically proved.

The convergence of the upper wall shear stresses
τcp(1,t) and τsp(1,t) given by Eqs. (45) and (46) to the cor-
responding Newtonian solutions τNcp(1,t) and τNsp(1,t)
given by Eq. (49)1, respectively (49)2 has been graphically
proved by Figures 3 and 4 for α→ 0. In these figures, the
oscillatory characteristics of the motion are better under-
lined. The oscillations’ amplitudes, of the same order of
magnitude in bothmotions, diminish for decreasing values
of the pressure-viscosity coefficient α and the phase dif-
ference is easy observed. Figure 5 is also devoted to the
convergence of the velocity field ucp(y,t) given by Eq. (43) to
uSp(y) from Eq. (52)2 when ω→ 0. Figure 6 show that the
diagrams of both velocityfields given by Eqs. (52)1 and 2 tend
to a straight line if α→ 0. This straight line, as expected,
represents just the profile of the velocity field uNSp(y) given
by Eq. (55)1. From this figure, it also results that the fluid
velocity in absolute value grows for decreasing values of α.
Consequently, the ordinary fluids flow faster as compared
to fluids with pressure-dependent viscosity. This is
possible since the fluid viscosity diminishes if the coeffi-
cient αdecreases.

The time variations of the midplane velocity fields
ucp(y,t) and usp(y,t) given by Eqs. (43), respectively (44) are
presented in Figures 7 and 8 for two values of Reynolds
number Re. From these figures, as well as from Figures 3
and 4, the oscillatory feature of the motion is better
captured. The amplitude of the oscillations, which is of the
same order of magnitude in both motions, is an increasing
function with respect to the dimensionless pressure-
viscosity coefficient α and decreases for increasing values
of the Reynolds number Re. The phase difference between
the profiles of the velocities corresponding to the two mo-
tions due to cosine or sine oscillations of the shear stress on
the boundary is obviously observed.

Figures 9 and 10 have been presented to provide
approximate values for the required time to reach the

permanent state for oscillatory motions of the two types of
fluids with pressure-dependent viscosities induced by
cosine oscillations of the shear stress on the boundary. This
is the time after which the fluid moves according to the
permanent solutions. More exactly, it is the time after which
the diagrams of starting solutions are almost identical to
thoseof thecorrespondingpermanent solutions.As it results
from these figures, this time decreases for increasing values
of the Reynolds number Re. It also diminishes for increasing
values of the pressure-viscosity coefficient α (see Vieru et al.
[30]). In addition, as it was to be expected, the convergence
of the starting solutions uc(y,t) (numerical solutions) to the
corresponding permanent components ucp(y,t) can be easy
observed from these figures.

Spatial profiles of the dimensionless starting solutions
corresponding to both oscillatory motions of fluids with
power-law dependence of viscosity on the pressure are
presented in Figures 11 and 12 for fixed values of the pa-
rameters α andω and the Reynolds number Re. From these
graphical representations, it is easy to see that the initial
condition (15), as well as the boundary condition on the
upper plate, is clearly satisfied. Furthermore, the oscilla-
tory characteristics of the fluidmotion, as well as the phase
difference between motions due to cosine or sine oscilla-
tions of the shear stress on the boundary, are more easily
observed. For these graphs, “the Maple pde-solver” has
been used.

In Figures 13 and 14, the three-dimensional distribu-
tion of the velocity fields uc(y,t) and us(y,t) has been visu-
alizedwith the help of the two-dimensional contour graphs
(see for instance Fullard andWake [31]) for Re = 100, α=0.9
and ω = π/6. They are based on the numerical solutions of
the partial differential Eqs. (13), respectively (14) with the
initial condition (15) and the corresponding boundary
conditions. The trajectories of contour graphs are marked
with the black color. Light and dark black colors are rep-
resenting the maximum, respectively minimum values of
the solutions while themiddle value is coded withmedium
black. Their values between maximum and minimum are

Figure 6: Profiles of the permanent solutions
uSp1(y) and uSp2(y) given by Eq. (52)1,
respectively (52)2 for three values of the
pressure-viscosity coefficient α.
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viewed with the gradient of the color between light and
dark black. The oscillatory behavior of the solutions is
observed by viewing the alternation of the two distinct sets
of almost closed trajectories along the time t. Along the y-
axis, the color of all curves tends to become middle black
for increasing values of y. It means that, as expected, the

amplitude of oscillations decreases for increasing values of
the spatial variable y.

The principal outcomes that can be brought to light
from the previous presentation are:
– Permanent solutions corresponding to some motions

of Newtonian fluids with power-law dependence of

Figure 7: Midplane velocity as a function of
time corresponding to ucp(y, t) given by Eq.
(43) for three values of the pressure-
viscosity coefficient α, for ω = π/6 and
y = 0.5.

Figure 8: Midplane velocity as a function of
time corresponding to usp(y, t) given by Eq.
(44) for three values of the pressure-
viscosity coefficient α, for ω = π/6 and
y = 0.5.

Figure 9: Comparison of the permanent
solution ucp(y, t) given by Eq. (31) with the
corresponding starting solution (numerical
solution), for α = 0.9, ω = π/6.

Figure 10: Comparison of the permanent
solution ucp(y, t) given by Eq. (43) with the
corresponding starting solution (numerical
solution), for α = 0.9, ω = π/6.
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viscosity on the pressure have been established in
simple forms.

– The amplitude of oscillations of velocity and frictional
force diminishes for decreasing values of the pressure-
viscosity coefficient α or increasing values of Reynolds
number Re.

– Required time to reach the permanent state has been
approximated for motions due to cosine oscillations of
the shear on the boundary. It diminishes for increasing
values of Re.

– Similar solutions for the motion induced by a constant
shear on the boundary have been also established.

Figure 11: Spatial profiles of the velocity
fields uc(y, t) and us(y, t) (numerical
solutions) whose permanent components
ucp(y, t), respectively usp(y, t) are given by
Eqs. (31) and (32), for Re = 100, α = 0.9,
ω = π/6.

Figure 12: Spatial profiles of the velocity
fields uc(y, t) and us(y, t) (numerical
solutions) whose permanent components
ucp(y, t), respectively usp(y, t) are given by
Eqs. (43) and (44), for Re = 100, α = 0.9,
ω = π/6.

Figure 13: Contour profiles of the velocity
fields uc(y, t) and us(y, t) (numerical
solutions) whose permanent components
ucp(y, t), respectively usp(y, t) are given by
Eqs. (31) and (32), for Re = 100, α = 0.9,
ω = π/6.
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Ordinary fluids flow faster than fluids with pressure-
dependent viscosities.

The shear stresses corresponding to this motion of both
types of fluids are constant over the entire flow field
although the adequate velocities depend on the spatial
variable y and α.
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Appendix
zJν

′(z) + νJν(z) � zJν−1(z), (A1)

where Jν(⋅) and Yν(⋅) are Bessel functions of the first and
second kind of order ν.

Jν(z) ≈
���
2
πz

√
cos[z − (2ν + 1)π

4
], 

Yν(z) ≈
���
2
πz

√
sin[z − (2ν + 1)π

4
] for |z | > > 1, (A2)

sin(iz) � ish(z), cos(iz) � ch(z). (A3)
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