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Abstract: Exact force-free plasma equilibria satisfying the
nonlinear Beltrami equation are derived. The construction
is based on a nonlinear transformation that allows to get
from any solution to the linear Beltrami equation a one-
parametric family of exact solutions to the nonlinear one.
Exact force-free plasma equilibria connected with the Sine-
Gordon equation are presented.
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1 Introduction

Equations of the ideal plasma equilibria have the form
[1–3]:

(∇ × B(x)) × B(x) � μ∇P(x) ,   ∇ ⋅B(x) � 0 . (1.1)

Magnetic field B(x) for a force-free plasma equilibrium
with pressure P(x)=const satisfies the Beltrami equation

∇ × B(x) � α(x)B(x) , (1.2)

where ∇ × B(x) = J(x) is the electric current and α(x) is a
differentiable function of the coordinate vector x. Equa-
tion (1.2) with α(x) ≠ const is nonlinear because function
α(x) depends on the vector field B(x). Indeed, the well-
known equation ∇α(x)⋅B(x)=0 follows from Equation (1.2)
and means that function α(x) is constant along the mag-
netic fieldB(x) lines, see Chapter 1 ofmonograph [3]. Hence
for a general case function α(x) is constant on magnetic
surfaces ψ(x) = const (ψ(x) is the magnetic function).

Another relation connecting α(x) and B(x) is

∇ ⋅ [∇α(x) × B(x)] � 0 . (1.3)

Equation (1.3)means that vector field∇α(x)×B(x) (that
is also tangent to the magnetic surfaces α(x) = C = const) is

divergence free. Equation (1.3) follows from Equations
(1.2), ∇⋅B(x) = 0 and identity

∇ ⋅ (X × Y) � (∇ × X) ⋅ Y − X ⋅ (∇ × Y) ,

where X and Y are arbitrary smooth vector fields.
There are well-known exact solutions to Equation (1.2)

with α(x)=α=const, for example the spheromak magnetic
field [1, 2]. The general solutions to the linear Beltrami
equationwith α(x)=const were presented in terms of Bessel
and Legendre functions in papers [1, 2, 4] and later ana-
lysed in detail in Refs. [3, 5–8]. We proved in Refs. [9–11]
that any solution to the linear Beltrami Equation (1.2) with
α(x) = α = const has the form

B(x) � ∫
S2
[sin(αk ⋅ x)T(k) + cos(αk ⋅ x)k × T(k)]dσ , (1.4)

whereT(k) is an arbitrary smooth vector field tangent to the
unit sphere S2: k⋅k = 1 and dσ is an arbitrary measure on S2.
We presented in papers [9–11] the unsteady generalizations
of exact solutions Equation (1.4) as exact solutions to the
Navier–Stokes equations and to the viscous magneto-
hydrodynamics equations.

The term “spheromak”was first introduced in Ref. [12],
see review [13]. Moduli spaces of vortex knots for the
spheromak Beltrami field in different invariant domains
were presented in Ref. [14], and for another Beltramifield in
Ref. [15]. The vortex knots for non-Beltrami fluid flowswere
studied in Refs. [16–18].

In section 2 we introduce a transformations Tβ of the
axially symmetric plasma equilibria and show that trans-
formations Tβ satisfy equation Tγ⋅Tβ = Tβ+γ and hence for
β≥0 form a Lie semi-group. In section 3 we construct using
transformations Tβ an abundance of exact force-free
plasma equilibria satisfying the nonlinear Beltrami Equa-
tion (1.2) with α(x)≠const.

For all previously known force-free plasma equilibria
(Equation 1.2) with α(x) = α = const the relation J(x) = αB(x)
holds. Therefore the magnetic field B(x) and electric cur-
rent J(x) vanish at the same isolated points. For the equi-
libria constructed in this paper magnetic field B(x) also
vanishes at some isolated points x but the electric field J(x)
vanishes additionally on the entire magnetic surfaces

defined by equation ψ(x) � 0 where ψ(x) is the magnetic
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function. This follows from the fact that the new force-free
plasma equilibria satisfy equation

J(x) � ±α2ψ(x)����������
β + α2ψ

2(x)
√ B(x) , (1.5)

where α and β>0 are arbitrary constants. Equation (1.5)
yields that for the constructed equilibria electric current
J(x) changes its direction to the opposite when point x
crosses the magnetric surface ψ(x) � 0. We present in
section 3 two examples of axially symmetric force-free
plasma equilibria where magnetic surface ψ(x) � 0 has
infinitely many components in R

3 and therefore the
switching of direction of electric current J(x) occurs on
infinitely many surfaces.

Translationally invariant force-free plasma equilibria
are constructed in section 4. We present equilibria based
on exact solutions to the nonlinear equation

∇2ψ(x,  y) � −m2eψ(x,y) (1.6)

and on exact solutions to the Helmholtz equation ∇2ψ(x,
y) = −α2ψ(x, y) .

Exact force-free plasma equilibria connected with the
elliptic Sine–Gordon equation are constructed in section 5.
The solutions are smooth and bounded in the whole space
R

3.
As known, equilibria of an ideal incompressible fluid

with a constant density ρ obey the equations equivalent to
Equations (1.1). Therefore the presented constructions are
equally applicable to the exact axisymmetric ideal fluid
equilibria and to the translationally invariant ones.

2 A transformation of the
axisymmetric plasma equilibria

I. A steady z-axisymmetric magnetic field B(r, z) satisfying
equation ∇⋅B = 0 has the form

B(r,  z) � −1
r
∂ψ
∂z

êr + 1
r
∂ψ
∂r

êz + 1
r
G(ψ)êφ  , (2.1)

where ψ(r,  z) is the magnetic (or flux) function and
êr ,  êz ,  êφ are unit vector fields in the directions of the cy-
lindrical coordinates r, z, φ. The corresponding electric
current J(r, z) = ∇×B(r, z) is

J(r,  z) � dG(ψ)
dψ

(− 1
r
∂ψ
∂z

êr + 1
r
∂ψ
∂r

êz)− 1
r
(ψrr −

1
r
ψr +ψzz)êφ  .

(2.2)

The magnetic field B(r, z) Equation (2.1) and electric
current J(r, z) Equation (2.2) are tangent to the magnetic

surfaces ψ(r,  z) � const.
The plasma equilibrium Equations (1.1) for the

z-axisymmetric magnetic field B(r, z) Equation (2.1) were
reduced in 1958 to the Grad–Shafranov equation [19, 20]:

ψrr −
1
r
ψr + ψzz � −μr2dP(ψ)

dψ
− G(ψ)dG(ψ)

dψ
 , (2.3)

where P(ψ) is the plasma pressure.
II. Substituting into Equation (2.2) the expression of

ψrr − 1
rψr + ψzz from the Grad–Shafranov Equation (2.3) we

get:

J(r,  z) � dG(ψ)
dψ

( − 1
r
∂ψ
∂z

êr + 1
r
∂ψ
∂r

êz + 1
r
G(ψ)êφ)

+ μr
dP(ψ)
dψ

êφ  . (2.4)

Using here Equation (2.1) we arrive at equation

∇ × B(r,  z) � dG(ψ)
dψ

B(r,  z) + μr
dP(ψ)
dψ

êφ  . (2.5)

Equation (2.5) yields that for P(ψ) � const the mag-
netic field B(r, z) satisfies the Beltrami equation

∇ × B(r,  z) � dG(ψ)
dψ

B(r,  z) (2.6)

that has the form of Equation (1.2) with α(x) � dG(ψ)/dψ.
III. The last term in Equation (2.3) equals to −1

2 dG
2(ψ)/dψ.

It is evidently unchanged after the simple nonlinear
transformation

Tβ : G(ψ)→ Gβ(ψ), Gβ(ψ) � ±
���������
β + G2(ψ)√

. (2.7)

Therefore the same magnetic function ψ(r, z) satisfies
also Equation (2.3) with Gβ(ψ) instead of G(ψ). Substitut-
ing Gβ(ψ) � ±

���������
β + G2(ψ)

√
into Equations (2.1) we get a new

magnetic field

Bβ(r,  z) � −1
r
∂ψ
∂z

êr + 1
r
∂ψ
∂r

êz ±
1
r

���������
β + G2(ψ)√

êφ (2.8)

for that Equation (2.5) takes the form

∇×Bβ(r,  z) �±
G(ψ)��������
β+G2(ψ)√ dG(ψ)

dψ
Bβ(r,  z)+μr

dP(ψ)
dψ

êφ  .

(2.9)
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Equation (2.9) for P(ψ) � const becomes the Beltrami
equation

∇ × Bβ(x) � αβ(x)Bβ(x) , (2.10)

where

αβ(x) �
dGβ(ψ)
dψ

� ±
G(ψ)���������

β + G2(ψ)√ dG(ψ)
dψ

� ±
G(ψ)���������

β + G2(ψ)√ α(x) . (2.11)

Hence transformationTβ (Equation (27)) produces from
any axisymmetric solution to the Beltrami Equation (2.6) a
new solution Bβ (r, z) (Equation 2.8) to the Beltrami Equa-
tion (2.10) with another function αβ(x) Equation (2.11), β > 0.
Equation (2.11) yields

(αβ(x))2 � G2(ψ(x))
β + G2(ψ(x))(α(x))2  .

Therefore function αβ(x) is changing in the
range −|α(x)|<αβ(x)<|α(x)| .

Remark 1: Transformations Tβ Equation (2.7) with β > 0
define for any solution ψ(r,  z) to the general Grad - Sha-
franov Equation (2.3) a one-parametric family of different
magnetic fields Bβ (r, z) Equation (2.1) and electric currents
Jβ (r, z) Equation (2.2) which correspond to different func-
tionsGβ(ψ) but have the samemagnetic functionψ(r,  z). A
useful application of transformations Tβ (Equation (2.7)) is
the construction of new exact force-free plasma equilibria
satisfying the Beltrami equation ∇×Bβ(x) = αβ(x)Bβ(x) with
a non-constant function αβ(x), see Equations (3.4) and
Equation (3.5) below.

Remark 2: Transformations Tβ (Equation 2.4) with sign +
satisfy the relation

Tγ(Tβ(G)) � Tγ+β(G) . (2.12)

Indeed, Equation (2.7) yields

Tγ(Tβ(G)) � ����������������
γ + [ ���������

β + G2(ψ)√ ]2√
�

������������
γ + β + G2(ψ)√

� Tγ+β(G) .
Hence Equation (2.12) holds. For β < 0 transforms

(Equation 2.7) are defined only in the domain

G2(ψ(x))≥|β|. For 0 ≤ β < ∞ transforms (Equation 2.7) are
defined everywhere in R

3. Evidently T0(G) is the identity

transformation. Therefore Equation (2.12) yields that
transformations Tβ (Equation (2.7)) with sign + and
0 ≤ β< ∞ form a one-dimensional Lie semi-group.

3 Exact axisymmetric force-free
plasma equilibria

I. Consider the Grad–-Shafranov Equation (2.3) with P(ψ)
� const and G(ψ) � Gζ (ψ) � ±

�������
ζ + α2ψ

2
√

with an arbitrary

constant α and ζ ≥ 0. Evidently we have dGζ (ψ)/dψ
� α2ψ/Gζ (ψ). Therefore Gζ (ψ)dGζ (ψ)/dψ � α2ψ and hence

Equation (2.3) takes the linear form

ψrr −
1
r
ψr + ψzz � −α2ψ . (3.1)

Let Bζ (r,z) be the corresponding magnetic field
(Equation 2.1):

Bζ(r,  z) � − 1
r
∂ψ
∂z

êr + 1
r
∂ψ
∂r

êz + 1
r
Gζ (ψ)êφ  . (3.2)

Substituting the Grad–Shafranov Equation (2.3) with

P(ψ) � const and Gζ (ψ) � ±
�������
ζ + α2ψ

2
√

into Equation (2.2)

we get the electric current

Jζ(r,  z) � ∇ × Bζ(x)

� dGζ (ψ)
dψ

( − 1
r
∂ψ
∂z

êr + 1
r
∂ψ
∂r

êz + 1
r
Gζ (ψ)êφ) . (3.3)

Inserting Equation (3.2) into Equation (3.3) we find

∇ × Bζ(x) �
dGζ (ψ)
dψ

Bζ(r,  z) . (3.4)

Equation (3.4) is the Beltrami Equation (1.2) with the
non-constant function

α(x) � αζ(r,  z) �
dGζ (ψ)
dψ

� ± α2ψ(r,  z)������������
ζ + α2ψ

2(r,  z)
√  . (3.5)

Therefore for any solution ψ(r,  z) to the linear Equa-
tion (3.1)weconstructedthe force-freemagneticfieldsBζ (r, z)
(3.2) and electric currents Jζ (r, z) (3.3) satisfying the Beltrami
Equation(1.2)withnon-constant functionα(x) (Equation3.5).
Only for ζ=0 function dG0(ψ)/dψ � ±α becomes constant.

For function αζ (r, z) (Equation 3.5) we have (for ζ > 0)

(αζ(r,  z))2 � α2
α2ψ

2

ζ + α2ψ
2 < α

2  .
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Hence function αζ (r,z) (Equation 3.5) satisfies in-
equalities −|α|<αζ (r,z)<|α| and αζ (r,z)=0 at the points (r,z)

where ψ(r, z) � 0.

Example 1: The magnetic function ψ(r, z) for the spher-
omak plasma equilibrium [1, 2] satisfies the linear Equa-
tion (3.1) and has the form

ψ2(r, z) � −r2G2(αR) � − r2

α2R2 [cos(αR) − sin(αR)
αR

]. (3.6)

Here R =
������
r2 + z2

√
is the spherical radius in R

3. The
corresponding to the solution (Equation 3.6) magnetic
fields (Equation 3.2)

Bζ .2(r,  z) � −1
r
∂ψ2

∂z
êr + 1

r
∂ψ2

∂r
êz ±

1
r

�������
ζ + α2ψ2

2

√
êφ (3.7)

with any 0 ≤ ζ < ∞ satisfy the nonlinear Beltrami Equa-
tion (1.2) with the non-constant functions α(r, z):

∇ × Bζ .2(r,  z) � ±α2ψ2(r,  z)������������
ζ + α2ψ2

2(r,  z)
√ Bζ .2(r,  z) . (3.8)

Equation (3.8) yields that for the new force-free plasma
equilibria (Equation 3.7) the electric current

Jζ .2(r,  z) � ±α2ψ2(r,  z)������������
ζ + α2ψ2

2(r,  z)
√ (1

r
∂ψ2

∂z
êr + 1

r
∂ψ2

∂r
êz)

+ 1
r
α2ψ2(r,  z)êφ (3.9)

vanishes on the magnetic surface ψ2 (r,z) = 0. Equa-
tion (3.6) implies that the latter has infinitely many
components that all are spheres S2k : R � Rk where Rk are
the roots of equation

tan(αR) � αR . (3.10)

The first four numerical solutions to Equation (3.10) are

|α|R1 ≈ 4.4934, |α|R2 ≈ 7.7253, |α|R3 ≈ 10.9041,

 |α|R4 ≈ 14.0662 .

At k→∞ the rootsRkhave asymptotics |α|Rk ≈ (k + 1
2)π.

The electric current Jζ.2 (r, z) (Equation 3.9) switches its

direction to the opposite at the infinitely many spheres S2k.
Equation (3.9) yields that electric current Jζ.2 (r, z) is smooth
everywhere inR

3 and has zero current density on the axis z
(r = 0).

Function G2(u) in Equation (3.6), G2(u) = u−2(cos u
−u−1sin u) where u = αR, is connected with the Bessel
function J3/2(u) [21] of order 3/2 by the relation

G2(u) � −
����
π/2√
u3/2

J3/2(u) .

Example 2: Equation (3.1) is evidently invariant with
respect to the differentiations (∂/∂z)n of arbitrary
order n. Hence the flux functions ψ2+n (r, z) = ∂nψ2/∂z

n

also are solutions to Equation (3.1). For example we
have

ψ3(r,  z) �
∂ψ2(r,  z)

∂z
� −r2dG2(u)

du
du
dz

� −α2zr2G3(u) ,
(3.11)

ψ4(r,  z) �
∂
2ψ2(r,  z)
∂z2

� −α2r2G3(u) − α4z2r2G4(u) , (3.12)

where u = αR and

G3(u) � 1
u
dG2(u)
du

� 1
u4

((3 − u2) sin u
u

− 3cos u) , (3.13)

G4(u) � 1
u
dG3(u)
du

� 1
u6 ((6u2 − 15) sin u

u
− (u2 − 15)cos u) .

(3.14)

The functions Gk(u) are analytic for all u and have the
following values at u = 0: G2(0) = −1/3, G3(0) = 1/15,
G4(0) = −1/105 [15].

Magnetic field Bζ.3(r, z) has the form

Bζ .3(r,  z) � − 1
r
∂ψ3

∂z
êr + 1

r
∂ψ3

∂r
êz ±

1
r

�������
ζ + α2ψ2

3

√
êφ

and satisfies the nonlinear Beltrami equation

∇ × Bζ .3(r,  z) � ±α2ψ3(r,  z)������������
ζ + α2ψ2

3(r,  z)
√ Bζ .3(r,  z) .

The electric current

Jζ .3(r,  z) � ±α2ψ3(r,  z)������������
ζ + α2ψ2

3(r,  z)
√ (1

r
∂ψ3

∂z
êr + 1

r
∂ψ3

∂r
êz)

+ 1
r
α2ψ3(r,  z)êφ (3.15)

vanishes on themagnetic surfaceψ3(r, z) = 0 that according
to Equation (3.11) contains the plane z = 0 and infinitely
many spheres S2m : R � Rm where Rm satisfy equation
G3(αR) = 0:
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tan(αR) � 3αR
3 − (αR)2  . (3.16)

The electric current Jζ.3 (r, z) (Equation 3.15) switches its
direction to the opposite at the plane z = 0 and at infinitely

many spheres S2m. Equation (3.15) demonstrates that elec-
tric current Jζ.3 (r, z) is smooth everywhere in R

3 and has
zero current density on the axis z (r = 0).

The first four numerical solutions to Equation (3.16) are

|α|R1 ≈ 5.7635, |α|R2 ≈ 9.0950, |α|R3 ≈ 12.3229,

 |α|R4 ≈ 15.5146 .

Atm→∞ the roots Rm have asymptotics |α|Rk≈(m+1)π.
II.Analogousconstructionexists forthemagnetic functionψ4

(r, z) (Equation3.12).ThecorrespondingelectriccurrentJζ.4(r,
z) =∇×Bζ.4(r, z) vanisheson themagnetic surfaceψ4 (r, z) =0
thataccordingtoEquations(3.12)and(3.14)satisfiesequation

G3(αR) + α2z2G4(αR) � 0 . (3.17)

Equation (3.17) yields that the surface intersects the

plane z = 0 at infinitely many circles S
1
m : z � 0,  R � Rm

where Rm are roots of equation G3(αR) = 0 (Equation 3.16).
Therefore the magnetic surface ψ4 (r, z) = 0 (Equation 3.17)
has infinitely many components that are not spheres but
are z-axially symmetric.

The linearity of Equation (3.1) yields that any linear
combination

ψN(r,  z) � a0ψ2(r,  z) + a1
∂ψ2(r,  z)

∂z
+⋯ + aN

∂
Nψ2(r,  z)
∂zN

obeys Equation (3.1). Let us consider the corresponding
magnetic fields (Equation 3.2):

Bζ .N(r,  z) � −1
r
∂ψN

∂z
êr + 1

r
∂ψN

∂r
êz ±

1
r

��������
ζ + α2ψ2

N

√
êφ (3.18)

with 0 ≤ ζ <∞. Equation (3.4) yields that themagnetic fields
Bζ.N (r, z) (Equation 3.18) satisfy the nonlinear Beltrami
Equation (1.2):

∇ × Bζ .N(r,  z) � ±α2ψN(r,  z)������������
ζ + α2ψ2

N(r,  z)
√ Bζ .N(r,  z) .

The electric currents

Jζ .N(r,  z) � ±α2ψN(r,  z)������������
ζ + α2ψ2

N(r,  z)
√ ( − 1

r
∂ψN

∂z
êr + 1

r
∂ψN

∂r
êz)

+ 1
r
α2ψN(r,  z)êφ

vanish on magnetic surfaces ψN (r, z) = 0 that have infi-
nitely many non-spherical axisymmetric components. The
current density vanishes on the axis z (r = 0).

4 Exact translationally invariant
force-free plasma equilibria

I. In the Cartesian coordinates x, y, z, the z-independent
magnetic fieldsB(x, y) satisfying the equilibriumEquations
(1.1) have the form

B(x,  y) � −ψyêx + ψxêy + G(ψ)êz  , (4.1)

where ψ = ψ(x, y) is the magnetic function, G(ψ) is an
arbitrary differentiable function of ψ and êx, êy, êz are unit
vectors in directions of coordinates x, y, z.

The electric current J = ∇ × B takes the form

J � dG(ψ)
dψ

ψyêx −
dG(ψ)
dψ

ψxêy + (∇2ψ)êz  , (4.2)

where ∇2ψ = ψxx + ψyy . Hence we get

J × B � − [∇2ψ + G(ψ)dG(ψ)
dψ

]ψxêx

− [∇2ψ + G(ψ)dG(ψ)
dψ

]ψyêy  .
(4.3)

Therefore the translationally invariant plasma equi-
librium Equations (1.1) take the form

∇2ψ � −μdP(ψ)
dψ

− G(ψ)dG(ψ)
dψ

 , (4.4)

where pressure P = P(ψ) is an arbitrary differentiable
function of ψ.

Substituting Equation (4.4) into Equation (4.2) we find

J � ∇ × B �dG(ψ)
dψ

[ψyêx − ψxêy − G(ψ)êz]
− μ

dP(ψ)
dψ

êz  .
(4.5)

From Equations (4.1) and (4.5) we derive

∇ × B � −dG(ψ)
dψ

B − μ
dP(ψ)
dψ

êz  . (4.6)

Hence for the z-independent force-free plasma equi-
libria with P(ψ) = const magnetic field B satisfies Beltrami
equation: ∇ × B = α(x)B with function α(x) = −dG(ψ)/dψ.

Remark 3: Transformations Tβ (Equation 2.7) with β > 0 turn
any z-independent plasma equilibria with P(ψ) = const
which satisfy Equation (4.6): ∇ × B = α(x)B with
α(x) = −dG(ψ)/dψ into another solutions Bβ(x) to the Bel-
trami equation ∇ × Bβ = αβ(x)Bβ where

αβ x( ) � −dGβ ψ( )
dψ

� ∓
G ψ( )���������

β + G2 ψ( )√ α x( ).
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II. Consider magnetic field

B(x,  y) � −ψyêx + ψxêy +
�
2

√
meψ/2êz  , (4.7)

with exponential function G(ψ) =
�
2

√
meψ/2. Applying

transformation Tβ (Equation 2.7) we get magnetic fields

Bβ(x,  y) � −ψyêx + ψxêy ±
���������
β + 2m2eψ

√
êz (4.8)

with functionGβ(ψ) = ±
���������
β + 2m2eψ

√
. Beltrami Equation (4.6)

with P(ψ) = const for the field (Equation 4.8) becomes

∇ × Bβ � ∓
m2eψ���������

β + 2m2eψ
√ Bβ  . (4.9)

For the both magnetic fields Equations (4.7) and (4.8)
Equation (4.4) with P(ψ) = const has the form

∇2ψ � −m2eψ  . (4.10)

III. Exact solutions to the nonlinear Equation (4.10) were
first derived by Vekua [22]. Vekua’s method consists of the
following. Let x + iy be a complex variable and
f(x + iy) = u(x, y) + iv(x, y) be any analytic function of x + iy.
Then the Cauchy–Riemann equations ux = vy , uy=−vxhold.
Let function ψ(x, y) has the form

ψ(x,  y) � log[ 8
m2

(u2
x + u2y)]

− 2log(1 + u2 + v2) � log⎡⎢⎢⎢⎢⎣ 8| f ′|2
m2(1 + |f |2)2⎤⎥⎥⎥⎥⎦ . (4.11)

Since f ′ = df(x + iy)/d(x + iy) = ux + ivx = ux−iuy we get
log| f ′|2 = log(ux2 + uy

2). Since f ′ also is an analytic functionwe
have ∇2log| f ′|2 = 2∇2log| f ′| = 0. Hence ∇2log(ux

2+uy2) = 0.
Therefore we get

− ∇2ψ � 2∇2log(1 + u2 + v2)
� 4

∂

∂x
[ uux+vvx
1 + u2 + v2

] + 4
∂

∂y
[ uuy + vvy
1 + u2 + v2

]
� −8 (uux + vvx)2 + (uuy + vvy)2

(1 + u2 + v2)2

+ 4
u∇2u + v∇2v + u2x + u2y + v2x + v2y

1 + u2 + v2
.

Using here equations ∇2u = 0, ∇2v = 0 and the Cauchy–
Riemann equations we find

∇2ψ � − 8(u2
x + u2y)

(1 + u2 + v2)2  . (4.12)

Equation (4.11) yields

eψ � 8(u2
x + u2

y)
m2(1 + u2 + v2)2  . (4.13)

Equations (4.12) and (4.13) imply that for arbitrary
analytic functions f(x + iy) functions ψ(x,y) (Equation 4.11)
satisfy Equation (4.10).
IV. Consider analytic function f(x + iy) = a(x + iy)k where
a = const and k ≥ 1 is an integer. Then f′ = ka(x + iy)k−1 and
function (Equation 4.11) becomes

ψk(x,  y) �log[8|a|2k2m2 (x2 + y2)k−1]
− 2log(1 + |a|2(x2 + y2)k) , (4.14)

For k ≥ 2 functionψ(x, y) (Equation 4.14) has singularity
(tends to −∞) at x = 0, y = 0. For k = 1 we get

ψ1(x,  y) � log[8|a|2
m2

] − 2log(1 + |a|2(x2 + y2)),
 eψ1 � 8|a|2

m2(1 + |a|2(x2 + y2))2  .
Function ψ1(x, y) is smooth everywhere. The corre-

sponding force-free magnetic field Bβ.1(x, y) (Equation 4.8)
is a generalization of the Bennett pinch solution [23, 24]. It
satisfies Equation (4.9) that takes the form

∇×Bβ.1 �∓ 8|a|2(1+ |a|2(x2 +y2)) ����������������������
β(1+ |a|2(x2 +y2))+ 16|a|2√ Bβ.1  .

V. Consider analytic function f(x+iy) = eα(x+iy) where α is

real. Hence
∣∣∣∣f(x + iy)∣∣∣∣ � eαx and function ψ(x, y) (Equa-

tion 4.11) becomes

ψ(x,  y) � log[8α2

m2
e2αx] − 2log(1 + e2αx), 

eψ � 8α2e2αx

m2(1 + e2αx)2  .

Hence Equation (4.9) for the corresponding force-
free magnetic field Bβ.α(x, y) (Equation 4.8) takes the
form

∇ × Bβ.α � ∓
8α2e2αx

(1 + e2αx)
������������������
β(1 + e2αx)2 + 16α2e2αx

√ Bβ.α  .

VI. Let us consider functions

Gζ(ψ) � ±
�������
ζ + α2ψ2

√
 , (4.15)
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where α and ζ > 0 are arbitrary parameters. We have Gζ (ψ)
dGζ (ψ)/dψ = α2ψ. Hence Equation (4.4) with P(ψ) = const
takes the linear form

ψxx + ψyy � −α2ψ . (4.16)

The two-dimensional Helmholtz Equation (4.16)
evidently has exact solutions

ψ(x,  y,  θ) � f(θ) sin(αx cos θ + αy sin θ) , (4.17)

where 0 ≤ θ < 2π and f(θ) is any piece-wise continuous
function of angle θ.

Any finite sum of functions (Equation 4.17) is an exact
solution to the linear Equation (4.16):

ψN(x,  y) � ∑
N

k�1
Ck sin(αx cos θk + αy sin θk) ,

where Ck, θk are arbitrary constants. For the corresponding
magnetic fields Equation (4.1), Equation (4.15) with ζ > 0

Bζ .N(x,  y) � −(ψN)yêx + (ψN)xêy ± ��������
ζ + α2ψ2

N

√
êz  ,

Equation (4.6) with P(ψ) = const takes the form

∇ × Bζ .N(x,  y) � ∓
α2ψN(x,  y)�������������
ζ + α2ψ2

N(x,  y)√ Bζ .N(x,  y) . (4.18)

Equation (4.18) is the Beltrami Equation (1.2) with the
non-constant function

α(x) � αζ .N(x,  y) � ∓
α2ψN(x,  y)�������������
ζ + α2ψ2

N(x,  y)√  .

VII. Integrating functions ψ(x,y,θ) (Equation 4.17) with
respect to the angle θ and using the linearity of Equa-
tion (4.16) we derive the general exact solution to the
Helmholtz Equation (4.16):

ψ̂(x,  y) � ∫
​2π

0
f(θ)sin(αx cos θ + αy sin θ)dθ . (4.19)

The corresponding magnetic fields Equation (4.1),
Equation (4.15) with ζ > 0 have the form

B̂ζ(x,  y) � −ψ̂yêx + ψ̂xêy ±
�������
ζ + α2ψ̂

2
√

êz  . (4.20)

Equation (4.6) with P(ψ̂) � const and

G(ψ) � Gζ (ψ̂) � ±
�������
ζ + α2ψ̂

2
√

with ζ > 0 takes the form

∇ × B̂ζ(x,  y) � ∓
α2ψ̂(x,  y)������������

ζ + α2ψ̂
2(x,  y)√ B̂ζ(x,  y) . (4.21)

Equation (4.21) is the Beltrami Equation (1.2) with non-
constant function

α(x) � α̂ζ(x,  y) � ∓
α2ψ̂(x,  y)������������

ζ + α2ψ̂
2(x,  y)√  .

Thus Equations (4.19), (4.20) provide an abundance
of exact solutions to the nonlinear Beltrami Equa-
tion (1.2), (4.21). The exact solutions (Equations 4.19,
4.20) for ζ > 0 are bounded for all x, y. It is evident
that −|α|<α̂ζ (x, y)<|α|.

5 Plasma equilibria connected with
the Sine–Gordon equation

Let us consider a trigonometric function G(ψ) = A sin
[α(ψ + γ)] where A, α and γ are arbitrary constants. We get

G(ψ)dG(ψ)
dψ

� αA2 sin[α(ψ + γ)]cos[α(ψ + γ)]
� αA2

2
sin[2α(ψ + γ)] .

ThereforeEquation (4.4)withP(ψ) = const takes the form

ψxx + ψyy � −αA
2

2
sin[2α(ψ + γ)] , (5.1)

that coincides with the elliptic Sine-Gordon equation. The
Beltrami Equation (4.6) (with P(ψ) = const) is

∇ × B � −dG(ψ)
dψ

B � −αA cos[α(ψ + γ)]B . (5.2)

Hence function α(x) in the corresponding Beltrami
Equation (1.2) is α(x) = −αAcos[α(ψ+γ)].

To construct exact solutions to the nonlinear Equa-
tion (5.1) we consider equation of first order

ψx � Acos[α(ψ + γ)] . (5.3)

Differentiating Equation (5.3) with respect to x we get
ψxx=−αA2 sin[α(ψ+γ)] cos[α(ψ+γ)]=−(αA2/2) sin[2α(ψ+γ)].
Hence any solution to Equation (5.3) satisfies Equa-
tion (5.1). Integrating Equation (5.3) we find its exact
solutions

ψ1(x) �
1
α
arcsin{tanh[αA(x + c)]} − γ , (5.4)

that satisfy also Equation (5.1). Solutions (Equation 5.4)
lead (after rotation of variables x, y for an angle θ) to the
more general solutions to Equation (5.1):

ψλ(x,  y)� 1
α
arcsin{tanh[αA(v+c)]}−γ, v � λx+

�����
1−λ2

√
y ,

(5.5)

where λ = cosθ,
�����
1−λ2

√
= sinθ. For functions ψλ(x, y)
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(Equation 5.5) Equation (5.2) with function
G(ψλ) = A sin [α(ψλ+γ)] takes the form

∇ × B � −αA cos[α(ψλ + γ)]B
� − αA

cosh[αA(λx + �����
1 − λ2

√
y + c)]B . (5.6)

Equation (5.6) shows that electric current J = ∇ × B
always has the same direction as vector field −αAB and no
switching of its direction occurs.

Applying transformations Tβ (Equation 2.7) with β > 0:

G(ψλ)→ Gβ(ψλ) � ±
���������
β + G2(ψλ)

√
weget themagneticfields

(Equation 4.1):

Bβ(x,  y) � −(ψλ)yêx + (ψλ)xêy ± ������������������
β + A2sin2[α(ψλ + γ)]√

êz  .

(5.7)

Magnetic fields (Equation 5.7) with the exact magnetic
functions ψλ (x, y) (Equation 5.5) satisfy Beltrami equation

∇ × Bβ � −dGβ(ψλ)
dψλ

Bβ � ∓
αA2sin[2α(ψλ + γ)]

2
������������������
β + A2sin2[α(ψλ + γ)]√ Bβ  .

(5.8)

Using here exact solution (Equation 5.5) we obtain

∇ × Bβ � ∓
αA2sinh[αA(v + c)]

cosh2[αA(v + c)]
��������������������
β + A2tanh2[αA(v + c)]

√
Bβ  .

(5.9)

Hence electric current Jβ = ∇ × Bβ vanishes on the plane
v + c = 0. The switching of direction of the electric current Jβ
occurs when point (x, y, z) crosses the plane v + c = 0.

It is evident that Equations (5.7)–(5.9) with β > 0 pro-
vide new everywhere bounded force-free plasma equilibria
satisfying the Beltrami Equation (1.2) with non-constant
function αλ(x) = −dGβ(ψλ)/dψλ.
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