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Abstract: Exact force-free plasma equilibria satisfying the
nonlinear Beltrami equation are derived. The construction
is based on a nonlinear transformation that allows to get
from any solution to the linear Beltrami equation a one-
parametric family of exact solutions to the nonlinear one.
Exact force-free plasma equilibria connected with the Sine-
Gordon equation are presented.
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1 Introduction

Equations of the ideal plasma equilibria have the form
[1-3]:

(VxB(x)) x B(X) = uVP(x), V-B(X)=0. 1.1)

Magnetic field B(x) for a force-free plasma equilibrium
with pressure P(x)=const satisfies the Beltrami equation

V x B(x) = a(x)B(X), 1.2)
where V x B(X) = J(x) is the electric current and a(x) is a
differentiable function of the coordinate vector x. Equa-
tion (1.2) with a(x) # const is nonlinear because function
a(x) depends on the vector field B(x). Indeed, the well-
known equation Va(x)-B(x)=0 follows from Equation (1.2)
and means that function a(x) is constant along the mag-
netic field B(x) lines, see Chapter 1 of monograph [3]. Hence
for a general case function a(x) is constant on magnetic
surfaces 1(x) = const ((x) is the magnetic function).
Another relation connecting a(x) and B(x) is

V. [Va(x) xB(x)] =0. 1.3

Equation (1.3) means that vector field Va(x) x B(x) (that
is also tangent to the magnetic surfaces a(x) = C = const) is

*Corresponding author: Oleg Bogoyavlenskij, Department of
Mathematics, Queen’s University, Kingston, K7L3N6, Canada,
E-mail: Bogoyavl@mast.queensu.ca

divergence free. Equation (1.3) follows from Equations
(1.2), V-B(x) = 0 and identity

V- XxY)=(VxX)-Y-X:-(VxY),

where X and Y are arbitrary smooth vector fields.

There are well-known exact solutions to Equation (1.2)
with a(X)=a=const, for example the spheromak magnetic
field [1, 2]. The general solutions to the linear Beltrami
equation with a(x)=const were presented in terms of Bessel
and Legendre functions in papers [1, 2, 4] and later ana-
lysed in detail in Refs. [3, 5-8]. We proved in Refs. [9-11]
that any solution to the linear Beltrami Equation (1.2) with
a(x) = a = const has the form

B(x) = [ [sin(ak - X)T (k) + cos (ak - X)k x T(k)]do, (1.4)
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where T(K) is an arbitrary smooth vector field tangent to the
unit sphere S’ k-k = 1 and do is an arbitrary measure on S’.
We presented in papers [9-11] the unsteady generalizations
of exact solutions Equation (1.4) as exact solutions to the
Navier-Stokes equations and to the viscous magneto-
hydrodynamics equations.

The term “spheromak” was first introduced in Ref. [12],
see review [13]. Moduli spaces of vortex knots for the
spheromak Beltrami field in different invariant domains
were presented in Ref. [14], and for another Beltrami field in
Ref. [15]. The vortex knots for non-Beltrami fluid flows were
studied in Refs. [16-18].

In section 2 we introduce a transformations Tg of the
axially symmetric plasma equilibria and show that trans-
formations Tj satisfy equation T,-Tg = Tp,, and hence for
B=0 form a Lie semi-group. In section 3 we construct using
transformations Tp an abundance of exact force-free
plasma equilibria satisfying the nonlinear Beltrami Equa-
tion (1.2) with a(x)=const.

For all previously known force-free plasma equilibria
(Equation 1.2) with a(x) = a = const the relation J(x) = aB(x)
holds. Therefore the magnetic field B(x) and electric cur-
rent J(x) vanish at the same isolated points. For the equi-
libria constructed in this paper magnetic field B(x) also
vanishes at some isolated points x but the electric field J(x)
vanishes additionally on the entire magnetic surfaces

defined by equation ) (x) = 0 where 1 (x) is the magnetic
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function. This follows from the fact that the new force-free
plasma equilibria satisfy equation

J(x) = (1.5)

where @ and >0 are arbitrary constants. Equation (1.5)
yields that for the constructed equilibria electric current
J(x) changes its direction to the opposite when point x
crosses the magnetric surface ﬁ(x) = 0. We present in
section 3 two examples of axially symmetric force-free
plasma equilibria where magnetic surface 1 (x) = 0 has
infinitely many components in R’ and therefore the
switching of direction of electric current J(X) occurs on
infinitely many surfaces.

Translationally invariant force-free plasma equilibria
are constructed in section 4. We present equilibria based
on exact solutions to the nonlinear equation

VA (x, y) = —mPe? () (1.6)

and on exact solutions to the Helmholtz equation V’ij(x,
y) = _azl/)(x! ,V) .

Exact force-free plasma equilibria connected with the
elliptic Sine—-Gordon equation are constructed in section 5.
The solutions are smooth and bounded in the whole space
R’

As known, equilibria of an ideal incompressible fluid
with a constant density p obey the equations equivalent to
Equations (1.1). Therefore the presented constructions are
equally applicable to the exact axisymmetric ideal fluid
equilibria and to the translationally invariant ones.

2 A transformation of the
axisymmetric plasma equilibria

I. A steady z-axisymmetric magnetic field B(r, z) satisfying
equation V-B = 0 has the form

19y

oY 1=
Ld +;$ez+;6(l/))eq,,

1
B(r, z)=—;$er

(2.1

where (r, z) is the magnetic (or flux) function and
e, &;, e, are unit vector fields in the directions of the cy-
lindrical coordinates r, z, ¢. The corresponding electric
current J(r, z) = VxB(r, 2) is

dG(yp M Y -
(lp)(_lyér+%¥‘€;)—%<¢n_%¢r+¢zz)aﬂ'

T ==\ raz

(2.2)
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The magnetic field B(r, z) Equation (2.1) and electric
current J(r, z) Equation (2.2) are tangent to the magnetic
surfaces 1 (r, z) = const.

The plasma equilibrium Equations (1.1) for the
z-axisymmetric magnetic field B(r, z) Equation (2.1) were
reduced in 1958 to the Grad—Shafranov equation [19, 20]:

dp@ o) de@)
dy dy

where P (1) is the plasma pressure.

II. Substituting into Equation (2.2) the expression of

Y,, -4, +,, from the Grad-Shafranov Equation (2.3) we
get:

@rr - %ir + izz = _yrz > (23)

CdG(P) [ 1ap. 1op. 1,
J(r, 2) = W( T Tyt ;G(l/))&,,)
dP(y).
+ur d(l,b )eq,. 2.4)
Using here Equation (2.1) we arrive at equation
dG(y) dP(y)_

(2.5)

VxB(r,z)= WB()’, Z)+ ur d@ €p.

Equation (2.5) yields that for P(1) = const the mag-
netic field B(r, z) satisfies the Beltrami equation

VxB(r,2z)= cmd(lzb)B(r, z) (2.6)

that has the form of Equation (1.2) with a(x) = dG ()/d.
I1L. The last term in Equation (2.3) equals to -1dG* ()/dy.
It is evidently unchanged after the simple nonlinear
transformation

Tg: G(Y) - Ga(¥), Gp() = =\[B+ G ().

Therefore the same magnetic function @(r,z) satisfies
also Equation (2.3) with Gg (1) instead of G (). Substitut-

ing Gg (1) = +1B + G* () into Equations (2.1) we get a new

magnetic field

2.7

10y,

1. 1 =
Bs(r, 2) = ety \B+ Gz(l/))eq, (2.8)
for that Equation (2.5) takes the form
VxBg(r,z)==+ G(lp)_ dG(_l/))Bﬂ (r,2) +yrdp(_¢)§q, .
B+G(p) ¥ dy
(2.9
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Equation (2.9) for P () = const becomes the Beltrami
equation

V x Bg (X) = ag (X)Bg (%), (2.10)
where
ag(X) = dGﬁQ/}) =x G(”b)i dG(ip)
W \BrG(p) P
=+ G("b) a(x). (2.11)

Hence transformation T (Equation (27)) produces from
any axisymmetric solution to the Beltrami Equation (2.6) a
new solution B (r, z) (Equation 2.8) to the Beltrami Equa-
tion (2.10) with another function a(x) Equation (2.11), > 0.
Equation (2.11) yields

G (P(x)

_ 2
prepm)

(g (x))°

Therefore function ag(x) is changing in the
range —|a(x)|<agx)<|a(x)] .

Remark 1: Transformations Tz Equation (2.7) with § > 0
define for any solution ﬁ(r, z) to the general Grad - Sha-
franov Equation (2.3) a one-parametric family of different
magnetic fields Bg (r, z) Equation (2.1) and electric currents
Jg (r, z) Equation (2.2) which correspond to different func-
tions Gg (1) but have the same magnetic function i (r, z). A
useful application of transformations T (Equation (2.7)) is
the construction of new exact force-free plasma equilibria
satisfying the Beltrami equation VxBg(x) = az(x)Bg(x) with
a non-constant function ag(x), see Equations (3.4) and
Equation (3.5) below.

Remark 2: Transformations T (Equation 2.4) with sign +
satisfy the relation

T, (T5(G)) = Ty.5(G). 2.12)

Indeed, Equation (2.7) yields

T,(T5(6)) = Jy+ [\B+G@)| =y +p+ &)

=T, (G).

Hence Equation (2.12) holds. For B8 < O transforms
(Equation 2.7) are defined only in the domain
G((x))=|p|. For 0 < B < oo transforms (Equation 2.7) are
defined everywhere in R’. Evidently To(G) is the identity
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transformation. Therefore Equation (2.12) yields that
transformations T (Equation (2.7)) with sign + and
0 < ff< oo form a one-dimensional Lie semi-group.

3 Exact axisymmetric force-free
plasma equilibria

I. Consider the Grad—-Shafranov Equation (2.3) with P ()
= const and G () = G; () = +\{ + a2’ with an arbitrary
constant & and { > 0. Evidently we have dG;(y)/dy

= a®P/G; (). Therefore G, (Y)dG; (p)/dy = a?p and hence
Equation (2.3) takes the linear form

By~ B, + b= Y. G.)

Let B; (r,z) be the corresponding magnetic field
(Equation 2.1):

10p

19y 1. s
_l'b +; gez +;G((l/))e(p

B;(r,z) = Y e

(3.2
Substituting the Grad-Shafranov Equation (2.3) with

P () = const and G¢ () = +\/{ + a@z into Equation (2.2)

we get the electric current
Jo (1, 2) = Vx By (%)

_dG(Y) ([ 109,
T Tap \razt

Inserting Equation (3.2) into Equation (3.3) we find

1. 1
,+——lpez+—
r or r

G¢($)§¢> . 33)

dG, (Y
V x By (%) = égp)

B (1, 2). (3.4)

Equation (3.4) is the Beltrami Equation (1.2) with the
non-constant function

dG(¥)

A = ag(r,z) = W), (2

dp S+ o (r2)

Therefore for any solution @ (1, z) to the linear Equa-
tion (3.1) we constructed the force-free magnetic fields B,(r, z)
(3.2) and electric currents J; (1, z) (3.3) satisfying the Beltrami
Equation (1.2) with non-constant function a(x) (Equation 3.5).
Only for {=0 function dG, (1)/dy) = +a becomes constant.

For function a; (r, z) (Equation 3.5) we have (for {> 0)

—2
, @y

{+af

(3.5)

<o’

(a; (1, 2))’ =
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Hence function a; (r,z) (Equation 3.5) satisfies in-
equalities —|a|<a/(r,z)<|a| and a; (r,2)=0 at the points (r,z)
where 1) (r,z) = 0.

Example 1: The magnetic function 1 (r,z) for the spher-
omak plasma equilibrium [1, 2] satisfies the linear Equa-
tion (3.1) and has the form

r? sin (aR)

Y, (r,z) = -1’G,(aR) = —a | €0 (aR) - R (3.6)
Here R = Vr2+2z2 is the spherical radius in R’. The

corresponding to the solution (Equation 3.6) magnetic
fields (Equation 3.2)

10y, 10,

r oz r ar

\/( + azll)zeq?

with any 0 < { < oo satisfy the nonlinear Beltrami Equa-
tion (1.2) with the non-constant functions a(r, z):

B> (r,2) = (3.7)

a2, (1, 2)

¢ +a2i(r, 2)

Equation (3.8) yields that for the new force-free plasma
equilibria (Equation 3.7) the electric current

V x By (1, 2) = B (1, 2). (3.8)

Jea(r, 2) :mc%@ 13w, >
. C_l_azlpg(r’ 2) r oz r or

¥ %azz,bz (r, 2)8, (3.9)

vanishes on the magnetic surface ¥, (r,z) = 0. Equa-
tion (3.6) implies that the latter has infinitely many
components that all are spheres S,Z( : R = R, where R, are
the roots of equation

tan (aR) = aR (3.10)
The first four numerical solutions to Equation (3.10) are

|a|R; ~ 4.4934, |a|R, ~7.7253,
|a|R, = 14.0662.

|aR; = 10.9041,

At k—oo the roots R have asymptotics |a|Ry = (k + %)n

The electric current J, (r,2) (Equation 3.9) switches its
direction to the opposite at the infinitely many spheres S;.
Equation (3.9) yields that electric current ;> (7, 2) is smooth
everywhere in R’ and has zero current density on the axis z
(r=0).
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Function G,(u) in Equation (3.6), Gy(u) = u?*(cos u
—u’'sin u) where u = aR, is connected with the Bessel
function J5/,(u) [21] of order 3/2 by the relation

/2

/
Gy (u) = —Wfs/z (u).

Example 2: Equation (3.1) is evidently invariant with
respect to the differentiations (9/dz)" of arbitrary
order n. Hence the flux functions 5., (r, z) = 3",/dz"
also are solutions to Equation (3.1). For example we
have

oY, (1, z) dGz(u) 5
Yy (r, z) = s i E = —a%zr’G; (u),
(3.11)
2
Y, (1, 2) = M = -a’r’G; (u) - a*2’r’G, (u), (3.12)
where u = aR and
1 dGz(u) 1 5\ sinu
G3( ) du F((B—U)T—3C05u>, (3.13)
16,0 _1( (g 15300 s
Gy (u) = . u6<(6u 15) (u 15)cosu>.

(3.14)

The functions G,(u) are analytic for all u and have the
following values at u = 0: G,(0) = -1/3, G5(0) = 1/15,
G4(0) = -1/105 [15].

Magnetic field B5(r, z) has the form

R N TTTES

r oz r or
and satisfies the nonlinear Beltrami equation

+a*, (1, 2)

\{ + a21/)§(r, Z)

B3 (r, 2) =

VxBys(r, 2) = B;5 (1, 2).

The electric current

Joes(r Z)—m 161!}3" 1alp3A
P {+ a2l (r, z) \T oz or &

1 ~
+ ;0(21,03 (r, 2)e, (3.15)
vanishes on the magnetic surface ;(r, z) = 0 that according
to Equation (3.11) contains the plane z = 0 and infinitely
many spheres S’ :R=R, where R, satisfy equation
Gg(aR) =0:
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tan(aR) = 3 3R

The electric current J5 (r, z) (Equation 3.15) switches its
direction to the opposite at the plane z = 0 and at infinitely
many spheres an. Equation (3.15) demonstrates that elec-
tric current J;5 (7, 2) is smooth everywhere in R’ and has
zero current density on the axis z (r = 0).

The first four numerical solutions to Equation (3.16) are

|a|R ~ 5.7635, |aR, ~9.0950,
|aR, ~ 15.5146.

la|R; ~ 12.3229,

At m—oo the roots R,, have asymptotics |a|R=(m+1)7.
I1. Analogous construction exists for the magnetic function y,,
(r, ) (Equation 3.12). The corresponding electric currentJ ., (r,
z) =V x Bg4(r, z) vanishes on the magnetic surface i, (r, 2) = 0
thataccording to Equations (3.12) and (3.14) satisfies equation

G; (aR) + ’z*G4 (aR) = 0. (3.17)

Equation (3.17) yields that the surface intersects the
plane z = 0 at infinitely many circles S}, :z =0, R = Ry,
where R,, are roots of equation G;(aR) = 0 (Equation 3.16).
Therefore the magnetic surface i, (r, z) = 0 (Equation 3.17)
has infinitely many components that are not spheres but
are z-axially symmetric.

The linearity of Equation (3.1) yields that any linear
combination

oY, (1, 2) aNlpz(r) 2)
T + ces + aNi

Yy (1, 2) = aoh, (1, 2) + @ 32N

obeys Equation (3.1). Let us consider the corresponding
magnetic fields (Equation 3.2):

10, 10, 1 _
Bm(r,z)=—;%e,+;%ezi;\/(+azlp§e¢ (3.18)

with 0 < {< oo. Equation (3.4) yields that the magnetic fields
B,y (r,2) (Equation 3.18) satisfy the nonlinear Beltrami
Equation (1.2):

Yy (1, 2)

¢ + a2y (1, 2)

The electric currents

Jon (1, 2) = 2y (. 2) ( 1Yy
{ + a2y (1, 2)

1 -
+ ;azle (r, 2)8,

VxByn(r, z) = By (1, 2).

roz ' ror -

+1 a"sz )

vanish on magnetic surfaces iy (r,z) = O that have infi-
nitely many non-spherical axisymmetric components. The
current density vanishes on the axis z (r = 0).
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4 Exact translationally invariant
force-free plasma equilibria

I. In the Cartesian coordinates x, y, z, the z-independent
magnetic fields B(x, y) satisfying the equilibrium Equations
(1.1) have the form

B(x.y) = - e+ 9.8 + G()e:,

where 1 = Y(x,y) is the magnetic function, G(i) is an
arbitrary differentiable function of ¢ and é,, ¢, €, are unit
vectors in directions of coordinates x, y, z.

The electric current J = V x B takes the form

_46(®), 5 dG6(¥)

(4.1)

J=—4 p PRy Y. + (Vy)e,, (4.2)
where Vi) = i, + 1, . Hence we get
JxB=- [v%/) + G(l/))d?i—l(/;/))]lpxéx
(4.3)
v 6 S e

Therefore the translationally invariant plasma equi-
librium Equations (1.1) take the form

dP(y) dG(¥)
20— _ _

where pressure P = P(ip) is an arbitrary differentiable
function of .

Substituting Equation (4.4) into Equation (4.2) we find

(4.4)

J=VxB :dc(;il(l;‘b) [l,byéx - - G(lp)’éz]
), “
ay =
From Equations (4.1) and (4.5) we derive
VxB = di;}‘l’) B-u d’;fpl/’)az. 4.6)

Hence for the z-independent force-free plasma equi-
libria with P(1)) = const magnetic field B satisfies Beltrami
equation: V x B = a(x)B with function a(x) = -dG(i)/dy.

Remark 3: Transformations Ty (Equation 2.7) with 8> 0 turn
any z-independent plasma equilibria with P(y) = const
which satisfy Equation (4.6): V x B = a(x)B with
a(x) = -dG(y)/dy into another solutions Bg(x) to the Bel-
trami equation V x Bg = ag(x)B; where

dGy () G(p)
dy B+ G ()

=F

ag(X) = a(x).
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II. Consider magnetic field

B(x,y) = -8, + .8, + V2me¥/%e,, .7)

with exponential function G() = +2me*”. Applying
transformation T (Equation 2.7) we get magnetic fields

Bg(x,y) = -, + .8, + \/f +2meeve,

with function Gg(y)) = £+/B + 2m?e¥. Beltrami Equation (4.6)
with P(y) = const for the field (Equation 4.8) becomes

(4.8)

m2e?

VxBg = F————=
’ B +2m2e¥

B;. (4.9)

For the both magnetic fields Equations (4.7) and (4.8)
Equation (4.4) with P(y) = const has the form

Vi) = —me’. (4.10)

III. Exact solutions to the nonlinear Equation (4.10) were
first derived by Vekua [22]. Vekua’s method consists of the
following. Let x + iy be a complex variable and
flix +iy) = u(x, y) + iv(x, y) be any analytic function of x + iy.
Then the Cauchy-Riemann equations u, = v, , u, = -v, hold.
Let function ¥(x, y) has the form

bl y) = log| (5 +18)|

-2log(1+u’ +V°) =log|————|. (4.11)

m(1+ [f|2)2

Since f” = dflx + iy)/d(x + iy) = uy + ivy = u,—iu, we get

log| f'I’ = log(ux+ w;). Since f” also is an analytic function we

have Vilog| f'| = 2V’log| f’| = 0. Hence Vlog(u,’+u,’) = 0.
Therefore we get

- VA = 2V2log (1 + u* +V°)
B i[ UU,+VVy ] E[uuy+vvy ]
Sl ur+v2 oy L1+ u2+v2
_ gl w)? + (uuy + vy, )
(1+u? +12)

2 2 2 2
uVAU+ VWAV I+ W+ VY

+4

1+u2+v2

Using here equations V’u = 0, V’v = 0 and the Cauchy-
Riemann equations we find

8(u§ + ui)

Vi = -
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Equation (4.11) yields

o - 8(u§ + uf,)

S v “n)

Equations (4.12) and (4.13) imply that for arbitrary
analytic functions f(x + iy) functions (x,y) (Equation 4.11)
satisfy Equation (4.10).

IV. Consider analytic function f(x + iy) = a(x + iy)* where
a = const and k > 1is an integer. Then f = ka(x + iy)*”* and
function (Equation 4.11) becomes

8|al’k? o2+ yz)kl]

m?2

(%, y) =10g[
- 2log<1 +lal* (3% + yz)k> ,

(4.14)

For k = 2 function 1(x, y) (Equation 4.14) has singularity
(tends to —oo) at x = 0, y = 0. For k = 1 we get

8lal*
m2

(o y) = 1og[ ] ~ Jlog(1 + laP (¢ + ),
8lal’

m2(1+|al’ (2 + yz))2 '

e =

Function ;(x,y) is smooth everywhere. The corre-
sponding force-free magnetic field Bg;(x, y) (Equation 4.8)
is a generalization of the Bennett pinch solution [23, 24]. It
satisfies Equation (4.9) that takes the form

8|al? B
(1+]a (22 +y2))\/ﬁ(1 +]al’ (2 +y?)) +16|al’ -

VXBﬁ.1:¢

a(x+iy)

V. Consider analytic function fix+iy) = €
real. Hence |f (x +iy)| = ™ and function ¥(x,y) (Equa-
tion 4.11) becomes

where a is

8a% . -
P(x, y) =log e 2log (1 + &™),
v 8a%e?™

S m2(1+ e

Hence Equation (4.9) for the corresponding force-
free magnetic field Bgq(x, y) (Equation 4.8) takes the
form

8 2 520X
VXBﬁ.a=¢ xe R,g‘a.
1+ ezw‘)\/ﬁ(l + e2)? 1 1602622
VI. Let us consider functions
G (P) = +\{ + a2y’ (4.15)
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where a and {> O are arbitrary parameters. We have G¢(1))
dG¢()/dy = a’h. Hence Equation (4.4) with P() = const
takes the linear form

lhbxx + Irbyy = —(XZ!I) .

The two-dimensional Helmholtz Equation (4.16)
evidently has exact solutions

Y(x,y, 0) =f(0)sin(ax cos 8+ aysinb),

(4.16)

(4.17)

where 0 < 0 < 2m and f(6) is any piece-wise continuous
function of angle 6.

Any finite sum of functions (Equation 4.17) is an exact
solution to the linear Equation (4.16):

N
Yy (6 ¥) = Y Cisin(ax cos Oy + ay sin 6),
k=1

where Cy, 6y are arbitrary constants. For the corresponding
magnetic fields Equation (4.1), Equation (4.15) with {> 0

Bin(x,y) =- (le)yéx + (Py). 8y £ V¢ + aPye; ,

Equation (4.6) with P() = const takes the form
@y (x, y)
S+ a2y (% y)

Equation (4.18) is the Beltrami Equation (1.2) with the
non-constant function

VxBen (6 y) =7 By(x,y). (418

_ @Yy (xy)
ax)=arn(x,y) = LS /1R I
VS + @ (% y)

VIL Integrating functions y(x,y,0) (Equation 4.17) with
respect to the angle 6 and using the linearity of Equa-
tion (4.16) we derive the general exact solution to the

Helmholtz Equation (4.16):
Y(xy) = jé"f(e)sin(ax cos@+aysinf)dd.  (4.19)

The corresponding magnetic fields Equation (4.1),
Equation (4.15) with {> 0 have the form

Bi(%, y) = D8 + 8, + \{ + a2, . (4.20)
Equation (4.6) with P(l])) = const and

GY) = G (P) = £\{ + [lejbz with ¢> 0 takes the form
Yxy) g (4.21)

VB (6, y) =+t VB (x, ).
e \/C+a2@2(x,y)(xy

Equation (4.21) is the Beltrami Equation (1.2) with non-
constant function
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Py
¢+’ (x, y)

Thus Equations (4.19), (4.20) provide an abundance
of exact solutions to the nonlinear Beltrami Equa-
tion (1.2), (4.21). The exact solutions (Equations 4.19,
4.20) for { > O are bounded for all x,y. It is evident
that —|al<a(x, y)<|al.

ax)=a;(x,y)=7+

5 Plasma equilibria connected with
the Sine-Gordon equation

Let us consider a trigonometric function G() = A sin
[a(ip + y)] where A, a and y are arbitrary constants. We get

dG ()

“a = aA’sin[a (P +y)|cos[a(y +y)]

G(¥)

2

= %sin[m(gb +y)].

Therefore Equation (4.4) with P(i)) = const takes the form

2

Vo + Py = —0% sin[2a(y +y)], (5.1)

that coincides with the elliptic Sine-Gordon equation. The
Beltrami Equation (4.6) (with P(y) = const) is

_dG(y)
dyp
Hence function a(x) in the corresponding Beltrami
Equation (1.2) is a(x) = —aAcos[a(+y)].
To construct exact solutions to the nonlinear Equa-
tion (5.1) we consider equation of first order

P, = Acos[a(ip +y)].

Differentiating Equation (5.3) with respect to x we get
Yu=—aA’ sinfa@+y)] cos[a(P+y)l=—(aA’/2) sin[2a(p+y)].
Hence any solution to Equation (5.3) satisfies Equa-
tion (5.1). Integrating Equation (5.3) we find its exact
solutions

VxB= B=-aAcos[a(p+y)]B. (5.2

(5.3)

Y, (x) = %arcsin{tanh [@A(x+0O)]} -V, (5.4)

that satisfy also Equation (5.1). Solutions (Equation 5.4)
lead (after rotation of variables x, y for an angle 6) to the
more general solutions to Equation (5.1):

Y, (x,y)= %arcsin{tanh [@A(V+O)]} -y, v=Ax+VI-Ay,
(5.5)
where A = cosf, V1-A’ = sinf. For functions ;(x,y)
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(Equation 5.5) Equation (5.2) with function
G(y) = A sin [a(y,+y)] takes the form

V xB=-aAcos[a(y, +y)|B

= oA B.

cosh[ad (x + V1- A’y +¢)]

(5.6)

Equation (5.6) shows that electric current J = V x B
always has the same direction as vector field ~aAB and no
switching of its direction occurs.

Applying transformations Tg (Equation 2.7) with > 0:

Gy — Ge(y) = +/B + G? (,) we get the magnetic fields
(Equation 4.1):

By (X, ¥) = — (1.),8 + (¥1),& + B+ Asin’[a(, +y)]e.
(5.7)

Magnetic fields (Equation 5.7) with the exact magnetic
functions ¥, (x, y) (Equation 5.5) satisfy Beltrami equation

dGs(¥,),, _  aA’sin[2a(, +y)]
UxB - B. -+ B;.
B dy, "’ 2\/5 + A%sin’[a (P, +y)]
(5.8)

Using here exact solution (Equation 5.5) we obtain
aA’sinh[aA (v + ¢)]
cosh?[aA (v + ¢)] \/ﬂ + A’tanh’[@A (v + )| Bg.
(5.9)

VXB/g=¢

Hence electric current Jg = V x Bg vanishes on the plane
v + ¢ = 0. The switching of direction of the electric current Jg
occurs when point (x, y, z) crosses the plane v + ¢ = 0.

It is evident that Equations (5.7)-(5.9) with 8 > O pro-
vide new everywhere bounded force-free plasma equilibria
satisfying the Beltrami Equation (1.2) with non-constant
function ay(x) = —dGg(n)/di,.
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