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Abstract: We present the exact solution of the 1D Dirac
equation for the inverse-square-root potential 1/+/x for
several configurations of vector, pseudo-scalar, and scalar
fields. Each fundamental solution of the problem can be
written as an irreducible linear combination of two Hermite
functions of a scaled and shifted argument. We derive the
exact equations for bound-state energy eigenvalues and
construct accurate approximations for the energy
spectrum.

Keywords: biconfluent Heun equation; bound state; Dirac
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1 Introduction

Exact solutions of the Dirac equation, which is a relativistic
wave equation of fundamental importance in physics [1],
are rare. In the one-dimensional case, apart from the piece-
wise constant potentials and their generalizations
involving the Dirac §-functions, one may mention the
Coulomb, linear, and exponential potentials as follows [2]:

v,
V=V,+ 71 Vo + Vix, Vo + V&0 1)

for which, the Dirac equation can be solved in terms of
confluent hypergeometric functions, and the potential is
given as follows:

V=Vy+ Vltanh(g) N Vzcoth(§> %)

for which the Dirac equation can be solved in terms of
ordinary hypergeometric functions. Many potentials re-
ported so far, e.g., the Dirac-oscillator [3, 4], Woods-Saxon
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[5], and Hulthén [6] potentials are particular cases of these
four potentials that can be derived by (generally complex)
specifications of the involved parameters. Note that the
first three potentials given by Equation (1) are particular
truncated cases of the classical Kratzer [7], harmonic
oscillator [8], and Morse [9] potentials for the Schrédinger
equation, while the fourth potential given by Equation (2)
in general (if V;V, = 0 and V; = V/,) does not belong to a
known Schrodinger potential. However, the solution for
this potential can be constructed using the solution of the
Schrédinger equation for the Poschl-Teller potential [10] or
that for the Eckart potential [11] (note that the solution for a
truncated version of potential (2) with V5 = 0 can be written
using the solution for the Eckart potential).

In the present paper, we introduce a new exactly
solvable potential — the inverse-square-root potential —
which is given as follows:

V=Vy+ % 3)
A potential of this functional form was applied in
the past as a short-range component in phenomeno-
logical modeling of the quark-antiquark interaction [12].
The treatment of the potential, however, was so far
restricted to the non-relativistic case described by the
Schrodinger equation. Here, we show that the time-
independent Dirac equation for this potential can be
solved exactly. The solution is written in terms of linear
combinations of the Hermite functions of a scaled and
shifted argument. Based on this exact solution, we find
a notable difference as compared to the Schrodinger
case. We note that a potential of this functional form
appears also in the graphene physics (e.g., the electro-
static potential caused by a gate voltage at the edge of a
graphene strip [13]).
We consider the stationary one-dimensional Dirac
equation for a spin 1/2 particle of rest mass m and energy E:

H[) = E[p), (4)

with Hamiltonian H = K + II, where K is the kinetic
energy operator, and the interaction operator stands for
the potential of the external field. With the general 2 x 2
Hermitian potential matrix given by real functions V, U, W,
and S:
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IMI=V(x)a,+U(MXx)a,+ W(x)o, + S(x)o3
:< V+S U—iW>

U+iW V-S§
where 0y is the unit matrix and 0,3 are the Pauli matrices.
Equation (4) for the two-component spinor wave function
Y = (Y,, )" reads the following equation:

(5)

d
V + S+ mc? —ich—+U—-iW
£ ) o)
—ichdiX+U+iW V-S-mc? Vs Vs

(6)

where c is the speed of light and # is the reduced Planck’s
constant (we use dimensional variables since this is useful
for construction of new solutions using the known ones -
see examples below). Without affecting the physical re-
sults, one can eliminate U using the phase transformation
Y — ey with ¢k - de/dx = U. Hence, we assume U = 0.
The resulting system can be solved for several configura-
tions of functions V, W, S of the form a + b/+/x.

2 Solution for a basic field
configuration

A basic field configuration we consider is given as follows:

(v, W,S) = <V0 +%, Wo, So +%>
with arbitrary V1, Wo, So,1- Though this potential is
defined on the positive semi-axis x > 0, one can extend it to
the whole axis x € (—oo, +o0) by replacing x by |x|. The
solution for x < 0 is then readily constructed by replacing
X — —X, ch — —ch in the solution for x > 0.
To solve the Dirac equation for potential (7), we apply
the Darboux transformation

)

dw

d
l/)A = algvv + arw, l/)B = bl& + sz, (8)

to reduce the system to a single second-order differ-
ential equation for a new variable w(x). This is achieved by
putting the following equations:

(a1>b1):(\/Vl_Sl>\/Vl+Sl)> )
a - ibi (E+mc+So— Vo + (S = V))F (X)) + as W, 10)

ch ’
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_da(=E+mc+So+ Vo + (S + V)F (%)) + biWo

b, = ch

(11)

where F = 1/+/x. The resulting equation reads as follows:

P (A+BF(X) + (V2= S)F (0 —ich\Vi=S;\[Vi + 5, F' (x))

ae " e w=0
12)

where the prime denotes differentiation and
A= (E-Vo) - (mc+S,)" - W2, (13)
B==2((E-Vo)Vi + (mc +S0)S1). (14)

In the spin and pseudo-spin symmetry cases,
i.e., when S? = V2, the terms proportional to F(x)’ and F’(x)
vanish, and Equation (12) is reduced to a Schridinger-like
equation for the inverse-square-root potential:

dw 1 B
w‘f‘ﬁ(A‘FW)W:O,

with energy A/ (2mc?) and potential —B/ (2mc?/x ).

The general solution of this equation is presented in
the study by Ishkhanyan [14]. Rewritten in terms of our
parameters, a fundamental solution for real A and B can be
presented as follows:

(15)

w=eV/(H, (y) - sgn(ABVIV H, 1 (y)),  (16)
where
—4A
y=\" (w’c+2A), )
and
B 18)

Ve ——.
4eh(-A)

We note that a second independent fundamental so-
lution can be constructed by the change ch — —ch in
Equations (17) and (18).

Discussing the general case of field configuration (7)
for arbitrary parameters, a main result we report is that a
fundamental solution of Equation (12) is given as follows:

w=er/? (Hy(y) + gHv1(¥))s (19)
where
yo «/——20(2( x +2"‘7;> (20)
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(vg)—( af_Vf—Sf a _i\lvl—sl\jvl"'Sl)

4ay 20,020 =20, \/~0:ch
(21)
and
-B VA
e~ (G o) .

We note that, mathematically, this solution applies not
only for real parameters but for arbitrary complex param-
eters V; ,, Wy, 51,5, as well as for arbitrary complex variable
x. This observation may be useful if one discusses non-
Hermitian generalizations of Hamiltonian (5).

This solution is derived by the reduction of Equa-
tion (12) to the biconfluent Heun equation [15, 16]:

az—-q
z

(23)

2
du (y U=0,

—+(Z+6+ ez) du +
dz2 \z dz

The solution of which can be expanded in terms of
(generally non-integer order) Hermite functions of a scaled
and shifted argument [17]:

u= Z) Can+y—a/£( \ —8/2 (z+ 5/8)),

(see the definition of the non-integer order Hermite func-
tion in [18]).
Following the approach of [19, 20], we apply the

(24)

transformation ¥ = ¢ (z) u(z) with z=+v2x and ¢ =
enz+0? to show that for the field configuration (7), the
parameters of the biconfluent Heun equation obey the
equations:

y=-1, ¢@-6q+a=0. (25)

(mathematically, this means that the regular singu-
larity of Equation (23) at z = 0 is apparent). With this, the
series (24) terminates on the second term thus resulting in a
closed-form solution involving just two Hermite functions:

(1)
V-€(6-9q) € 6
+ 7\/2(1 H1+y—a/s< \/% (Z + E) ) ) (26)

Rewritten in terms of parameters of Equation (12), this
yields the solution (19)-(22).

As regards the general solution of Equation (12), it can
be written as follows:
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w(;=e’y2/2 ®+£d£ @27)
2v dy
with
vi1,
®=ci-H )+ e Fi( ~3i57) 28)

where c; ; are arbitrary constants and ,F; is the Kummer
confluent hypergeometric function. We conclude this sec-
tion by noting that, in general, the involved Hermite and
hypergeometric functions are not polynomials because the
index v = y — a/e is not an integer.

3 Another field configuration

The solution of the Dirac equation for several other field
configurations is constructed in the same way — via reduc-
tion to the biconfluent Heun Equation (23). For instance, for
the spin symmetric configuration S(x) — V (x) = Cs = const
Equation (6) is reduced to the following equations:

¢y, +L((E+mc2 +C5)(E-mc® - C; -2V) —ch%v— W2>¢1A =0, (29)

d2 - en?

B i dy,
Vs~ Fimasc, (WW - "ha)- G0)
For the field configuration
(VW W
(V) W>S) - <\/}) \/}) CS + \/)—()x (31)

reducing Equation (29) to the biconfluent Heun Equa-
tion (23), we verify that the parameters of the resulting
equation fulfill Equation (25). As a result, we arrive at a
fundamental solution for i, written as an irreducible
linear combination of two Hermite functions:

Yo = e (H, () + gH 1 (), (32)
with
= VB, 63
20(2

and (compare with (21)-(22))

g - (B M W (34)
’ 4ay 20,20 20, chv—ag )

(00, @) = V2V, (mc +CS+E), (mc ;rh) . 35)
chy(mc? + Cy)* - E? ¢
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For completeness, in this case, the general solution of
the Dirac equation involving two independent funda-
mental solutions can be written as follows:

_ o7/2 Edib
with
vi1,
®=C1'Hv(Y)+C2'1F1(—§;§;Y), (37)

where c; ; are arbitrary constants.

We note that for the pseudo-spin symmetry configu-
ration S + V = C, = const with V(x) and W(x) given by
Equation (31), a fundamental solution for i is constructed
by the formal change (4, Cs) — (Y5, Cp) and (V1, Wy, E) —
(-Vi, =W, —E) in Equations (32)-(35).

4 Bound states

To construct bound states, we (i) extend the potential to the
whole x-axis x € ( —oo, +o0) by assuming the potential be-
ing of argument |x| instead of x, (ii) demand the wave
function to vanish at x — +oo, and (iii) demand the wave
function to be continuous in the origin x = 0. The solution
for x < 0 is readily constructed by noting that the Dirac
system (6) for a potential depending on |x| is not changed if
one replaces x — —x and ch — —ch. It then turns out that
the continuity condition in the origin results in the equa-
tion ¥, (0)g (0) = O [21]. This is an important observation
stating that for the bound states either the upper compo-
nent ¥, or the lower one 15 should vanish in the origin. As
aresult, one gets two subsets of eigenvalues — the ones for
which ¢, (0) = 0 and the ones for which 5 (0) = 0. We
note that the vanishing of the wave function in the origin is
a necessary condition for the non-relativistic limit [22].

As an example, consider the following spin symmetric
field configuration:

v
174 , W=0, S \/m (38)
This is a specific configuration that belongs to both
families (7) and (31). Both approaches work yielding the
same result. If this configuration is viewed as a particular
case of the field configuration (7) with Vo, = Wy =S, =0 and
S = V3, we have

A=E-m’* B=-2(E+md)V, (39)

and the general solution of the Dirac Equation (6) for
x > 0 is written as follows:
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Y, =aw+ow, (40)
—-ich dy,
= _) 1
Vs E+mc? dx @)

where c, , are arbitrary constants, w is given via parameters
A and Bby Equations (16)-(18), and wis constructed from w
by the change cii — —ch. As already mentioned above, the
solution (y,~, ") for x < 0 is constructed by the further
change x — —x:

l/); = (C3W+ C4w)|x~>—x) (42)
—ich d

The condition of vanishing the wave function at the
infinity leads to the simplification ¢, = ¢, = 0 (we note that
then y,,, are real and Y, 5 are imaginary if ¢;, c; are
chosen real). With this, the continuity of the wave function
at the origin is achieved if

C3W|x—>—0 = ClW|x—>+O’ (44)
c dw _dw 45)
BdX x—-0 N ldx x—+0

Vanishing of the determinant of this system presents
the exact equation for energy spectrum. Since w(-x) = w(x)
and w'(-x) = -w’(x), this equation is reduced to w(0)w’(0) = 0
or i, (0)y (0) = 0. Thus, for bound states, either ¢, or Y,
should vanish in the origin.

Consider the case 1, (0). It is readily shown that this
condition is rewritten as follows:

H,(-V2v) + V2vH,,(-V2v) = 0. (46)

This is the exact equation for a subset of energy ei-
genvalues. We note that this type of spectrum equations
that involve two Hermite functions are faced in several
other physical situations (see, e.g., [14, 23]). For
sgn(AB) = -1, this is exactly the equation encountered
when solving the Schrodinger equation for the inverse-
square-root potential [14]. It has been shown that the
equation possesses a countable infinite set of discrete
positive roots v,,, n € N. This set determines the bound-
state energy eigenvalues. We note that all v,, are not in-
tegers so that the bound-state wave functions are not
polynomials.

The calculation lines are as follows. Substituting
Equations (39) into Equation (18), one arrives at the
following cubic equation for energy E,:

R (En — mE)V2 + (En + m) Vi =0, 47)
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The discriminant D = -4c2*v2VE (27m2c®h*V2 + V') of
this equation is negative; hence, the cubic has only one real
root [16]. This root is conveniently written through the
parameter as follows:

v? 1
6 = 733/2"}[}}1('3 E (48)
The result is the following equation:
N _1\Y3_1n23
By = mc + 3mejppe VO =17 - 10) 49)

(Ve +1-1)"

Given that v,, is known via Equation (46), this is an
exact expression.

To approximately solve Equation (46), we note that the
arguments and indexes of the involved Hermite functions
H,(z) belong to the left transient layer for which z =
—\/2v +1 [24]. Following the approach of [14], we divide
Equation (46) by v2vH,_;(-v2v) and apply the proper
approximations [24] to show that the equation has solu-
tions only if sgn(AB) = —1. The resulting approximation for
the latter case is the following equation:

H, (—V2v)
T V2vH, S (V)

+%sin(n(v— 1/6))>

F=1 zf(v)(sin(ﬂ(v+l/6))

(50)

Here f(v) is a non-oscillatory function which does not
adopt zero, and Dy, is the constant which is given as follows:

r(1/3)

0

This is a highly accurate approximation (see Figure 1).

Thus, the exact Equation (46) is accurately approxi-
mated as follows:

Figure 1: Approximation (50) (filled circles) compared with the exact
function F (solid curves). For v < 1/2 the function does not possess
roots.
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sin(m (v +1/6)) Do

W—l/@) V23 =0 (52)

Treating the second term of this equation as a pertur-

bation leads to a simple, yet, highly accurate
approximation:
1 D D]
Vn:n_fﬂ' \/§ 0 23— \/§ 0 W3’ n:1,2,3,...
6 21(n-1/6)° 4m(n-1/6)
(53)

The relative error is less than 10 for all orders n = 2,
and the absolute error exceeds 10™ only for the first root
with n=1.

With exact Equation (49), keeping just the first term
vy =n -1/6 in Equation (53), the energy eigenvalues are
expanded in terms of n as follows:

203072
(6n-17%

2030)*? 14

(6n—1)%‘>’ = e Y

E, = mc2<1 -

This provides a good description of the whole
sequence if V}/(mhc3) <1 (see Table 1).

Consider now the case 5(0). It is shown that this
condition is rewritten as follows:

H,(-V2v) - V2vH,4(-V2v) = 0 (55)

which differs from Equation (46) only by the sign of
the second term. Acting essentially in the same manner,
we find that this equation is well approximated as
follows:

1
f(v)(sin(nv - %) + s sin(nv + %)) =0
with f (v) = 7 (2v) ®"*7¢e2, Neglecting the second term, we
arrive at the following equation:

(56)

1
Vp=n+->, n=0,1,23, ... (57)

6

(note that here n runs starting from 0). The energy eigen-
values are expanded for large n as follows:

20303 >
(6n+1)*?

203072
6n+1)%7°

E,~ mcz(l - (58)

Starting from n = 1, this provides a rather good

approximation if VZ/(mhc®) <1 (Table 2).

5 Bound states for the case of
electrostatic potential

Consider the following electrostatic potential equation:
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Table 1: Comparison of approximation (54) with the exact Formula (49) for VZ/(mhc3) = 1: (m,h,¢, V1) = (1,1,1, -1).

n 1 2 3 45 5 6 7

E, (Exact) -0.07534 0.279904 0.438093 0.530429 0.592080 0.636685 0.670730

E.(Approx) —-0.08538 0.276806 0.436756 0.529710 0.591638 0.636390 0.670521
Table 2: Comparison of approximation (58) with the exact Formula (49) for VZ/(mhc3) = 1: (m,h,c, V1) = (1,1,1, -1).

n 0 1 2 3 4 5 6

E, (Exact) —-0.90450 0.073507 0.340973 0.472303 0.55273 0.607966 0.648679

E,(Approx) -0.27567 0.078540 0.341908 0.472631 0.552883 0.608050 0.648731

V . _ _ . . _
Vel w=s-o (59) by replacing x — —x and ch — —ch in Equations (20)—(22)
Vx| and (63)-(65). Note that ¢, and ¢, should be replaced by

For x > 0, this is another particular case of the field
configuration (7). Here,

A = F* - m’c%, B=-2EV, (60)

and the general solution of the Dirac Equation (6) is
written as follows:

_ dWG i V1

¢A _—dx +&<E+mC2—W>WG (61)
_we ifp e N

Yy = o + 7 (E mc \/}>WG (62)

where wg; is the general solution (27), (28) and y, v, g are
given by Equations (20)-(22). After some simplification, we
have the following result:

Y, = e§< (E + mc® - 2icha,)® + Zg_v (E+mc + 2ichaz)i—$>

(63)
) —e% (E - mc® - 2icha )<D+£(E—mc2+2icha)d£
B g v > dy
(64)
where
vi1,
‘:D=C1'Hv()/)+(—'2'1F1<—§;i;y) (65)

The requirement of vanishing of the wave function at
X — +oo gives the following linear relation between c¢; and
Cy:

1
2Vr<i)c1 + (=i =0

> (66)

Proceeding in the same manner as in the previous case,
we construct the solution of the Dirac Equation (6) for x < 0

new arbitrary constants, say, c; and c,, respectively. It is
then shown that the requirement of vanishing of the wave
function at x > —oo is satisfied if ¢, = 0. Finally, we verify
that the requirement of continuity of the wave function at
x = 0 results in the equation ¥, (0)y5 (0) = 0. Hence, for
bound states, either i, or 5 should vanish in the origin.

Consider the case i, (0) = 0. Since ¢, = 0, it is easier to
use the solution for x < 0. Then, after some algebra, the
equation ¥, (0) = O is rewritten as (compare with (46) and
(55)) follows:

2

Hv<_E2\/E>+@HV—1<_E@>:0 (67)
mc mc

where
m’cV; / h

T e~ B2yP 9

This is the exact equation for a subset of the energy
spectrum. To treat this equation, we note that, since
|E/mc2| <1, the indexes v, v-1 and the argument z =
—\/2vE/mc? of the involved Hermite functions belong to the
so called “inner region” for which |z| < v/2v. One can then
use the standard approximation for the Hermite function
for this region [24]:

2 ’1/4 2
1y 2ovaviny z mv v z
H,(2)x27e 2 1-— cos| ——-z\|=——

2v 2 2 4

1r in z
arcs <@>

to arrive at the following highly accurate approximation:

(70)

(69)

sin(nif) =0

where
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Figure 2: Function f{E) (solid line) for (m, A, c,V;) = (1,1, 1, -3). The
intersections of horizontal dotted lines with f(E) give the positions of
energy levels E,,.. There are only two negative eigenenergies for given
parameters. The dashed line shows approximation (78).

= v+l+K <i 1—}5—2 —arccos£> (71)
4 m\ mc? m2ct mc?

The eigenenergies are thus defined as roots of the
equation f=k, k € Z.

To get a general insight on the structure of the spec-
trum, it is useful to examine the behavior of f as a function
of energy, the latter being allowed to vary within the in-
terval E € (-mc?, mc?) (Figure 2). Some characteristics of f
are as follows:

o= 3+ o= F 7)
fle= 3 +5 =T 7
fleeomev o fro= g )
where
A= m;l; (75)

The function starts from the minimal value f,;, at
E =-mc’, adopts f, at E = 0, and diverges to plus infinity at
E — +mc?. Since the function has a restricted variation
range on the negative interval E € (-mc?,0), it is under-
stood that there exists only a finite number of negative
eigenenergies while the number of positive eigenenergies
is infinite. The number of negative eigenenergies is exactly
given as follows:

n = IfO J _IfminJ

where | ... | denotes the floor of a number.

(76)
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For negative energies E < 0, the function f(E) is well
approximated by the parabola
JA(E ?
3\ c¢?m

Al E
f=f0+§<%>

while an appropriate approximation for positive energies
E>0is

77)

ak’
fzv+f°o +m (78)
with
4 -3m 3
T 2um T 4 79)

Note that a is a small number: a = —-0.07.

With these approximations, one arrives at the
following approximate spectrum. If the energy levels are
numbered by a positive integer n running from one to in-
finity, for negative energy levels E, < O we have the
following equation:

32 k-f,

T A

E,,:—mcz:%ﬂ<1— 1+ >, k=n+|f,l (80)

where n runs from one to n_. For positive energy levels
E, > 0, using Equation (68), we have the following
equation:

Ep~+mc\[1- A2 |v2/3 (81)

v=%<k—foo—b/\+\/(k—foo+b/\)2—4a/l2 )
k=n+f pnl

where nruns from n_ + 1to infinity. This is a rather accurate
result for all orders n and for any V;. Starting from a few
lowest energy levels, the relative error is of the order or less
than 10”. The comparison of approximation (80) with the
exact result for V/(mhc?) = 1is shown in Table 3.

We note that for large n — oo, the spectrum behaves as
follows:

(82)

PR

E, =~ A\ -
o (n + IfminJ _foo)2/3

(83)

This result, which is asymptotically exact, indicates
that the Maslov index u = —{f..} (fractional part of the
correction to n [25, 26]) depends on the potential’s strength
V,. This is a notable feature that differs the Dirac case from
the Schrédinger one. We recall that in the Schrodinger
case, the Maslov index is y = -1/6 [14].
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Table 3: Comparison of approximation (81) with exact result for (m,k,c,V;) = (1,1,1, -1).

n 1 2 3 4 5 6 7
E, 0.297679 0.618900 0.723684 0.777986 0.811903 0.835392 0.852768
Eapprox 0.293394 0.611538 0.720164 0.775963 0.810589 0.834467 0.852079
Table 4: Exact energy levels corresponding to the cases ¢, (0) =0 and ¢z (0) =0,A=1.

n 1 2 4 5 6 7
E,, Equation.(67) 0.297679 0.618900 0.723684 0.777986 0.811903 0.835392 0.852768
E,, Equation.(84) -0.96589 0.495364 0.674916 0.751128 0.794616 0.823205 0.843645

The bound states corresponding to the case when the
upper component of the wave function is even and the
lower component is odd, that is, when ;(0) =0, are
treated in the same manner. The exact equation for the
second subset of the energy spectrum corresponding to this
case is reduced to the following eqaution:

HV<—£2@>—@HV_1<—£2@> =0 (84)
mc mc

which differs from Equation (67) only by the sign of the
second term. An accurate approximation of this equation
reads the following equation:
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