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Abstract: We present the exact solution of the 1D Dirac
equation for the inverse-square-root potential 1/

�
x

√
for

several configurations of vector, pseudo-scalar, and scalar
fields. Each fundamental solution of the problem can be
written as an irreducible linear combination of twoHermite
functions of a scaled and shifted argument. We derive the
exact equations for bound-state energy eigenvalues and
construct accurate approximations for the energy
spectrum.

Keywords: biconfluent Heun equation; bound state; Dirac
equation; inverse-square-root potential.

1 Introduction

Exact solutions of the Dirac equation, which is a relativistic
wave equation of fundamental importance in physics [1],
are rare. In the one-dimensional case, apart from the piece-
wise constant potentials and their generalizations
involving the Dirac δ-functions, one may mention the
Coulomb, linear, and exponential potentials as follows [2]:

V � V0 + V1

x
,V0 + V1x,V0 + V1ex/σ (1)

for which, the Dirac equation can be solved in terms of
confluent hypergeometric functions, and the potential is
given as follows:

V � V0 + V1tanh(xσ) + V2coth(xσ) (2)

for which the Dirac equation can be solved in terms of
ordinary hypergeometric functions. Many potentials re-
ported so far, e.g., the Dirac-oscillator [3, 4], Woods-Saxon

[5], and Hulthén [6] potentials are particular cases of these
four potentials that can be derived by (generally complex)
specifications of the involved parameters. Note that the
first three potentials given by Equation (1) are particular
truncated cases of the classical Kratzer [7], harmonic
oscillator [8], and Morse [9] potentials for the Schrödinger
equation, while the fourth potential given by Equation (2)
in general (if V1V2 ≠ 0 and V1 ≠ V2) does not belong to a
known Schrödinger potential. However, the solution for
this potential can be constructed using the solution of the
Schrödinger equation for the Pöschl-Teller potential [10] or
that for the Eckart potential [11] (note that the solution for a
truncated version of potential (2) with V2 = 0 can be written
using the solution for the Eckart potential).

In the present paper, we introduce a new exactly
solvable potential – the inverse-square-root potential –
which is given as follows:

V � V0 + V1�
x

√ . (3)

A potential of this functional form was applied in
the past as a short-range component in phenomeno-
logical modeling of the quark-antiquark interaction [12].
The treatment of the potential, however, was so far
restricted to the non-relativistic case described by the
Schrödinger equation. Here, we show that the time-
independent Dirac equation for this potential can be
solved exactly. The solution is written in terms of linear
combinations of the Hermite functions of a scaled and
shifted argument. Based on this exact solution, we find
a notable difference as compared to the Schrödinger
case. We note that a potential of this functional form
appears also in the graphene physics (e.g., the electro-
static potential caused by a gate voltage at the edge of a
graphene strip [13]).

We consider the stationary one-dimensional Dirac
equation for a spin 1/2 particle of rest massm and energy E:

H
∣∣∣∣ψ〉 � E

∣∣∣∣ψ〉, (4)

with Hamiltonian H � K + П, where K is the kinetic
energy operator, and the interaction operator   stands for
the potential of the external field. With the general 2 × 2
Hermitian potential matrix given by real functions V, U,W,
and S:
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П � V(x)σ0 + U(x)σ1 +W(x)σ2 + S(x)σ3

� ( V + S U − iW
U + iW V − S

), (5)

where σ0 is the unit matrix and σ1,2,3 are the Pauli matrices.
Equation (4) for the two-component spinor wave function
ψ � (ψA,ψB)T reads the following equation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ V + S +mc2 −icℏ d
dx

+ U − iW

−icℏ d
dx

+ U + iW V − S −mc2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(ψA

ψB
) � E(ψA

ψB
),
(6)

where c is the speed of light and ℏ is the reduced Planck’s
constant (we use dimensional variables since this is useful
for construction of new solutions using the known ones –
see examples below). Without affecting the physical re-
sults, one can eliminate U using the phase transformation
ψ→ e−iφψ with cℏ ⋅ dφ/dx � U. Hence, we assume U = 0.
The resulting system can be solved for several configura-
tions of functions V, W, S of the form a + b/

�
x

√
.

2 Solution for a basic field
configuration

A basic field configuration we consider is given as follows:

(V,W , S) � (V0 + V1�
x

√ ,W0, S0 + S1�
x

√ ), (7)

with arbitrary V0,1, W0, S0,1. Though this potential is
defined on the positive semi-axis x > 0, one can extend it to
the whole axis x ∈ ( −∞,+∞) by replacing x by |x|. The
solution for x < 0 is then readily constructed by replacing
x→ −x, cℏ→ −cℏ in the solution for x > 0.

To solve the Dirac equation for potential (7), we apply
the Darboux transformation

ψA � a1
dw
dx

+ a2w, ψB � b1
dw
dx

+ b2w, (8)

to reduce the system to a single second-order differ-
ential equation for a new variable w(x). This is achieved by
putting the following equations:

(a1, b1) � ( ������
V1 − S1

√
,

������
V1 + S1

√ ), (9)

a2 � ib1(E +mc2 + S0 − V0 + (S1 − V1)F(x)) + a1W0

cℏ
, (10)

b2 � − ia1( − E +mc2 + S0 + V0 + (S1 + V1)F(x)) + b1W0

cℏ
,

(11)

where F � 1/
�
x

√
. The resulting equation reads as follows:

d2w
dx2

+
A+B F x( ) + V2

1 −S21( )F x( )2 − icℏ
������
V1 −S1

√ ������
V1 + S1

√
F ' x( )( )

c2ℏ2
w � 0

(12)

where the prime denotes differentiation and

A � (E − V0)2 − (mc2 + S0)2 −W2
0, (13)

B � −2((E − V0)V1 + (mc2 + S0)S1). (14)

In the spin and pseudo-spin symmetry cases,

i.e., when S21 � V2
1 , the terms proportional to F(x)2 and F′(x)

vanish, and Equation (12) is reduced to a Schrödinger-like
equation for the inverse-square-root potential:

d2w
dx2

+ 1

c2ℏ2
A + B�

x
√( )w � 0, (15)

with energy A/(2mc2) and potential −B/(2mc2
�
x

√ ).
The general solution of this equation is presented in

the study by Ishkhanyan [14]. Rewritten in terms of our
parameters, a fundamental solution for real A and B can be
presented as follows:

w � e−y
2/2(Hν(y) − sgn(AB) ��

2ν
√

Hν−1(y)), (16)

where

y �
����������−4A√
cℏ

√ ( �
x

√ + B
2A

), (17)

and

ν � B2

4cℏ(−A)3/2 . (18)

We note that a second independent fundamental so-
lution can be constructed by the change cℏ→ −cℏ in
Equations (17) and (18).

Discussing the general case of field configuration (7)
for arbitrary parameters, a main result we report is that a
fundamental solution of Equation (12) is given as follows:

w � e−y
2/2(Hν(y) + gHν−1(y)), (19)

where

y � ����−2α2

√ ( ��
2x

√ + α1

2α2
), (20)
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(ν, g) � ( − α2
1

4α2
− V2

1 − S21
2α2c2ℏ2

,
α1����−2α2

√ − i 

������
V1 − S1

√ ������
V1 + S1

√���−α2
√

cℏ
)
(21)

and

(α1, α2) � ( −B
cℏ

����−2A√ ,

���−A√
2cℏ

) (22)

We note that,mathematically, this solution applies not
only for real parameters but for arbitrary complex param-
eters V1,2,W0, S1,2, as well as for arbitrary complex variable
x. This observation may be useful if one discusses non-
Hermitian generalizations of Hamiltonian (5).

This solution is derived by the reduction of Equa-
tion (12) to the biconfluent Heun equation [15, 16]:

d2u
dz2

+ (γ
z
+ δ + ε z) du

dz
+ αz − q

z
 u � 0, (23)

The solution of which can be expanded in terms of
(generally non-integer order) Hermite functions of a scaled
and shifted argument [17]:

u � ∑
∞

n�0
cnHn+γ−α/ε( ����

−ε/2√
 (z + δ/ε)), (24)

(see the definition of the non-integer order Hermite func-
tion in [18]).

Following the approach of [19, 20], we apply the

transformation ψ � φ (z) u(z) with z � ��
2x

√
and φ �

eα1z+α2z2 to show that for the field configuration (7), the
parameters of the biconfluent Heun equation obey the
equations:

γ � −1,  q2 − δq + α � 0. (25)

(mathematically, this means that the regular singu-
larity of Equation (23) at z = 0 is apparent). With this, the
series (24) terminates on the second term thus resulting in a
closed-form solution involving just two Hermite functions:

u � eα1z+α2z
2(Hγ−α/ε( ���

−ε
2

√ (z + δ
ε
))

+
���−ε√ (δ − q)�

2
√

α
H1+γ−α/ε( ���

−ε
2

√ (z + δ
ε
))). (26)

Rewritten in terms of parameters of Equation (12), this
yields the solution (19)–(22).

As regards the general solution of Equation (12), it can
be written as follows:

wG � e−y
2/2(Φ + g

2ν
dΦ
dy

) (27)

with

Φ � c1 ⋅ Hν(y) + c2 ⋅  1F1( − ν
2
;
1
2
; y2) (28)

where c1,2 are arbitrary constants and 1F1 is the Kummer
confluent hypergeometric function. We conclude this sec-
tion by noting that, in general, the involved Hermite and
hypergeometric functions are not polynomials because the
index ν � γ − α/ε is not an integer.

3 Another field configuration

The solution of the Dirac equation for several other field
configurations is constructed in the same way – via reduc-
tion to the biconfluent Heun Equation (23). For instance, for
the spin symmetric configuration S(x) − V(x) � Cs � const
Equation (6) is reduced to the following equations:

d2ψA

dx2
+ 1

c2ℏ2
((E +mc2 + Cs)(E −mc2 − Cs − 2V) − cℏ

dW
dx

−W2)ψA � 0, (29)

ψB � i
E +mc2 + Cs

(WψA − cℏ
dψA

dx
). (30)

For the field configuration

(V,W , S) � (V1�
x

√ ,
W1�
x

√ ,Cs + V1�
x

√ ), (31)

reducing Equation (29) to the biconfluent Heun Equa-
tion (23), we verify that the parameters of the resulting
equation fulfill Equation (25). As a result, we arrive at a
fundamental solution for ψA written as an irreducible
linear combination of two Hermite functions:

ψA � e−y
2/2(Hν(y) + gHν−1(y)), (32)

with

y � ����−2α2

√ ( ��
2x

√ + α1

2α2
), (33)

and (compare with (21)–(22))

(ν, g) � ( − α21
4α2

+ W2
1

2α2c2ℏ
2,

α1����−2α2
√ − W1

cℏ
���−α2

√ ), (34)

(α1, α2) � ⎛⎜⎜⎜⎝ �
2

√
V1(mc2 + Cs + E)

cℏ
��������������
(mc2 + Cs)2 − E2

√ ,

��������������
(mc2 + Cs)2 − E2

√
2cℏ

⎞⎟⎟⎟⎠. (35)
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For completeness, in this case, the general solution of
the Dirac equation involving two independent funda-
mental solutions can be written as follows:

ψA � e−y
2/2(Φ + g

2ν
dΦ
dy

) (36)

with

Φ � c1 ⋅ Hν(y) + c2 ⋅  1F1( − ν
2
;
1
2
; y2), (37)

where c1,2 are arbitrary constants.
We note that for the pseudo-spin symmetry configu-

ration S + V = Cp = const with V(x) and W(x) given by
Equation (31), a fundamental solution forψB is constructed
by the formal change (ψA,Cs)→ (ψB,Cp) and (V1,W1, E)→
( −V1, −W1, −E) in Equations (32)–(35).

4 Bound states

To construct bound states, we (i) extend the potential to the
whole x-axis x ∈ ( −∞,+∞) by assuming the potential be-
ing of argument |x| instead of x, (ii) demand the wave
function to vanish at x→ ±∞, and (iii) demand the wave
function to be continuous in the origin x = 0. The solution
for x < 0 is readily constructed by noting that the Dirac
system (6) for a potential depending on |x| is not changed if
one replaces x→ −x and cℏ→ −cℏ. It then turns out that
the continuity condition in the origin results in the equa-
tion ψA(0)ψB(0) � 0 [21]. This is an important observation
stating that for the bound states either the upper compo-
nentψA or the lower oneψB should vanish in the origin. As
a result, one gets two subsets of eigenvalues – the ones for
which ψA(0) � 0 and the ones for which ψB(0) � 0. We
note that the vanishing of the wave function in the origin is
a necessary condition for the non-relativistic limit [22].

As an example, consider the following spin symmetric
field configuration:

V � V1���|x|√ , W � 0, S � V1���|x|√ (38)

This is a specific configuration that belongs to both
families (7) and (31). Both approaches work yielding the
same result. If this configuration is viewed as a particular
case of the field configuration (7) with V0 =W0 = S0 = 0 and
S1 = V1, we have

A � E2 −m2c4,      B � −2 E +mc2( )V1, (39)

and the general solution of the Dirac Equation (6) for
x > 0 is written as follows:

ψA � c1w + c2w̃, (40)

ψB � −icℏ
E +mc2

dψA

dx
, (41)

where c1,2 are arbitrary constants,w is given via parameters
A andBby Equations (16)–(18), and w̃ is constructed fromw
by the change cℏ→ −cℏ. As already mentioned above, the
solution (ψA

−,ψB
−) for x < 0 is constructed by the further

change x→ −x:
ψA

− � (c3w + c4w̃)|x→−x, (42)

ψB
− � ( −icℏ

E +mc2
dψA

dx
)∣∣∣∣∣∣∣∣∣∣x→−x

(43)

The condition of vanishing the wave function at the
infinity leads to the simplification c2 = c4 = 0 (we note that
then ψA,ψA

− are real and ψB,ψB
− are imaginary if c1, c3 are

chosen real). With this, the continuity of the wave function
at the origin is achieved if

c3w|x→−0 � c1w|x→+0, (44)

c3
dw
dx

∣∣∣∣∣∣∣x→−0
� c1

dw
dx

∣∣∣∣∣∣∣x→+0
. (45)

Vanishing of the determinant of this system presents
the exact equation for energy spectrum. Since w(−x) = w(x)
andw′(−x) =−w′(x), this equation is reduced tow(0)w′(0) = 0
or ψA(0)ψB(0) � 0. Thus, for bound states, either ψA or ψB

should vanish in the origin.
Consider the case ψA(0). It is readily shown that this

condition is rewritten as follows:

Hν(− ��
2ν

√ ) + ��
2ν

√
Hν−1(− ��

2ν
√ ) � 0. (46)

This is the exact equation for a subset of energy ei-
genvalues. We note that this type of spectrum equations
that involve two Hermite functions are faced in several
other physical situations (see, e.g., [14, 23]). For
sgn(AB) = −1, this is exactly the equation encountered
when solving the Schrödinger equation for the inverse-
square-root potential [14]. It has been shown that the
equation possesses a countable infinite set of discrete
positive roots νn,  n ∈ N. This set determines the bound-
state energy eigenvalues. We note that all νn are not in-
tegers so that the bound-state wave functions are not
polynomials.

The calculation lines are as follows. Substituting
Equations (39) into Equation (18), one arrives at the
following cubic equation for energy En:

c2ℏ2(En −mc2)3ν2n + (En +mc2)V4
1 � 0, (47)
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The discriminant D � −4c2ℏ2ν2nV8
1 (27m2c6ℏ2ν2n + V4

1 ) of
this equation is negative; hence, the cubic has only one real
root [16]. This root is conveniently written through the
parameter as follows:

θ � V2
1

33/2mℏc3
1
νn
. (48)

The result is the following equation:

En � mc2 + 3mc2|θ|2/3 ( �����
θ2 + 1

√
− 1)2/3 − |θ|2/3( �����

θ2 + 1
√

− 1)1/3 (49)

Given that νn is known via Equation (46), this is an
exact expression.

To approximately solve Equation (46), we note that the
arguments and indexes of the involved Hermite functions

Hν(z) belong to the left transient layer for which z ≈
− �����

2ν + 1
√

[24]. Following the approach of [14], we divide

Equation (46) by
��
2ν

√
Hν−1( −

��
2ν

√ ) and apply the proper
approximations [24] to show that the equation has solu-
tions only if sgn(AB) = −1. The resulting approximation for
the latter case is the following equation:

F ≡ 1 + Hν(− ��
2ν

√ )��
2ν

√
Hν−1(− ��

2ν
√ ) ≈ f(ν)(sin(π(ν + 1/6))

+ D0

ν2/3
sin(π(ν − 1/6))) (50)

Here f(ν) is a non-oscillatory function which does not
adopt zero, andD0 is the constant which is given as follows:

D0 � Γ(1/3)
12

�
33

√
Γ(2/3) ≈ 0.11 (51)

This is a highly accurate approximation (see Figure 1).
Thus, the exact Equation (46) is accurately approxi-

mated as follows:

sin(π(ν + 1/6))
sin(π(ν − 1/6)) + D0

ν2/3
� 0 (52)

Treating the second term of this equation as a pertur-
bation leads to a simple, yet, highly accurate
approximation:

νn ≈ n − 1
6
+

�
3

√
D0

2π(n − 1/6)2/3 − �
3

√
D2

0

4π(n − 1/6)4/3,  n � 1, 2, 3, ...

(53)

The relative error is less than 10−4 for all orders n ≥ 2,
and the absolute error exceeds 10−4 only for the first root
with n = 1.

With exact Equation (49), keeping just the first term
νn ≈ n − 1/6 in Equation (53), the energy eigenvalues are
expanded in terms of n as follows:

En ≈mc2(1 − 2(3λ)2/3
(6n − 1)2/3 +

2(3λ)4/3
(6n − 1)4/3), λ � V2

1

mℏc3
(54)

This provides a good description of the whole

sequence if V2
1 /(mℏc3) ≤ 1 (see Table 1).

Consider now the case ψB(0). It is shown that this
condition is rewritten as follows:

Hν(− ��
2ν

√ ) − ��
2ν

√
Hν−1(− ��

2ν
√ ) � 0 (55)

which differs from Equation (46) only by the sign of
the second term. Acting essentially in the same manner,
we find that this equation is well approximated as
follows:

f(ν)(sin(πν − π
6
) + 1

64ν4/3
sin(πν + π

6
)) � 0 (56)

with f(ν) � π(2ν)(3ν+1)/6eν/2. Neglecting the second term, we
arrive at the following equation:

νn ≈ n + 1
6
,  n � 0, 1, 2, 3,… (57)

(note that here n runs starting from 0). The energy eigen-
values are expanded for large n as follows:

En ≈mc2(1 − 2(3λ)2/3
(6n + 1)2/3 +

2(3λ)4/3
(6n + 1)4/3) (58)

Starting from n = 1, this provides a rather good

approximation if V2
1 /(mℏc3) ≤ 1 (Table 2).

5 Bound states for the case of
electrostatic potential

Consider the following electrostatic potential equation:

Figure 1: Approximation (50) (filled circles) compared with the exact
function F (solid curves). For ν < 1/2 the function does not possess
roots.
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V � V1���|x|√ , W � S � 0. (59)

For x > 0, this is another particular case of the field
configuration (7). Here,

A � E2 −m2c4,          B � −2EV1 (60)

and the general solution of the Dirac Equation (6) is
written as follows:

ψA � dwG

dx
+ i
cℏ

(E +mc2 − V1�
x

√ )wG (61)

ψB � dwG

dx
+ i
cℏ

(E −mc2 − V1�
x

√ )wG (62)

where wG is the general solution (27), (28) and y, ν, g are
given by Equations (20)–(22). After some simplification, we
have the following result:

ψA � e−
y2

2 ((E +mc2 − 2icℏα2)Φ + g
2ν

(E +mc2 + 2icℏα2)dΦdy)
(63)

ψB � e−
y2

2 ((E −mc2 − 2icℏα2)Φ + g
2ν

(E −mc2 + 2icℏα2)dΦdy)
(64)

where

Φ � c1 ⋅ Hν(y) + c2 ⋅  1F1( − ν
2
;
1
2
; y2) (65)

The requirement of vanishing of the wave function at
x→ +∞ gives the following linear relation between c1 and
c2:

2νΓ(ν + 1
2

)c1 + ( − i)ν ��
π

√
c2 � 0 (66)

Proceeding in the samemanner as in the previous case,
we construct the solution of the Dirac Equation (6) for x < 0

by replacing x→ −x and cℏ→ −cℏ in Equations (20)–(22)
and (63)–(65). Note that c1 and c2 should be replaced by
new arbitrary constants, say, c3 and c4, respectively. It is
then shown that the requirement of vanishing of the wave
function at x→ −∞ is satisfied if c4 = 0. Finally, we verify
that the requirement of continuity of the wave function at
x = 0 results in the equation ψA(0)ψB(0) � 0. Hence, for
bound states, either ψA or ψB should vanish in the origin.

Consider the caseψA(0) � 0. Since c4 = 0, it is easier to
use the solution for x < 0. Then, after some algebra, the
equation ψA(0) � 0 is rewritten as (compare with (46) and
(55)) follows:

Hν( − E
mc2

��
2ν

√ ) + ��
2ν

√
Hν−1( − E

mc2
��
2ν

√ ) � 0 (67)

where

ν � m2c3V2
1/ℏ

(m2c4 − E2)3/2 (68)

This is the exact equation for a subset of the energy
spectrum. To treat this equation, we note that, since∣∣∣∣E/mc2

∣∣∣∣ < 1, the indexes ν, ν−1 and the argument z �
− ��

2ν
√

E/mc2 of the involvedHermite functions belong to the

so called “inner region” for which |z| < ��
2ν

√
. One can then

use the standard approximation for the Hermite function
for this region [24]:

Hv(z)∝ 2
1+v
2 e

z2−v+vlnv
2 (1 − z2

2v
)−1/4

cos⎛⎝πv
2
− z

�����
v
2
− z2

4

√
− 2v + 1

2
arcsin( z��

2v
√ )⎞⎠ (69)

to arrive at the following highly accurate approximation:

sin(πf ) � 0 (70)

where

Table : Comparison of approximation () with the exact Formula () for V

/(mℏc) � : (m, ℏ, c,V) � (,,, −).

n       

En (Exact) −. . . . . . .
En(Approx) −. . . . . . .

Table : Comparison of approximation () with the exact Formula () for V

/(mℏc) � : (m, ℏ, c,V) � (,,, −).

n       

En (Exact) −. . . . . . .
En(Approx) −. . . . . . .
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f � ν + 1
4
+ ν
π
⎛⎝ E
mc2

�������
1 − E2

m2c4

√
− arccos

E
mc2

⎞⎠ (71)

The eigenenergies are thus defined as roots of the
equation f = k, k ∈ Z.

To get a general insight on the structure of the spec-
trum, it is useful to examine the behavior of f as a function
of energy, the latter being allowed to vary within the in-

terval E ∈ ( −mc2,mc2) (Figure 2). Some characteristics of f
are as follows:

f |E→−mc2� 1
4
+ 2λ
3π

≡ fmin (72)

f |E�0� 1
4
+ λ
2
≡ f 0 (73)

f |E→+mc2∼ν + f∞, f∞ ≡
1
4
− 2λ
3π

(74)

where

λ � V2
1

mℏc3
(75)

The function starts from the minimal value fmin at
E = −mc2, adopts f0 at E = 0, and diverges to plus infinity at

E → +mc2. Since the function has a restricted variation

range on the negative interval E ∈ ( −mc2,0), it is under-
stood that there exists only a finite number of negative
eigenenergies while the number of positive eigenenergies
is infinite. The number of negative eigenenergies is exactly
given as follows:

n− � ⌊f 0 ⌋ −⌊fmin⌋ (76)

where ⌊… ⌋ denotes the floor of a number.

For negative energies E < 0, the function f(E ) is well
approximated by the parabola

f ≈ f 0 + λ
2
( E
c2m

) + 2λ
3π

( E
c2m

)2

(77)

while an appropriate approximation for positive energies
E > 0 is

f ≈ ν + f∞ + aλ2

ν + bλ
(78)

with

a � 4 − 3π
24π

 , b � 3
4

(79)

Note that a is a small number: a ≈ −0.07.
With these approximations, one arrives at the

following approximate spectrum. If the energy levels are
numbered by a positive integer n running from one to in-
finity, for negative energy levels En < 0 we have the
following equation:

En ≈ −mc2
3π
8
⎛⎝1 −

�����������
1 + 32

3π
k − f 0
λ

√ ⎞⎠ ,  k � n + ⌊fmin⌋ (80)

where n runs from one to n−. For positive energy levels
En > 0, using Equation (68), we have the following
equation:

En ≈ +mc2
����������
1 − λ2/3/ν2/3√

(81)

ν � 1
2

k − f∞ − bλ +
�������������������
k − f∞ + bλ( )2 − 4aλ2 

√( ) , 
k � n + ⌊fmin⌋ (82)

where n runs from n− + 1 to infinity. This is a rather accurate
result for all orders n and for any V1. Starting from a few
lowest energy levels, the relative error is of the order or less
than 10−3. The comparison of approximation (80) with the
exact result for V2

1 /(mℏc3) � 1 is shown in Table 3.
We note that for large n→∞, the spectrum behaves as

follows:

En ≈ +mc2

�������������������
1 − λ2/3(n + ⌊fmin⌋ − f∞)2/3

√√
(83)

This result, which is asymptotically exact, indicates
that the Maslov index μ � −{f∞} (fractional part of the
correction to n [25, 26]) depends on the potential’s strength
V1. This is a notable feature that differs the Dirac case from
the Schrödinger one. We recall that in the Schrödinger
case, the Maslov index is μ � −1/6 [14].

Figure 2: Function f(E ) (solid line) for (m, ℏ, c,V1) � (1, 1, 1, −3). The
intersections of horizontal dotted lineswith f(E ) give the positions of
energy levels En. There are only two negative eigenenergies for given
parameters. The dashed line shows approximation (78).
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The bound states corresponding to the case when the
upper component of the wave function is even and the
lower component is odd, that is, when ψB(0) � 0, are
treated in the same manner. The exact equation for the
second subset of the energy spectrumcorresponding to this
case is reduced to the following eqaution:

Hν( − E
mc2

��
2ν

√ ) − ��
2ν

√
Hν−1( − E

mc2
��
2ν

√ ) � 0 (84)

which differs from Equation (67) only by the sign of the
second term. An accurate approximation of this equation
reads the following equation:

sin(πf ) � 0 (85)

with

f � ν − 1
4
+ ν
π
⎛⎝ E
mc2

�������
1 − E2

m2c4

√
− arccos

E
mc2

⎞⎠ (86)

which differs from Equation (71) only by the sign of 1/4.
Doing the same steps as in the previous case, we arrive at
the approximate spectrum given by the same Equations
(80)–(82) with fmin, f0, f∞ modified such as 1/4 is replaced
by −1/4. The two subsets of energy levels for V2

1 /(mℏc3) � 1
corresponding to the cases ψA(0) � 0 and ψB(0) � 0 are
compared in Table 4. As seen, the second subset possesses
an additional negative level E ≈ −0.965886, the other
levels being located between two adjacent levels of the first
subset.
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