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Abstract: In this paper, we consider the well-known Vallis
model for El Nifio driven by an external excitation. The
bifurcation studies on the driven Vallis model are con-
ducted with different control parameters. Then we discuss
about the taming of the Hopf bifurcation by varying the
driving function. We could note that the system changes its
state from stable steady state to oscillatory state and vice
versa which is achieved by changing the driving function.
Finally, two parameter bifurcation plots are derived to
show that impact of the driving function on the system
bifurcation points.
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1 Introduction

El Nino generally represents the extensive warming of the
central and eastern Pacific Ocean. In 1986, Geoffrey K. Vallis
studied climatic change occurs in east-central equatorial
Pacific El Nifio phenomenon. During El Nifio phase, the
trade winds deteriorate in the central and western Pacific
leading to a depression of the thermocline in the eastern
Pacific and cooling the surface, cutting off the supply of
nutrient rich thermocline water. Hence, a rise in sea surface
temperature (SST) and a severe decline in primary produc-
tivity happen. During non-El Nifio phase, the west receives
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trade winds through the tropical Pacific piling up warm
surface water in the west Pacific. The sea surface becomes
higher at Indonesia than at Ecuador, and the SST reaches
higher in the west. The cool temperatures off South America
are because of an upwelling of cold water from deeper
levels, which is nutrient-rich, supporting high levels of
primary productivity, diverse marine ecosystems [18, 20, 21].
The El Nifio phenomenon is a very complex and irregular
one, modeling its intricate dynamical behavior is still a
challenge for scientific community [12-15].

Mathematical model that describes El Nifio phenomena
is the continuous-time Vallis model [1], which consists of a
set of three autonomous first-order nonlinear ordinary dif-
ferential equations. Borghezan and Rech [11] investigated
chaos [9] and periodicity for this model, also reported the
existence of periodic structures embedded in a chaotic
region.

Vallis model [1, 2] is still considered as the simplest
mathematical model for El Nifio. The localization problem
of compact invariant sets of nonlinear time-varying sys-
tems with the differentiable right-side is investigated using
the Vallis model [3]. The sufficient conditions for the exis-
tence of periodic solutions and their stability nature are
discussed in [4]. Most of the earlier discussions about chaos
in Vallis model use the parameter conditions P = 0 and, in
[5], authors numerically investigated the existence of
chaotic solutions for P = 0 and P = 0.83. In [23] Kurgansky
et al. studied the long-term climate variability using
nonlinear chaotic model and emphasize the influences of
parameter variations.

Driven oscillators are used widely to investigate the
nonlinear behavior of interdisciplinary systems [10]. The
solution for the driven oscillators holds two parts, a tran-
sient part and a steady-state part, which must be used
together to fit the physical boundary conditions of the
problem. In 2006, Moore et al. investigated optimal forcing
patterns for coupled models of ENSO and revealed the
significance of excitation terms in prediction of climatic
variation [17]. Many biological rhythmic processes can be
modeled by nonlinear differential equations exhibiting
limit cycle behavior (that is they admit Hopf bifurcation).
Hence, it is important to study such phenomenon in order
to get deeper knowledge about the systems.
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In the present work, we aim to study the effect of driven
force on the Hopf bifurcation. For this purpose, we consider
a Driven Vallis Model (DVM) and made the bifurcation
analysis with respect to an amplitude of the external force.
We find that in the absence of driven force, we can observe
either supercritical or subcritical Hopf bifurcation whereas
the presence of driven term leads to existence of both su-
percritical and subcritical Hopf bifurcation.

2 Driven Vallis Model (DVM)

The El Nifio phenomenon [24] is about the band of warm
ocean water that develops in the central and east-central
equatorial Pacific which has great impact on the global
climate.

The generalized mathematical model is defined as
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where, u is the velocity of the ocean surface flow, T,, and
T, are the relative temperatures at the western and
eastern edges of the ocean basin, respectively. A™' is the
relaxation time of the temperature, B is the coupling
factor between the temperature difference and the ocean
surface flow C is the coefficient associated with internal
friction in ocean water [ is the ocean basin width T is the
relative temperature deep in the ocean ux is the velocity
of the tradewind u* = uy(1+sin wt) T is the steady-state
ocean temperature for ux = 0 [16, 19].

There are many mathematical models available for El
Nifio [15]. Kuhlbrodt et al. [22] simplified the mathematical
model into continuous-time Vallis model [1, 2] defined by
the non-dimensional model.

There are many mathematical models available for El
Nifio and one of these simple models is the continuous-time
Vallis model [1, 2] defined by the non-dimensional model,

X=by-c(x+P)
y=-y+xz
zZ=-z-xy+1

(1b)

For the parameter values, P= 0, b =103, ¢ = 3, system (1)
shows chaotic oscillations [3-6]. In this paper, we discuss
the dynamical behavior of a driven Vallis model as in (2).

X=by-c(x+P)
y=-y+xz+f(t) @
Z=-z-xy+1
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where f(t) = 1+f cos(wt). Using a computer search algorithm,
we find the parameters for chaotic solutions to be b = 90,
P=0.5,c=1,w=4,f=3.6and the 3D phase portraits of system
(2) for initial conditions [1.4, 0.1, 0.3] are shown in Figure 1a
and the 3D Poincare sections for z = 0 are shown in Figure 1b.

Most of the dynamical analysis of the Vallis model is
done assuming that the average effects of equatorial winds
(P) are negligible or zero [3-7] until it was proved that the
parameter P has a considerable effect on the dynamical
behavior of the Vallis model (2). Hence, in this paper, we
investigate the effect of the parameter P on the bifurcation
of the system and also other dynamical properties.

3 Dynamical properties of driven
Vallis model

3.1 Bifurcation

Bifurcation plots are derived and presented to show the
impact of the system parameters on its dynamical behav-
iors. We derive the bifurcation plots for three different
cases in Table 1:

3.1.1 Case-A

As described in Table 1, for deriving the bifurcation plots
for case-A, we choose w as the control parameter. The
initial condition for the first iteration is taken as [1.4, 0.1,
0.3]. The w is varied from 0.5 to 5, we could see that the
system shows chaotic regions with both period doubling
and period halving routes. The creation of period doubling
followed by their annihilation via period-doubling bifur-
cation (i.e. antimonotonicity) is an important behavior
which is useful for studying intricate behavior of the
chaotic system. It should be noted that forward period-
doubling bifurcation sequences followed by reverse period
doubling sequences is a unusual behavior. The process of
period doubling and period halving occurring in a bifur-
cation diagram of a system is termed as antimonotonicity.

To show the existence of multistability, we use a robust
way to plot the bifurcation plots where the initial

Table 1: Different cases for bifurcation.

Case name Control parameter Other parameters
range

Case-A 0.5<w<5 b=90,P=0.5c=1,f=3.6

Case-B 2<f<13 b=90,P=0.5,c=1,w=14

Case-C 0.5<c<2.75 b=90,P=0.5,f=3.6,w=4
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conditions are changed in every iteration to the end values
of the state variables. Figure 2 (blue) shows the forward
continuation where the parameter w is increased from
minimum to maximum and Figure 2 (red) shows the
backward continuation where the parameter w is
decreased from maximum to minimum and the local
maxima of the state variables are plotted. The respective
finite time Lyapunov exponents (LEs) are calculated using
Wolf algorithm [8] for run time of 40,000 s with the initial
conditions changed as like for Figure 2b are shown in
Figure 2c.

3.1.2 Case-B

For deriving the bifurcation plots for case-B, the control
parameter is chosen as the amplitude of the forcing term
(f). We could observe pocket of chaotic behavior for the
range of 2 < f < 13. Antimonotonicity behavior observed in
bifurcation plot (Figure 3). We use only the forward
continuation to plot the bifurcation and as shown in
Figure 3a, the DVM system takes a period doubling route
to chaos. The Lyapunov spectrum for the parameter f
is presented as in Figure 3b to confirm the existence of
chaotic oscillations.
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Figure 1: (a) 3D phase portraits of the Vallis
model; (b) 3D Poincare sections where the
red markers shows the phase trajectory

! crossing the ‘z = 0’ axis while section

T 20 crossing ‘+’ to ‘-’ and black markers shows
the phase trajectory crossing the ‘z =0’ axis
while section crossing ‘-’ to ‘+’.

3.1.3 Case-C

In this case, the control parameter for bifurcation is the
parameter ¢ which is varied between the range [0.5, 2.75].
We could observe chaotic behavior for the parameter range
0.8 < ¢ < 1.18 and 1.5 < ¢ < 1.95. Again, only forward
continuation is used to derive the bifurcation plots and the
system takes period halving exit from chaos as shown in
Figure 4a. The corresponding Lyapunov spectrum is pre-
sented in Figure 4b.

4 Tailoring of a Hopf bifurcation
region through the variation of a
parameter

Toillustrate the dynamical transition and their stability, we
plotted one-parameter bifurcation diagram using XPPAUT
software for the variable x by varying the forcing term
f(f(t) = Asin(wt)) in Figure 5. The black filled circles and red
filled circles denote the stable and unstable steady state,
respectively. The blue unfilled circles denote the unstable
oscillatory state which is also co-exist with unstable steady

Figure 2: (a) Maximum of driven Vallis model
(1) with forward (red) and backward (black)
continuation. (b,c): LEs for b-forward

25 3 35 4 a5 5

w continuation, c-backward continuation.
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Figure 3: Bifurcation of Vallis model with
A Lo i parameter f(a) and the corresponding
f LEs (b).

Figure 4: Bifurcation of Vallis model with

state. Figure 5 clearly illustrates the dynamical transitions
as a function of forcing. We noticed that the stabilization
stable fixed point that is transition from unstable steady
state to stable steady state arises through inverse subcrit-
ical Hopf bifurcation at f = —2.57. Further stable fixed point
losses their stability (i.e. the transition from stable steady
state to unstable steady state) through subcritical Hopf
bifurcation when f = 2.77.

4.1 Two-parameter bifurcation diagram

Further, to understand the dynamical transition more
clearly, as a function of forcing f and system parameter c,
we have plotted two-parameter diagram in (f, ¢) space in
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Figure 5: One parameter bifurcation diagram for DVM model as a
function forcing “f”. Here, HB is the Hopf bifurcation point. Red filled
circles and blackfilled circles denote the unstable and stable steady
states, respectively. Blue unfilled circles represent the unstable
oscillatory state. Other system parameters are fixed as b = 90,
P=0.5,c=1.0.

‘ parameter ¢ (a) and the corresponding
16 18 2 22 24 26
¢ LEs (b).

Figure 6. The US and SS are the unstable and stable steady
states, respectively. At lower values of ¢, we found broader
region of the stable steady-state. The observed stable
steady state region decreases with increasing the region of
unstable steady state when increasing the values of ¢ to
higher ranges. At larger values of c, the stable steady-state
suppresses completely and the entire region is accompa-
nied by the unstable steady-state. From the analysis, we
can observe that the higher range of control parameter c,
the system becomes completely unstable. As we found the
one parameter bifurcation plot, the unstable steady state
gets stabilized (US to SS ) via inverse subcritical Hopf
bifurcation as a function forcing ‘f. Subsequently, the
stable steady gets destabilized (SS to US) occurs through
subcritical Hopf bifurcation.

-2 -1 0 1 2 3
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Figure 6: The two parameter diagram in (f, ¢) space. SS and US are
Stable steady State, Unstable steady states and HB Hopf bifurcation,
respectively. Other parameters are same as in Figure 5.



Rajagopal et al.: Hopf bifurcation in driven El Nilo =—— 703

15
(@

10
5 05
% 0 2 00

-5
o 05
-15 10

0 25 50 7 100 125 150 175 200
t
w | () o
05 00
< 00 N o5
05 10
-10 s
0 25 50 7 100 125 150 175 200
t

05 (C) 05
00 00
05 N -os
-10 10
15 -1s

Figure 7: Time evolution of oscillatory state
for driven Vallis model in terms of (a) x
variable, (b) y variable, and (c) z variable.
Phase portraits for (d) x-y plane, (e) y-z
plane, and (f) x-z plane. Other parameter
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t

4.2 Phase portraits

To understand the oscillatory behaviors we have plotted
time evolution and phase portraits of such state in different
planes. Firstly, time evolution for x, y and z variables are
plotted as function of time in Figures 7(a)-(c) and the
emergence two attractors in each variables are evident. To
validate this we also plotted the phase portraits in x-y, y-z
and z-x planes which is shown in Figures 7(d)-(f). The
phase portraits clearly shows the double scroll attractor,
that is the system scrolling between the two attractors.

5 Conclusion

Wehavederived the dynamical properties of the driven Vallis
model. A new method of taming the Hopf bifurcation points
are presented and by tuning the driving force the system
changes its state from stable steady state to oscillatory state
and vice versa. We find that in the absence of driven force, we
can observe either supercritical or subcritical Hopf bifurca-
tion whereas the presence of driven term leads to existence of
both supercritical and subcritical Hopf bifurcation.
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