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Abstract: We investigate the existence and stability of gap
solitons supported by an optical lattice in biased photo-
refractive (PR) crystals having both the linear and
quadratic electro-optic effect. Such PR crystals have an
interesting interplay between the linear and quadratic
nonlinearities. Gap solitons are predicted for the first time
in such novel PR media. Taking a relevant example (PMN-
0.33PT), we find that the gap solitons in the first finite
bandgap are single humped, positive and symmetric soli-
tons while those in the second finite band gap are anti-
symmetric and double humped. The power of the gap
soliton depends upon the value of the axial propagation
constant. We delineate three power regimes and study the
gap soliton profiles in each region. The gap solitons in the
first finite band gap are not linearly stable while those in
the second finite band gap are found to be stable against
small perturbations. We study their stability properties in
detail throughout the finite band gaps. The interplay be-
tween the linear and quadratic electro-optic effect is
studied by investigating the spatial profiles and stability of
the gap solitons for different ratios of the linear and
quadratic nonlinear coefficients.

Keywords: gap solitons; optical lattice; photorefractive
materials.

1 Introduction

Optical spatial solitons manifesting in photorefractive
(PR)materials exhibit a rich diversity and have been quite

attractive for research [1–5]. PR materials exhibit a

change in the refractive index with increasing intensity.
Inhomogeneous illumination results in photo generated
charge carriers which then drift or diffuse to set up a space
charge field within the PR crystal. The self-trapping oc-
curs because of the creation of an index waveguide
resulting in dynamic equilibrium of the propagating light
beam. PR materials present an ideal medium for studying
optical spatial solitons as they have a saturable nonlin-
earity and the solitons can be formed at low laser powers.
Depending upon the type of PR crystal used, many
different types of optical spatial solitons have been
investigated till now. Screening solitons have been
observed in PR materials where the external electric field
modulates the drift of the charge carriers [6–9]. Photo-
voltaic solitons have been found to manifest in PR ma-
terials with a finite photovoltaic coefficient [10, 11]. The
bulk photovoltaic field modulates the drift of the charge
carriers in such media instead of the external electric
field. Screening photovoltaic solitons result from
the interplay between the external electric field and the
photovoltaic field [12, 13]. In addition, PR solitons
have been observed in centrosymmetric PR crystals [14]
where the Kerr nonlinearity predominates while another
interesting discovery is that of optical spatial solitons in
novel PR crystals where both the Kerr and Pockel non-
linearities are present simultaneously near the phase
transition temperature [15]. There is an interaction be-
tween the linear and quadratic electro-optic effect in this
case which leads to
many variations in the self-trapping mechanism.

Photonic crystals or nonlinear optical crystals having
a periodically modulated refractive index have also been
studied for existence of optical spatial solitons. The pe-
riodic refractive index leads to a band structure which
results in a photonic band gap analogous to the energy
band gap in solids. Light beams having frequency within
the photonic band gap cannot traverse through the pho-
tonic crystal. It is here that we can understand the sig-
nificance of gap solitons. Gap solitons exist as defect
nonlinear modes inside the photonic band gap of the
Floquet Bloch lattice spectrum. Hence, nonlinearity is
essential for the observation of gap solitons. Photonic
lattice may be prefabricated or induced optically. Optical
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induction of the periodic lattice pattern is preferable as it
is reversible. It can be done in twoways, by interference of
two coherent optical beams inside the PR crystal, or using
an amplitude modulation mask along with spatially
coherent light.

The study of gap solitons supported by photonic lat-
tices has been studied extensively in recent times [16–23],
particularly in different types of PR crystals [24–31]. The
aforementioned investigations have been performed
considering various types of optical lattices in diverse
configurations of nonlinear optical crystals, including non-
centrosymmeteric PR crystals. Recently, Zhan and Hou
have studied the existence and properties of gap solitons
supported by optical lattices in biased centrosymmetric PR
crystals [32].

In this paper, we shall investigate theoretically, the
existence and characteristics of gap solitons due to an
embedded optical lattice in PR crystals exhibiting the
linear and quadratic electro-optic effect simultaneously.
We shall first discuss the band gap structure of the cor-
responding linear system and then investigate the exis-
tence of gap solitons in the first and second finite band
gap. The stability of the gap solitons will also be studied
in detail by the perturbation theory in addition to the
Vakhitov Kolokolov(VK) criterion. A relevant crystal
having both the linear and quadratic electro-optic effect
will be considered (0.67PMN-0.33PT) to illustrate our
results.

2 Theoretical analysis

2.1 Foundation

We shall consider a PR crystal having both the linear and
quadratic nonlinearity with an optical lattice imprinted
upon it in the transverse direction. Let an optical beam
propagate along the longitudinal, or z-direction. It is
allowed to diffract only in the x-direction. The c-axis of the
crystal is aligned along the x-direction and the optical
beam is linearly polarized along the same direction.
The electric field of the incident beam is expressed as,
E
→ � x̂A(x,  z)exp(ikz) where k = k0ne = (2π/λ0)ne. ne is the
unperturbed index of refraction and λ0 is the free space
wavelength. Under the above conditions, the optical beam
is governed by the equation [32],

[i ∂
∂z

+ 1
2k

∂
2

∂x2
+ k
ne

( Δ nPR + ΔnG)]A(x,  z) � 0 (1)

where,

ΔnPR � −1
2 [n2eref f Esc + n2egef f ϵ

2
0(ϵr − 1)2E2

sc] is the

change in refractive index due to the PR effect and ΔnG
represents the lattice pattern. Esc is the space charge field
induced in the PR crystal due to the beam, geff is the
quadratic electro-optic coefficient, reff is the linear electro-
optic coefficient, ϵ0 is the vacuum dielectric constant, ϵr is
the relative dielectric constant. For broad optical beams
and relatively large external bias fields, the space charge
field can be written as [6],

Esc � E0
I∞ + Id
I + Id

(2)

where Id is the dark irradiance and I = (ne/2η0)|A|2 is the
total intensity of the beam.

Using the dimensionless co-ordinates, s � x/x0,  ξ �
z/kx20,  A � (2η0Id/ne)1/2U, the envelope U now satisfies
the following dynamical evolution equation,

i
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+ 1
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∂
2U
∂s2

+ pR(s)U − β1
U

(1 + |U|2) − β2
U

(1 + |U|2)2 � 0

(3)

where,
β1 � (k0x0)2n4

eref f E0/2,  β2 � (k0x0)2n4
egef f ϵ20(ϵr − 1)2E2

0/2.p is
the scaling of the lattice depth and R(s) = cos(2πs/T) is the
lattice patternwith themodulation periodT.We can clearly
infermany conserved quantities admitted by Eq. (3). One of
them is the energy flow per unit time, or simply the power
P � ∫

∞

−∞UU
∗dx.

Now,we shall look for gap soliton solutions to Eq. (3) in
the form U(s, μ) = w(s, μ)exp(iμξ ) where w(s, μ) is the real
transverse wave profile and μ is the axial propagation
constant. Substituting this ansatz in Eq. (3) gives us,

1
2
∂
2w
∂s2

+ pR(s)w − β1
w

(1 + w2) − β2
w

(1 + w2)2 − μw � 0 (4)

In the limit of small power, there exist soliton solu-
tions which are linear modes and can be calculated
numerically. So, we shall first study the linear properties
of the optical lattice, through the linearized Eq. (4). The
optical lattice is characterized by a modulation period T,
lattice depth p, and the total power P. A well-known
consequence of wave propagation in periodicmedia is the
formation of multiple forbidden band gaps in the trans-
mission spectrum. We take p = 5, T = 2, and vary the value
of the propagation constant μ to derive the band structure
of the optical lattice by solving the differential eigenvalue
problem numerically. Taking into account the Floquet
Bloch theory, linearized Eq. (4) admits periodic solutions
with the same period T. The dispersion relation contains
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an infinite number of branches in the first Brillouin zone.
We get Bloch wave solutions for Eq. (3) in each branch
while the band gap between adjoining branches ensures
no periodic solutions exist there. One semi-infinite gap
along with infinite no. of finite gaps constitutes the Bloch
band spectrum. For illustration, we consider the crystal
0.67PMN-0.33PT’s parameters [15], ne = 2.562, x0 = 20 μm,
λ0 = 632.8 nm, reff = 182 × 10−12 m/V, geff = 1.38 × 10−16 m2/V2,
bias V = 1000 V, crystal width W = 1 cm. With these pa-
rameters, we get, β1 = 15.46 and β2 = 1.17. Now, let us
consider a general case of T = 2. Figure 1 shows the
bandgap structure of the periodic lattice as a function of
the scaled lattice depth p. Figure 2 shows the bandgap
structure in terms of the propagation constant at p = 5.
The semi- infinite gap extends starting from μ ≥ 1.91, the
first finite band gap is between −2.945 ≤ μ ≤ 1.761, and the
second finite band gap is −6.410 ≤ μ ≤−4.520. The presence
of nonlinear terms in Eqs. (3) and (4) is the cause of ex-
istence of solitary wave solutions inside these band gaps
and hence these are known as gap solitons.

2.2 Gap soliton solutions

We shall solve Eq. (4) numerically for soliton solutions
in both the finite band gaps. For a soliton solution in the
first finite band gap, we shall consider the three cases of
high, moderate and low power. We find that the power
of the solitons increases with an increase in the prop-
agation constant. The spatial profiles for high, moder-
ate, and low power, i.e., μ = 1, −0.4, −2.7 are shown in
Figure 3a–c respectively. We infer that the solitons are
single humped and symmetric with different propaga-
tion constants.

In the second finite band gap, we solve for gap soliton
solutions and find that the solitons are now multipole
(double humped) and antisymmetric. As in the case of gap
solitons in the first finite band gap, the powers of these
solitons increase with an increase in the propagation
constant. The spatial profiles for high, moderate and low
power, i.e., μ = −4.9, −5.7, −6.2 are shown in Figure 4a–c
respectively.

2.3 Stability of gap solitons

The stability of gap solitons is an issue worth
considering since stable solitons can be observed
easily through experiments and have potential appli-
cations. We shall study the stability of these gap
solitons by the VK stability criterion. The VK stability
criterion proposes that the gap solitons formed in the
bandgaps of lattices with a uniform nonlinearity are
stable if dP/dμ>0. VK stability criterion is a necessary
but not sufficient condition for stability of solitons
governed by Nonlinear Schrodinger (NLS) or the
modified NLS equation. We shall first study stability
by the VK criterion. Figure 5a, b show the dependence
of power of the gap solitons on the propagation
constant μ for the first and second finite band gaps.
We can see that the slope ∂P/∂μ > 0. Hence these
families of gap solitons are VK stable in their exis-
tence region. Since the VK stability criterion is a
necessary but not sufficient condition for stability, we
shall further assess the stability of the gap solitons by
the perturbation theory. Small perturbations u(s) and
v(s) in the steady state solution are considered,

Figure 1: Bandgap structure of the periodic lattice as a function of
the lattice depth p (the shaded regions show the allowed
frequencies while the non-shaded regions show the photonic band
gap).

Figure 2: Bandgap structure of the periodic lattice in terms of the
propagation constant (the shaded regions show theallowed frequencies
while the non-shaded regions show the photonic band gap).
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U(s,  ξ) � (w(s,  ξ) + [u(s) − v(s)]exp[iδξ]
+ [u∗(s) + v∗(s)]exp[−iδ∗ξ])exp[iμξ ] (5)

The asterisk signifies a complex conjugation; u and v
are the perturbation components and δ=δr+iδi is the com-
plex growth rate of the perturbation. Substituting Eq. (5) in
Eq. (3) and linearizing the resulting equation, we get an
eigenvalue problem for the perturbation components u, v,
and the growth rate δ,

[ 0 L1

L2 0
][ u

v
] � δ[ u

v
] (6)

with,

L1 � −1
2
d2

ds2
− pR + β1

(1 + w2) +
β2

(1 + w2)2 + μ (7)

L2 � −1
2
d2

ds2
− pR + β1(1 − w2)

(1 + w2)2 + β2(1 − 3w2)
(1 + w2)3 + μ (8)

The two eigenvalue problems in Eq. (6) can be clearly
reduced to a single equation,

L1L2u � δ2u (9)

From Eqs. (7) and (8), Eq. (9) becomes,

( − 1
2
d2

ds2
− pR + β1

(1 + w2) +
β2

(1 + w2)2 + μ)
( − 1

2
d2

ds2
− pR + β1(1 − w2)

(1 + w2)2 + β2(1 − 3w2)
(1 + w2)3 + μ)u � δ2u

(10)

From Eq. (5), we infer that the gap solitons will be
linearly unstable if δ has an imaginary component,

Figure 3: Spatial profile of the gap soliton in the first finite band gap for the case of (a) high power ( μ = 1), (b) moderate power ( μ = −0.4),
(c) low power ( μ = −2.7).
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i.e., δi≠0. If only the real component exists, i.e., δi=0, then
the gap solitons are stable. Hence, in Eq. (10), δ2 has to be
real for linear stability of the solitons.

Equation (9) signifies an eigenvalue problem. We first
discretize Eq. (10) by a finite difference method, i.e., using
central differences along with the boundary conditions for

Figure 4: Spatial profile of the gap soliton in the second finite band gap for the case of (a) high power ( μ = −4.9), (b) moderate power
( μ = −5.7), (c) low power ( μ = −6.2).

Figure 5: Power of the gap solitons as a function of the propagation constant μ for the (a) first finite band gap (b) second finite band gap.
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a bright soliton solution. Since the differential equation in
Eq. (10) is of fourth order, hencewe obtain a pentadiagonal
N × N matrix formulation, which is then solved to obtain
the value of the eigenvalue δ2. We plot the imaginary part of
δ for the gap solitons in the first and second finite band
gaps in Figure 6. As discussed earlier, we need δ to be
purely real for a stable gap soliton. From Figure 6a, the
imaginary part of δ is non-zero throughout the first finite
band gap. While the value of the imaginary part of δ de-
creases near μ=0, it is never completely zero and hence the
gap solitons are not linearly stable in this region. In
Figure 6b, we can see that the imaginary part of δ is zero

throughout the second finite band gap implying stability of
the gap solitons in this region. This result which we ob-
tained for the novel PR crystals having both the linear and
quadratic non-linearity is quite interesting and novel when
compared to previous studies on gap solitons in various
other types of nonlinear optical media [17, 21, 27, 29, 32].

2.4 Effect of electro-optic coefficients

Since we have considered novel PR materials which
exhibit both the linear and quadratic electro-optic effect

Figure 6: Imaginary part of δ for the gap solitons in the (a) first finite band gap and (b) second finite band gap.

Figure 7: Gap soliton profiles in the (a) first finite band gap ( μ = −0.4) (b) second finite band gap ( μ = −5.7) for the linear to quadratic electro-
optic coefficient ratio β1/β2 = 0.5, β1/β2 = 1, β1/β2 = 2.
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simultaneously, it would be plausible to study the inter-
play between the two nonlinearities more deeply. We
need to see how the relative magnitude of the two electro-
optic coefficients changes the spatial profile and stability
of the gap solitons in both the finite band gaps. Since the
parameters β1 and β2 , which represent the strength of the
nonlinearity, depend upon the linear and quadratic
electro-optic coefficient respectively, we shall consider
three broad cases for this study, i.e., β1/β2 = 0.5, β1/β2 = 1,
β1/β2 = 2 where β1 = 15.46. Figure 7 compares the spatial
profile of the gap solitons for the three aforementioned
cases. With regards to the linear stability, we again solve
the eigenvalue problem Eq. (10) for the three situations.
Figure 8 shows the imaginary part of the perturbation at
each value of the frequency in the photonic band gap. As
found before, the gap solitons are found to be unstable in
the first finite band gap and stable in the second finite
band gap. We can infer from Figure 8a that the degree of
instability of the gap solitons in the first finite band gap
increases as the ratio of the nonlinear coefficients β1/β2
increases. Figure 8b shows stability of the gap solitons in

the second finite band gap for all three values of β1/β2 as
the imaginary portion of the perturbation is zero.

3 Conclusions

We have theoretically investigated for the first time the
existence of gap solitons supported by an optical lattice
embedded in PR crystal exhibiting the linear and quadratic
electro-optic effect simultaneously. The gap soliton profile
in the first and second band gap has been obtained for the
case of low, moderate and high power. The power of the
gap solitons depends upon the value of the axial propa-
gation constant. Single humped solitons are theoretically
predicted in the first finite band gap while the double
humped solitons are found to be supported in the second
finite band gap. The power of the gap soliton depends upon
the value of the axial propagation constant. We delineate
three power regimes and study the gap soliton profiles in
each region. The stability analysis by the VK criterion tells
us that the solitons in both band gaps are stable. Since VK
criterion is a necessary but not sufficient condition for
stability, we have also undertaken the linear stability
analysis by perturbation methods. We find that that the
solitons in the first finite band gap are unstable while the
solitons in the second band gap are found to be stable
against small perturbations. Finally, we study the effect of
the interplay of the linear and quadratic electro-optic co-
efficients. Three distinct cases pertaining to the ratio of the
linear and quadratic electro-optic coefficients are identi-
fied and the existence and stability of the gap solitons are
studied in detail for each.
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