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Abstract: Spontaneous localisation is a falsifiable dynam-
ical mechanism which modifies quantum mechanics and
explains the absence of position superpositions in the
macroscopic world. However, this is an ad hoc phenomeno-
logical proposal. Adler’s theory of trace dynamics, working
on a flat Minkowski space-time, derives quantum (field)
theory and spontaneous localisation, as a thermodynamic
approximation to an underlying noncommutative matrix
dynamics. We describe how to incorporate gravity into trace
dynamics, by using ideas from Connes’ noncommutative
geometry programme. This leads us to a newquantum theory
of gravity, from which we can predict spontaneous local-
isation and give an estimate of the Bekenstein-Hawking en-
tropy of a Schwarzschild black hole.

Keywords: quantum gravity; quantum foundations; trace
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1 Introduction

We have recently proposed a new candidate quantum
theory of gravity [1], which we have named spontaneous
quantum gravity. The theory is built on the following
principle: There ought to exist a reformulation of quantum
(field) theory which does not depend on classical time [2].
Such a time, as well as space-time, is a property of a uni-
verse dominated by macroscopic material bodies. The
space-time manifolds, as well as its pseudo-Riemannian
geometry, in a classical universe, are determined by
macroscopic matter fields. These large bodies are in turn a
limiting case of a quantum description of matter fields. In
the absence of such classical bodies, one cannot mean-
ingfully talk of space-time geometry nor a space-time
manifold. And yet there ought to be a way to describe
quantum dynamics, say soon after the Big Bang, when
nothing was classical. Hence, there ought to exist a

reformulation of quantum theory which makes no refer-
ence to classical time. Such a reformulation is naturally
also a quantum theory of gravity. As and when classical
space-time and a universe dominated by macroscopic ob-
jects is recovered, this reformulation becomes equivalent to
standard quantum field theory on a background space-time.
The development of such a reformulation is different from
“quantisation of the gravitational field” as we will see in
more detail in the following context. The latter procedure
amounts to applying the rules of quantization to space-time
geometry, whereas our proposal is that since quantum rules
are dependent on time, and hence in a sense dependent on
their own limit, wemust find amore precise formulation for
them,which does not depend on the very limit of the theory.

We have developed such a reformulation of quantum
theory (the aforesaid spontaneous quantum gravity) by
building on Stephen Adler’s theory of trace dynamics [3],
and on Alain Connes’ programme of noncommutative ge-
ometry (NCG) [4]. This has led us to a theory on the Planck
scale, more general than quantum theory, and to which
relativistic quantum theory is a low-energy approximation.
The mathematical structure of the theory is relatively
straightforward to describe. Suppose one decides to do
classical dynamics not with c-number valued matter de-
grees of freedom but with (Grassmann-valued) matrices.
The Lagrangian of the theory then becomes a matrix
polynomial. One takes the matrix trace of this polynomial
to construct the trace Lagrangian of the new matrix dy-
namics, assumed to operate on the Planck scale. Time in-
tegral of this trace Lagrangian (or four-volume integral in
the case of a continuummatrix dynamics) yields the action
function of the theory. The variation of this action with
respect to the matrix valued matter degrees of freedom
gives rise to a (Lorentz invariant) Lagrangian dynamics,
distinctly richer than ordinary classical dynamics. Space-
time is still assumed to be Minkowski flat (as a simplifying
approximation) even though the theory is assumed to
operate at the Planck scale. This matrix dynamics is not
quantum theory: the commutation relations amongst
dynamical variables are time-dependent and are not the
commutation relations of quantum theory. The theory is
invariant under global unitary transformations of the
matrix-valued dynamical variables. TheHamiltonian of the
theory, in general, is not self-adjoint.
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One next asks, what will this deterministic dynamics
look like, if observed not on the Planck energy/time scale
but at much lower energies/time resolution? In other
words, one is coarse-graining the evolution over time in-
tervals much larger than Planck time, thereby smoothing
out over the so-called space-time foam. The emergent dy-
namics is quantum field theory, so long as the antiself-
adjoint component of the underlying Hamiltonian is
negligible. Hence one says that quantum theory is an
emergent phenomenon. If a large number of degrees of
freedom get entangled (in the sense of quantum entan-
glement), the antiself-adjoint component of the underlying
Hamiltonian becomes significant, and the approximation
necessary for emergence of quantum theory breaks down.
Rapid spontaneous localisation results leading to a
breakdown of quantum superposition and emergence of
classical dynamics.

This above, is the essence of trace dynamics. We
generalised the theory to include gravitation. We start by
assuming a Riemannian space-time manifold with a spin
structure, inhabited by relativistic point particles. Thus,
there exists on the manifold a metric, and the standard
Dirac operator. No gravitational field equations are
assumed. It is known from results in geometry that the
Dirac operator and its square capture the information
about the metric and curvature in a spectral manner [5, 6].
This property of the Dirac operator now plays a crucial role
in arriving a matrix dynamical description of gravity.

In the spirit of trace dynamics, every space-time point
(and its overlying metric) is raised to the status of a
(bosonic) matrix/operator. Each such matrix acts as a
configuration variable and comes with its own Dirac
operator as a conjugate momentum variable. Moreover,
each relativistic point particle is also raised to the status of
a (fermionic) matrix. One does not treat the fermionic
matter matrix and the bosonic space-time geometry it
produces as segregated physical entities. Rather, they are
respectively the fermionic (odd-grade Grassmann) and
bosonic (even grade Grassmann) parts of a Grassmann-
valued matrix, dubbed an ‘atom’ of space-time-matter
(STM) or an “aikyon”.

At the Planck scale, nature is assumed to be inhabited
by enormously many such aikyons, which are operators in
a Hilbert space, obeying amatrix dynamics. From here, the
low energy world – quantum field theory, as well as space-
time and laws of general relativity – are emergent. It is
significant that Einstein field equations with matter sour-
ces naturally emerge from the matrix dynamics – they are
not put in by hand a priori – and are hence a prediction of
the Planck scale matrix dynamics. The dynamics at the
Planck scale is constructed ab initio.

Because space-time points have been raised to the
status of matrices, we are in the realm of NCG. Each aikyon
obeys a NCG, with the concept of distance and curvature
being captured by its associated Dirac operator. Moreover,
although classical space-time is lost, there emerges a new
concept of time, intrinsic to a NCG [4] and which we have
named Connes time. We wrote an action principle for an
aikyon evolving in Connes time, with the total action for all
aikyons being the sum of their individual actions. From
here, following the principles of trace dynamics, we
derived the Lagrange equations of motion. Furthermore, at
energies below Planck scale, there emerges after coarse-
graining (so long as the imaginary part of the Hamiltonian
is ignorable), the sought for formulation of quantum theory
without classical space-time, the role of time now being
played by Connes time, whereas there is no physical space
yet. This is also a quantum theory of gravity, with the
aikyon’s configuration variables and momenta obeying
quantum commutation relations and the Heisenberg
equations of motion. There is also an equivalent Schro-
dinger picture. We note that this quantum gravity theory
operates below the Planck scale and is applicable when-
ever we want to find the quantum gravitational effects of a
quantum system, without making reference to a back-
ground space-time. For instance, if we were to ask for the
gravitational effect of the electron during a double slit
experiment. This quantum gravity theory is an appropriate
equivalent of quantum general relativity that now also
comes with a concept of time evolution, the one given by
Connes time.

In this emergent quantum gravity, if sufficiently many
aikyons get entangled with each other, the imaginary part
of the net Hamiltonian becomes significant. This results in
a rapid breakdown of superposition and spontaneous
localisation results. This leads to the emergence of a space-
time manifold, the one that was there before we raised
space-time points to operators. Hence, spontaneous
localisation is the reverse of the process of raising space-
time geometry from Riemannian geometry to a NCG. The
emergent classical macroscopic bodies obey the laws of
Einstein’s general relativity. The overall scenario is
described in the figure below and in its accompanying
caption (borrowed from [7]).

Given this backdrop of a classical universe, there is
more than one way available now, for describing the dy-
namics of those degrees of freedom which have not un-
dergone spontaneous localisation. At the Planck scale,
their original aikyonmatrix dynamics continues to hold. At
energies belowPlanck scale, they are to be described as the
emergent quantum gravity mentioned two paragraphs
above. Or, as an approximation, and this is what quantum
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field theory is, their gravitational part can be neglected,
and the (quantum) matter fields can be described as a
quantum field theory on the background space-time. One
way to arrive at this is to carry out trace dynamics for the
unlocalised degrees if freedom, on the space-time gener-
ated by macroscopic bodies. It is important to emphasize
once again that the usage of space-time generated by
external objects, to describe quantumdynamics, is a severe
(though successful) approximation. An approximation
which gives rise to the quantumnonlocality puzzle: there is
no such puzzle in the underlying matrix dynamics of the
aikyons.

This article gives an overview of spontaneous quantum
gravity, following the path along which the theory was
developed. Hence we start by reviewing spontaneous
localisation– thephenomenological Ghirardi-Rimini-Weber
(GRW) theory which explains the absence of macroscopic
quantum superpositions. We then follow Adler’s theory of
trace dynamics, which helps us understand the origin of
spontaneous localisation. In our search for a formulation of
quantum theory without classical time, we realised this
could be achieved by incorporating gravity into trace dy-
namics. This is described next.

The main sections are followed by a track 2 section
which gives some mathematical details relevant to the
preceding section. The reader who would like a quick
overview of the theory can skip track 2 sections and read
the rest of the paper without loss of continuity. An
elementary overview is also available in a study by
Singh [8, 9].

2 Spontaneous localisation

Text books on quantum mechanics often state that clas-
sical mechanics is obtained as the ℏ→ 0 limit of quantum
mechanics. (In this limit, the Schrödinger equation goes
over to the classical Hamilton–Jacobi equation). However,
such a statement hides an assumption: it is implicitly
assumed, based on what we observe that position super-
positions are absent in the classical world. In other words,
even as the ℏ→ 0 limit is taken, a classical object could be
in two ormore locations at start of evolution (as allowed by
quantum mechanics), and the Hamilton-Jacobi evolution
would then imply that a classical particle would simulta-
neously evolve along a collection of trajectories; one tra-
jectory per every initial location. The fact that such
classical motion is never seen needs explaining and is also
the essence of the quantummeasurement problem. That is,
upon measurement, a pointer is never in more than one
position at the same time (unlike what the Schrödinger

equation predicts for the pointer) and the entangled state of
the pointer and the measured quantum system collapse to
one or the other classical outcomes. There is no universally
accepted explanation as to why this should happen during
the quantum-classical transition.

Here, it is important to emphasize that there is an in-
termediate regime between the microscopic and macro-
scopic, where quantum mechanics has not been
experimentally tested. Simply because experiments in this
intermediate regime are extremely challenging techno-
logically, although important progress is taking place now
(see e.g. the link tequantum.eu for the TEQ experiment).
This is brought out by the diagram below.

The largest objects for which the principle of quantum
linear superposition has been tested are made up of about
25 thousand nucleons (molecular interferometry). The
smallest objects for which classical mechanics has been
tested are made up of about 1019 nucleons (or an order or
two less, in magnitude). There is thus an enormous desert
of 15 orders in magnitude, which is untested. New physics
can arise here, in such a way that the new theory agrees
with quantum mechanics for small objects and with clas-
sical mechanics for large objects. However, the new theory
ensures that during passage through this desert, the prin-
ciple of quantum linear superposition breaks down
dynamically. Such a breakdown is not ruled out by ex-
periments nor is it prohibited by the extraordinary success
of quantum field theory.

The Ghirardi-Rimini-Weber-Pearle (GRWP) theory of
spontaneous localisation, proposed first during 1970s and
1980s, achieves just that, providing a unified description
of quantum and classical dynamics. The basic idea
behind the theory is extremely simple and beautiful.
Recall that, according to the Schrödinger equation, a
quantum superposition lasts forever. Once a quantum
system has been prepared in a superposition of, say two
position eigenstates, it will evolve unitarily and stay in
that superposed state for an infinite time. But clearly it is
unphysical to talk of infinite time. Instead, GRW pro-
posed, let us assume that the superposition of a nucleon
in different position states lasts, on the average, as long as
the age of the universe ∼ 1017 s. And then, it spontaneously
and randomly collapses to one of those many eigenstates,
with a probability given by the Born rule. Superposition is
lost spontaneously [10–16].

This little change in the dynamics is enough to solve
the quantum measurement problem and to explain the
absence of position superpositions in the macroscopic
world. This is a consequence of quantum entanglement.
Consider a bound macroscopic object (e.g. a chair) whose
atoms, all put together, haveN nucleons. Trying to create a
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superposition of the chair in two states, say chair
here + chair there, amounts to creating an entangled state
of theN nucleons. It is easy to show that such an entangled
statewill spontaneously collapse in a timeT/N to one of the
two position eigenstates, where T is the spontaneous
collapse mean lifetime of one nucleon. The GRW theory
assumes T ∼ 1017 s. If we takeN ∼ 1023, the superpositionwill
collapse in amillionth of a second. Thus superpositions are
not absent in the macroscopic world, rather they are
extremely short-lived. On the other hand, in the micro-
scopic quantum world, superpositions last for a very long
time (instead of lasting forever). In this way, spontaneous
collapse theories provide a unified description of quantum
and classical dynamics. Precisely in the untested region in
the above diagram, the superposition lifetime is neither too
large nor too small, and differences from quantum and
classical dynamics show up. Now when one takes the ℏ→
0 limit, that procedure also destroys superposition because
an extra parameter is at play: the lifetime of the
superposition.

The GRW theory can be cast into a precise mathemat-
ical formulation, by expressing it as a stochastic nonlinear
modification of the Schrödinger equation. The nonunitary,
nonlinear part ensures breakdownof superposition, and its
stochastic nature ensures randomness in collapse out-
comes. Moreover the nonlinearity is so constructed that
evolution preserves norm, despite the nonunitarity. This
ensures that the Born probability rule is reproduced. Also,
a condition is imposed that the nonlinearity should not
lead to superluminal signalling.

Whether or not dynamical collapse theories are correct
can only be decided by experiment, and various ongoing
experiments are pushing up the bound on the collapse time
T. The current status is that we have two theories – quan-
tum mechanics and spontaneous localisation – which are
both consistent with every experiment done to date.
However only one of them can be correct and that will be
decided by further experiments.

Nonetheless, it is only fair to say that the theoretical
structure of spontaneous collapse models has some
shortcomings – overcoming these would only make these
models more convincing. These models are ad hoc and
phenomenological in nature, having been designed with
the express purpose of solving the measurement problem,
and explaining the quantum-classical transition. What is
the fundamental origin of spontaneous collapse; what
causes it? What is that stochastic noise which interacts
with a quantum system and introduces nonunitarity in its
evolution? Why should norm be preserved despite the
introduction of an external noise source? Its rather unusual
in physics for stochastic effects to impact on a fundamental

equation such as the Schrödinger equation. Furthermore,
collapse models are nonrelativistic. Generalising them to a
relativistic quantum field theoretic version has remained
an unsolved problem, despite many serious efforts. All
these shortcomings need to be overcome, to make spon-
taneous localisation into a robust physical theory that
merges well with already known physical theories, such as
relativistic quantum field theory. Recent developments
address these issues, with rather dramatic implications, as
we describe in the subsequent sections.

3 Spontaneous localisation: track 2

The Ghirardi-Rimini-Weber-Pearle theory [13, 12] proposes
the following two postulates for dynamics in nonrelativ-
istic quantum mechanics:
(1) Given the wave function ψ(x1, x2,…, xN) of an N par-

ticle quantum system in Hilbert space, the nth particle
undergoes a “spontaneous localisatiion” to a random
spatial position x as defined by the following so-called
jump operator:

ψt(x1, x2,…xN) →  
Ln(x)ψt(x1, x2,…xN)
‖Ln(x)ψt(x1, x2,…xN)‖ (1)

This jump operator Ln(x) is a linear operator defined to be
the normalised Gaussian:

Ln(x) � 1(πr2C)3/4e−(q̂n−x)2/2r2C (2)

q̂n is the position operator for the nth particle of the system
and the random variable x is the spatial position to which
the jump takes place. rC, thewidth of the Gaussian, is a new
constant of nature.

The probability density for the nth particle to jump to
the position x is assumed to be given by:

pn(x)  ≡  ‖Ln(x)ψt(x1, x2,…xN)‖2 (3)

Also, it is assumed in the GRWP theory that the jumps
are distributed in time as a Poissonian process with fre-
quency λ GRW. This is the second constant in this model.
(1) Between two consecutive jumps, the state vector

evolves according to the standard unitary Schrödinger
equation.

These two postulates together provide a unified
description of microscopic andmacroscopic dynamics and
also an elegant solution to the quantum measurement
problem (for reviews see e.g. [14, 15]).

The essential physics of spontaneous localisation can
also be described by a simple continuummodel, known as
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Quantum Mechanics with Universal Position Localisation,
whose dynamics is given by the following stochastic
nonlinear Schrödinger equation

dψt � [−  
i
ℏ
Hdt + �

λ
√ (q − 〈q〉t)dWt   −  

λ
2
 (q − 〈q〉t)2dt]ψt ,

(4)

where q is the position operator of the particle, 〈q〉t ≡
〈ψt|q|ψt〉 is the quantum expectation andWt is a standard
Wiener process which encodes the stochastic effect.
Evidently, the stochastic term is nonlinear and also non-
unitary. The collapse constant λ sets the strength of the
collapse mechanics, and it is chosen proportional to the
massm of the particle according to the formula: λ �   mm0

 λ0,
where m0 is the nucleon’s mass and λ0 measures the
strength of collapse. If we take λ0≃10−2 m−2 sec−1 the
strength of the collapse model corresponds to the GRWP
model in the appropriate limit.

The above dynamical equation can be used to prove
position localisation. Let us consider for simplicity a free
particle (H = p2/2m) in the Gaussian state (analysis can be
generalised to other cases):

ψt(x) � exp[− at(x − xt)2 + iktx + γt]. (5)

By substituting this in the stochastic equation, it can be
proved that the spreads in position and momentum

σq(t) ≡ 1
2

���
1
a R
t

√
;  σp(t) ≡ ℏ 

������������(a R
t )2 + (a I

t )2
a R
t

√
, (6)

do not increase indefinitely but reach asymptotic values
given by

σq(∞) �
���
ℏ
mω

√
≃⎛⎝10−15

���
kg
m

√
 ⎞⎠ m,  

σp(∞) �
�����
ℏmω
2

√
≃ (10−19

���
m
kg

√ )  kg m
sec

,

(7)

such that: σq(∞) σp(∞)  �  ℏ/
�
2

√
which corresponds to

almost the minimum limit permitted by Heisenberg’s un-
certainty relation. Here, ω  �  2 

������
ℏλ0/m0

√
  ≃  10−5  s−1.

Clearly, the spread in position does not increase
indefinitely, rather it stabilizes to a finite value, which is a
compromise between the Schrödinger dynamics, which
spreads the wave function out in space, and the collapse
dynamics, which shrinks it in space. For microscopic sys-
tems, this value is still relatively large (σq(∞)∼1 m for an
electron, and ∼1 mm for a C60 molecule containing some
1000 nucleons), such as to guarantee that in all standard
experiments – in particular, diffraction experiments – one
observes interference effects. For macroscopic objects

however, the spread is indeed very small (σq(∞) ∼
3×10−14 m, for a 1 g object). So small that for all practical
purposes the wave function behaves like a point-like sys-
tem. This is how spontaneous localisation models are able
to accommodate both the “wavy” nature of quantum sys-
tems and the “particle” nature of classical objects, within
one single dynamical framework.

The same stochastic differential equation solves
the quantum measurement problem and also explains
the Born probability rule without any additional as-
sumptions. For illustration, consider a two state
microscopic quantum system S described by the initial
state

c+| + 〉  +  c−| − 〉 (8)

interacting with ameasuring apparatusA described by the
position of a pointer which is initially in a “ready” state ϕ0

and which measures some observable O, say spin, associ-
ated with the initial quantum state of S. As we have seen
above, the pointer being macroscopic (for definiteness
assume its mass to be 1 g), is localised in a gaussian state
ϕG, so that the initial composite state of the system and
apparatus is given by

Ψ0 � [c+| + 〉 + c−| + 〉]  ⊗  ϕG. (9)

According to the standard quantum theory, interaction
leads to the following evolution:

[c+| + 〉 + c−| − 〉]  ⊗  ϕG  ↦  c+
∣∣∣∣ + 〉  ⊗  ϕ+ + c−

∣∣∣∣ − 〉  ⊗  ϕ−,

(10)

where ϕ+ and ϕ− are the final pointer states corresponding
to the system being in the collapsed state |+〉 or |−〉,
respectively. While quantum theory explains the transition
from the entangled state (10) to one of the collapsed al-
ternatives by invoking a new interpretation or reformula-
tion, the same is achieved dynamically by the stochastic
nonlinear theory given by (4).

It can be proved from (4) that the initial state (9)
evolves, at late times, according to

ψt �
∣∣∣∣ + 〉  ⊗  ϕ+   +  ϵt

∣∣∣∣ − 〉  ⊗  ϕ−�����
1 + ϵ2t

√ . (11)

The evolution of the stochastic quantity ϵt is deter-
mined dynamically by the stochastic equation: it either
goes to ϵt≪1, with a probability |c+|2, or to ϵt≫1, with a
probability |c−|2. In the former case, one can say with
great accuracy that the state vector has ‘collapsed’ to the
definite outcome |+〉 ⊗ ϕ+ with a probability |c+|2. Simi-
larly, in the latter case one concludes that the state
vector has collapsed to |−〉 ⊗ ϕ− with a probability |c−|2.
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This is how collapse during a quantum measurement is
explained dynamically, and random outcomes over
repeated measurements are shown to occur in accor-
dance with the Born probability rule. The time-scale over
which ϵt reaches its asymptotic value and the collapse
occurs can also be computed dynamically. In the present
example, for a pointer mass of 1 g, the collapse time turns
out to be about 10−4 s.

Furthermore, we can also understand how the modi-
fied stochastic dynamics causes the outcome of a diffrac-
tion experiment in matter wave-interferometry to be
different from that in quantum theory. Starting from the
fundamental Eq. (4) it can be shown that the statistical

operator ρt � E[∣∣∣∣ψt 〉 〈ψt

∣∣∣∣] for a system of N identical par-

ticles evolves as

ρt(x, y) � ρ0(x, y)e−λN(x−y)2t/2. (12)

Experiments look for decay in the density matrix by
increasing the number of particles N in an object, by
increasing the slit separation |x−y|, and by increasing the
time of travel t from the grating to the collecting surface.
The confirmed detection of an interference pattern sets an
upper bound on λ. The absence of an interference pattern
would confirm the GRWP theory and determine a specific
value for λ (provided all sources of noise such as deco-
herence can be ruled out).

A detailed review of the spontaneous localisation
model and its experimental tests and possible underlying
theories can be found in [15]. The GRW theorymotivated us
to propose that space-time itself arises from the collapse of
the wave function [17]. If no GRW collapses were to take
place, everything in the universe would be quantum, and
there would then be no classical space-time either. Hence
there ought to be a way of formulating the GRW theory
without reference to space-time. This means that sponta-
neous localisation must give rise to space-time along with
giving rise to classical behaviour of macroscopic objects.
Since space-time is expected to emerge from an underlying
quantum theory of gravity, spontaneous localisation must
also be emergent from quantum gravity. This happens
naturally in our matrix dynamics based quantum gravity:
hence the name spontaneous quantum gravity.

4 The theory of trace dynamics

Adler’s theory of trace dynamics [3, 18, 19] is built on the
guiding principle that quantum theory, being more
fundamental than classical mechanics, should be con-
structed ab initio from first principles in a bottom-up

fashion. Rather than our having to arrive at quantum (field)
theory by quantising the theory’s own limit, viz. classical
dynamics. Thus, we do not arrive at special relativity by
relativizing Newtonian mechanics nor do we arrive at
general relativity by relativizing Newton’s law of gravi-
tation. The two relativity theories are built from their own
new concepts and symmetry principles (universal con-
stancy of speed of light and interpretation of gravitation
as space-time curvature). Newtonian dynamics then
naturally follows as the nonrelativistic limit of the rela-
tivity theory.

Trace dynamics is the classical matrix dynamics of
matrices (equivalently operators) on a Minkowski space-
time. A matrix describes an elementary particle or a field;
the idea being that instead of using c-numbers or real
numbers to describe these entities, one uses matrices. The
consequences are far-reaching. Each matter or field degree
of freedom is described by an operator degree of freedom,
labelled say q (configuration variable). q is a function of
time if it describes a particle and of space-time if it de-
scribes a field. Thought of as a matrix, q is made of
Grassmann numbers as its elements. Grassmann numbers
anticommute with each other. Such amatrix can always be
written as a sum of a “bosonic” matrix and a “fermionic”
matrix. A bosonic matrix is even grade Grassmann (matrix
elements made of product of even number of Grassmann
elements, so that they commute with each other), and a
fermionicmatrix is odd-grade Grassmann (matrix elements
made of product of odd number of Grassmann elements, so
that these anticommute amongst themselves). The
nomenclature is natural, as bosonic/fermionicmatrices are
indeed used to describe bosonic/fermionic fields, in par-
ticle physics. An operator polynomial made from qs and its
time derivatives is used to construct a Lagrangian, by
taking the matrix trace of this polynomial – the trace
Lagrangian, as it is referred to. As in classical dynamics,
time integral of the trace Lagrangian defines the action.
Equations of motion are derived by extremizing the action,
while varying with respect to the qs (using the trace de-
rivative). One arrives at Lagrange’s equations of motion,
from which a Hamiltonian dynamics can also be con-
structed. All configuration variables, as well as their
canonically conjugate momenta obey arbitrary commuta-
tion relationswith each other, which inevitably evolvewith
time, consistently with the equations of motion. Thus this
is a classical dynamics because it follows from variation of
the action/Lagrangian, but in a sense it is even “more
quantum” than quantum mechanics because the commu-
tation relations are arbitrary (not fixed like the quantum
commutation relations). There is no Planck’s constant yet–
ℏ is emergent in this theory.
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In spirit, trace dynamics (a classical matrix dynamics)
resembles matrix models which have been studied in the
past, including in the context of string theory. The central
difference between matrix models and trace dynamics is
that one does not quantise trace dynamics. On the contrary,
quantum (field) theory is derived from trace dynamics as
the statistical thermodynamics of a large number of q
matrices, by coarse-graining their evolution in operator
phase space. Thus, trace dynamics is assumed to hold at
the Planck scale, and onewould like to examinewhat is the
dynamics much below the Planck scale. This is where
statistical mechanics comes in. The system point is
assumed to visit all allowed states in the phase space, so
that long time averages may equal ensemble averages. A
probability distribution is defined in phase space, using a
suitable measure, and the equilibrium distribution is
determined by maximising the von Neumann entropy.

On the physical front, what distinguishes trace dynamics
from Newtonian mechanics is the existence of a remarkable
conserved charge, which results from a global unitary
invariance of the trace Hamiltonian. This charge, known as
the Adler-Millard charge, is given by the sumover all bosonic
degrees of freedom of their respective commutators [q, p],
minus the sum over all the fermionic degrees of freedom, of
their respective anticommutators {q, p}. Each of these com-
mutators has dimensions of action and is by itself time-
dependent. Yet theAdler-Millard charge defined from them is
conserved. It turns out that at equilibrium, this charge is
equipartitioned over all the degrees of freedom – the equi-
partitioned value is identified with Planck’s constant ℏ. It is
shown that at equilibrium, the ensemble averages of the ca-
nonical degrees of freedomobey the Heisenberg equations of
motion. This is how quantum (field) theory is derived from
first principles, by starting from a well-defined matrix dy-
namics. An equivalent Schrödinger functional picture can
also be constructed, as in quantum field theory.

The next significant move is to recognise that there al-
ways are statistical fluctuations around equilibrium, such as
those which are responsible for Brownian motion. Such
fluctuations modify the evolution equations of quantum
(field) theory. In principle, the corrections can include a
nonself-adjoint component as well, which causes the
appearanceof antiself-adjoint corrections to theHamiltonian.

Adler considered the role of these corrections in the
context of the nonrelativistic Schrödinger equation, for
matter (fermionic) degrees of freedom. This amounts to
adding a stochastic correction (including an antiself-adjoint
part) to the matter Hamiltonian. The structure now is pretty
much as in collapse models. Assuming, as in collapse
models, that norm is preserved (despite nonunitary evolu-
tion), and that superluminal signalling is not allowed, one

arrives at a stochastic nonlinear Schrödinger equation with
the same structure as a collapse model. The theory of trace
dynamics can hence explain the origin of spontaneous
localisation – the latter is no longer an ad hoc proposal.

In our recent work, we have addressed the unresolved
issues in trace dynamics. Amongst these are the following.
Trace dynamics is formulated at the Planck scale, but it
assumes the space-time background to be Minkowski. It
would be more natural to allow for quantum behaviour of
space-time, and to incorporate gravity, albeit not as classical
gravity, but as operator gravity. We solve this problem, by
bringing in the description of space-time structure from
Connes’NCGprogramme. Secondly, in trace dynamics, only
a non-relativistic theory of spontaneous collapse is arrived
at. Bybringing ingravity,weconstruct a relativistic theory of
spontaneous localisation. Thirdly, we explain why only the
fermionic (matter) degrees of freedomundergo spontaneous
collapse, whereas bosonic degrees (the gravitational fields
say) do not. And we also explain why the norm of the
evolving state vector must be preserved, despite the pres-
ence of antiself-adjoint corrections to the Hamiltonian.

5 The theory of trace dynamics:
track 2

As noted above, race dynamics (TD) derives quantum
(field) theory and spontaneous localisation from an un-
derlying (prequantum)matrix dynamics. It is the dynamics
of matrix models which obey a global unitary invariance,
operating at the Planck scale; However, as an approxima-
tion, space-time is assumed to be Minkowski space-time,
and gravity is not included in the theory. Suppose we take
classical dynamics (either Newtonianmechanics or special
relativity) as the starting point, and instead of describing a
material point particle by a real number, we describe it by a
matrix (equivalently, operator). This is the essence of trace
dynamics. For a particle q, nowdescribed by amatrixq, the
action is changed as in this example:

S � ∫
​
 dt [q̇2 −  q2] → ∫

​
 dt Tr [q̇2 −  q2] (13)

After replacing the configuration variable q by a ma-
trix, the scalar Lagrangian is constructed by taking amatrix
trace of the operator polynomial, and then a scalar action is
constructed as usual, by integrating the trace Lagrangian
over time. A general trace Lagrangian L is a function of the
various configuration variables qi and their time de-
rivatives q̇i and is made from the trace of an operator
polynomial L. This construction can be extended to field
theory by raising the field value at each space-time point to
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amatrix, then constructing an operator polynomial, taking
its trace to form a Lagrangian density, and integrating over
four-volume to get the action (continuum limit).

Lagrange equations of motion are obtained by varying
the action with respect to the operator qi. In order to vary
the trace Lagrangianwith respect to an operator, the notion
of a trace derivative is introduced. The derivative of the
trace Lagrangian L with respect to an operator O in the
polynomial L is defined as follows:

δL � Tr
δL
δO δO (14)

This so-called trace derivative is obtained by varying L
with respect to O and then cyclically permuting O inside
the trace, so that δO sits to the extreme right of the poly-
nomial L.

It is assumed that the matrix elements are complex
valued Grassmann numbers, which can be further sub-
divided into even grade and odd-grade Grassmann numbers.
Any Grassmann matrix can be written as a sum of two
matrices: the bosonic part (madeof even grade elements) and
the fermionic part (made of odd-grade elements). Bosonic
(fermionic) matrices describe bosonic (fermionic) fields, as in
conventional quantum field theory. Thus, in trace dynamics,
there are both bosonic degrees of freedom qB and fermionic
degrees of freedom qF. Recently, we have proved that in our
matrix dynamics there is a natural definition of spin, ad in the
emergent quantum theory fermionic matrices have half-
integer spin, and bosonic matrices have integral spin.

The Euler-Lagrange equations

d
dt

(δL
δq̇i

) − (δL
δqi

) � 0 (15)

are used to obtain the operator equations of motion, and
they also define the canonical momenta. The configuration
variables and the momenta do not commute amongst each
other, and the commutation relations are determined by
the dynamics. This is what makes trace dynamics different
from both classical dynamics, as well as from quantum
theory. Apart from the trace Hamiltonian,

H � ∑
i
 Tr[pFi  q̇Fi] +∑

i
 Tr[pBi  q̇Bi] − Tr L (16)

there is another conserved charge of great importance; the
Adler-Millard charge, denoted as C̃. This charge is a conse-
quenceof a global unitary invariance of the trace Lagrangian
and the trace Hamiltonian. It is given by the expression

C̃ � ∑
r∈B

[qr , pr] − ∑
r∈F

{qr , pr} (17)

We shall henceforth drop the bold notation from the
canonical variables, it being understood that we deal with

matrix/operator valued canonical variables. The Adler-
Millard charge is unique to matrix dynamics, and plays a
central role in emergence of quantum theory from trace
dynamics. If the trace Hamiltonian is self-adjoint, then the
Adler-Millard charge can be shown to be antiself-adjoint.
Were the trace Hamiltonian to have an antiself-adjoint
component, this conserved charge picks up a self-adjoint
component – this will be important for us when we incor-
porate gravity in trace dynamics.

Hamilton’s equations of motion are given by

δH
δqr

� −ṗr ,
δH
δpr

� ϵr q̇r (18)

where ϵr = 1(−1) when qr is bosonic(fermionic).
The abovedynamics is Lorentz invariant and is assumed

to take place at the Planck energy scale. TD does not specify
the form of the fundamental Lagrangian, although we will
choose a particular form belowwhenwe incorporate gravity
into TD. Since the physical systems that we observe and
experiment with, operate at energy scales much lower than
Planck scale and are not probed over Planck times, we ask
the following question: What is the averaged description of
trace dynamics, if we coarse grain (smear) the trace dy-
namics over time intervals much larger than Planck times?
We might imagine that there are extremely rapid variations
in the canonical variables over Planck time scales, but there
is a smoothed out dynamics at lower energies, where these
rapid variations have been coarse-grained over. The
methods of statistical thermodynamics are used, treating the
underlying dynamics as “microscopic” degrees of freedom,
to show that the emergent coarse-grained dynamics is rela-
tivistic quantum (field) theory.

One begins by constructing the phase space of matrix
dynamics, with (the real and imaginary parts of) each
element (qr)lm of qr being a (pair of) independent degrees of
freedom in the phase space, along with the matrix
component (again real and imaginary part) (pi)im of the
corresponding momentum. We use the symbol x to denote
q or p. A measure dμ is defined in the phase space, as

(xr)mn � (xr)0mn + i(xr)1mn ; 

dμ � ∏ 
A
dμA;

 dμA � ∏
r,m,n

 d(xr)Amn

(19)

where A=0,1 and the components (xr)Amn are real numbers.
This measure is conserved during evolution, and obeys
Liouville’s theorem. Moreover, the measure is invariant
under infinitesimal operator shifts xr→xr + δxr.

A phase space probability density distribution ρ[{xr}] is
defined in thematrix element phase space. This determines
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the probability of finding the system point in some partic-
ular infinitesimal volume in phase space. A canonical
ensemble is constructed for a sufficiently large number of
identical systems, each of which starts evolving from
arbitrary initial conditions in the phase space. It is assumed
that over time intervals much larger than Planck time, the
accessible region of the phase space (i.e. the region
allowed by a conserved trace Hamiltonian and a conserved
Adler-Millard charge) is uniformly populated, and hence
that the long time average (the coarse-grained dynamics)
can be determined from the ensemble average at any one
given time. This equilibrium dynamics is determined as
usual, by maximising the Boltzmann entropy

SE
kB

� − ∫ ​
 dμ ρ lnρ (20)

This is done subject to the constraints that the ensemble-
averaged trace Hamiltonian 〈H〉AV and the ensemble aver-

aged Adler-Millard charge 〈C̃〉AV are conserved. These two
constraints are imposed by introducing the Lagrange mul-

tipliers τ and λ̃, respectively, where τ is a real constant with
dimensions of inverse mass and λ an antiself-adjoint matrix
with dimensions of inverse action.

Hence the phase space density distribution ρ depends,

apart from the dynamical variables, on C̃, λ̃,H, τ and can be

written as ρ(C̃, λ̃,H, τ). It can be further shown that the

dependence on C̃ and λ̃ is of the form Tr(λ̃C̃), so we write

ρ � ρ(Tr[λ̃C̃], τ,H). It can be shown, subject to the plausible
assumption that the ensemble does not favour any one state
in the ensemble over the other, that the canonical ensemble
average of the Adler-Millard charge takes the form

〈C̃〉AV � ief fℏ ;  ief f � i diag(1,−1, 1,−1..., 1,−1) (21)

where the real constant ℏ is eventually identified with
Planck’s constant, subsequent to the emergence of quan-
tum dynamics.

The equilibrium distribution is arrived at by max-
imising the function −F where

F � ∫
​
 dμ ρ logρ + θ ∫

​
 dμ ρ +  ∫

​
 dμ ρTrλ̃C̃ + τ ∫

​
 dμ ρH (22)

and gives the result

ρ � Z−1exp( − Trλ̃C̃ − τ̃H) (23)

Z � ∫
​
dμ exp( − Trλ̃C̃ − τ̃H) (24)

The entropy at equilibrium is given by the expression

SE
kB

� log Z − Trλ̃
∂log Z
∂λ̃

− τ̃
∂log Z
∂τ̃

(25)

We ask: what is the mean dynamics obeyed by the
variables 〈x〉AV , averaged over the canonical ensemble, at
energy scales below Planck scale? To answer this, one
derives certain Ward identities, as is done for functional
integrals in quantum field theory, in analogywith the proof
for the equipartition theorem in statistical mechanics.
These identities are a consequence of the invariance of the
phase space measure under constant shifts of the dynam-
ical variables. Thus, in conventional statistical mechanics,
the equipartition theorem is a consequence of the vanish-
ing of the integral of a total divergence:

0 � ∫ ​dμ 
∂[xrexp(− βH)]

∂xs
(26)

In the statistical mechanics of trace dynamics, we have
for a general operatorO, that its average over the canonical
ensemble is unchanged when a dynamical variable is
varied:

0 � ∫
​
 dμ δxr(ρO) (27)

One choosesO to be the operator Tr{C̃, ief f }W whereW
is any bosonic polynomial function of the dynamical var-
iables, and carries out the above variation, taking ρ to be
the equilibrium phase space density distribution function.
Thus we have

0 � ∫
​
 dμ δxr  [exp( − Trλ̃C̃ − τ̃H) Tr{C̃, ief f }W] (28)

A very important assumption is made, namely that τ̃ is
the Planck time scale, and that we are interested in the
averaged dynamics over much larger time scales (equiva-
lently much lower energies). Each dynamical variable xr is
split into a “fast” varying part [which varies over Planck
times] and a “slow” part which is constant over Planck
times. Important conclusions then follow from the above
Ward identity, by making different choices forW. WhenW
is chosen to be a dynamical variable xr, standard quantum
commutation relations for bosonic and fermionic degrees
of freedom are shown to be obeyed by the averaged vari-
ables 〈xr〉AV. The constant ℏ introduced above is identified
with Planck’s constant. IfW is identified with the operator
polynomial H whose trace is the trace Hamiltonian H, the
quantum Heisenberg equations of motion for the averaged
dynamical variables are obtained. The underlyingmatrices
of TD, within ensemble averages, obey properties analo-
gous to quantum fields. The contact with quantum field
theory is made as follows. There is a unique eigenvectorψ0

whose corresponding eigenvalue is the lowest eigenvalue
of H. This acts as the conventional vacuum state, and ca-
nonical ensemble averages are identified with Wightman
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functions in the emergent quantum field theory, for a given
function S,

ψ0
†  〈S{xr}〉AV  ψ0 � 〈vac

∣∣∣∣S{X}∣∣∣∣vac〉 (29)

where X is a quantum field operator. In this way, rela-
tivistic quantum (field) theory is shown to arise as an
emergent phenomenon, it being the low-energy equilib-
rium approximation in the statistical thermodynamics of
an underlying matrix dynamics. Once the Heisenberg
equations of motion are known, one can also transform
to the functional Schrodinger picture in the standard
manner.

The theory of trace dynamics also provides a theo-
retical basis for the origin of the phenomenological theory
of spontaneous localisation. As we have seen above,
quantum dynamics is a mean dynamics arising from
averaging over Planck time scales and neglecting the fast
component in the variation of the dynamical variables.
Under certain circumstances, the fast component can
become significant, in which case its impact on the
coarse-grained dynamics can be modelled as stochastic
fluctuations around equilibrium. Particularly crucial is
that these fluctuations can make an antiself-adjoint sto-
chastic contribution to the quantum theory Hamiltonian.
This is possible because the underlying trace Hamilto-
nian can have a small antiself-adjoint part at the Planck
scale, which could get amplified by entanglement be-
tween a very large number of particles. Precisely such a
situation arises when gravity is included in trace dy-
namics, as we will see below.

Adler considers such a possibility for fermions in the
theory, in the nonrelativistic approximation to quantum
field theory, where the anti-Hermitean fluctuating
correction to the Hamiltonian is modelled by adding a
stochastic function K(t)

iℏ
∂Ψ
∂t

� HΨ + iK(t)Ψ (30)

This modified equation however does not preserve
norm of the state vector during evolution. If we do insist on
norm-preservation and transform to a new state vector
whose norm is preserved, the resulting evolution equation
is nonlinear. It also makes the evolution nonunitary. If we
also demand that the nonlinear evolution should not lead
to superluminal signalling, the form of the evolution be-
comes just the same as in spontaneous localisationmodels.
Thus trace dynamics can in principle explain the quantum-
to-classical transition, by taking into consideration the
potential role of statistical fluctuations around equilib-
rium. The theory provides a common origin for quantum
theory, as well as for spontaneous localisation, starting

from an underlying matrix dynamics possessing a global
unitary invariance.

Trace dynamics does not specify the fundamental
Lagrangian for physical interactions. Also, it does not
include gravity, although it operates at the Planck scale.
The theory also leaves some important questions unan-
swered. For instance, what is the origin of the small
antiself-adjoint component of the Hamiltonian at the
Planck scale? Why does spontaneous localisation take
place only for fermions but not for bosons?Why should the
norm of the state vector be preserved despite the presence
of the anti-Hermitean fluctuations? In the next section, we
demonstrate how to include gravity in trace dynamics,
using the principles of Connes’ NCG programme – this
leads us to a candidate quantum theory of gravity, for
which we specify a Lagrangian. We also answer the open
questions left unanswered by trace dynamics, as
mentioned in the preceding lines.

6 Incorporating gravity in trace
dynamics

We emphasize that our primary motive behind this
approach to quantum gravity was not that of incorpo-
rating gravity in trace dynamics. Rather, our goal was to
arrive at a formulation of quantum (field) theory which
does not refer to classical space-time. The realisation that
such a formulationmust exist is the singlemost important
clue towards a quantum theory of gravity. Classical
space-time is a consequence of the universe being
dominated by classical macroscopic bodies. In the
absence of such bodies (which in fact are a limiting case
of quantum systems, thus forcing quantum theory to
depend on its own limit) there will be no space-time, yet
we should we able to describe quantum systems (without
appealing to classical time). Thus, we do not quantise
space-time; rather we get rid of space-time from quantum
theory – this leads to a falsifiable candidate quantum
theory of gravity, which predicts spontaneous
localisation.

Our underlying physical principle/symmetry is to de-
mand that the laws of gravitation, and of thematter sources
that describe them, are invariant under general coordinate
transformations of noncommuting coordinates. This takes
us to the domain of Connes’ NCG. This symmetry principle
also has the flavour of trace dynamics because the non-
commuting coordinates are operators (equivalently
matrices) which obey arbitrary commutation relations
amongst them.
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NCG provides a spectral view of gravitation and cur-
vature, which again ties in well with trace dynamics [6].
The relevant result for us, which we present here in a
simplified manner, is the following. Given a Riemannian
manifold describing (Euclidean) curved space-time,
construct the standard Dirac operator on this space-time,
and find its eigenvalues. The sum of the squares of these
eigenvalues is equal, up to constants, to the Einstein-
Hilbert action on that space-time! That is, denoting the

Dirac operator by DB, and trace of its square by Tr[L2PD2
B],

we have

Tr[L2PD2
B] ∼  

1

L2
P

∫
​
 d4x

��
g

√
R (31)

Next, if we make the algebra of coordinates noncom-
mutative, we no longer have the original space-time
manifold, but we still have the spectral description of its
curvature, as on the left hand side of the above equation. It
is hence assumed that Tr[LP

2DB
2] describes curvature of the

NCG. This celebrated spectral action, as it is called in NCG,
points to a deep connection between theDirac operator and
gravitation, and plays a crucial role in our quantum theory
of gravity.

The second relevant and extremely significant result
from NCG is the existence of a fundamental time parameter,
which is their only in thenoncommutative case, andabsent in
ordinary commutative geometry. This is a consequence of the
so-called Tomita-Takesaki theory, and the “cocycle Radon-
Nikodym” theorem. For us it suffices to note that there are a
one-parameter family of inner automorphisms of the
noncommutative algebra,whichmapelements of the algebra
to other elements of the algebra; this being equivalent to a
time translation. As Connes puts it, “non-commutative mea-
sure spaces evolve in time”. We call this Connes time, and
denote it by τ. When ordinary space-time is lost because of
noncommutativity, Connes time emerges and helps us to
formulate quantum theory without classical time.

Because the spectral action does not depend on the
existence of a space-time manifold, (and yet links to clas-
sical gravitation), it has the right properties for inclusion in
trace dynamics but with a twist. For a physicist, for
something to be an action, it should be the time integral of
a Lagrangian. Here, Connes time comes to our rescue,
noting also that the “spectral action” Tr[LP

2DB
2] is more in

tune with what we would call a trace Lagrangian in trace
dynamics. Furthermore, a trace Lagrangian should be an
operator polynomial made from a configuration variable
and its time derivatives. This motivated us to define a
bosonic configuration variable qB as follows: DB ≡ (1/Lc)
dqB/dτ, and hence a trace Lagrangian and a trace action:

SB � 1
τPl

∫
​
 dτ Tr⎡⎣ L2P

L2c2
(dqB
dτ

)2⎤⎦ (32)

Here, L is a length scale associated with qB, and qB is
related to gravitation through the eigenvalues ofDB. This is
how we have used NCG to incorporate gravity into trace
dynamics [1].

This Lagrangian also helps us arrive at a formulation of
quantum theory without classical time. To progress in that
direction we must now introduce matter (fermions) and
relate matter to gravity in trace dynamics, analogous to the
spirit of classical general relativity. Keeping inmind that this
matter ought to be quantum in nature, it is perfectly
reasonable to assume (since quantum systems are not
localised in space) that we should no longer make a
distinction between fermionic matter and the gravitation it
produces. To this end,we introduced the concept of an atom
of STM, denoted by operator q, which is split into its bosonic
and fermionic parts as q=qB + qF, with qB defined as above,
and qF the matter (fermionic) part. The constraint on qF is
that it should be possible to identify it, upon the emergence
of classical space-time, as the matter degree of freedom in
quantum theory, and in general relativity. Thus the STM
atom carries around its own (noncommutative) geometry.
An STM atom is an elementary particle plus its own space-
time geometry. If we ask what is the gravitational field of an
electron, we would describe the electron and its gravity
together as an STMatom. At the Planck scale, the universe is
populated by enormouslymany STM atoms, each described
by its own q-operator, whose dynamics is described in the
Hilbert space via evolution inConnes time. The fundamental
action principle for an STM atom is

LP

c
S
C0

� 1
2
∫
​
 dτ Tr[ L2P

L2c2
 (q̇B + β1q̇F) (q̇B + β2q̇F)] (33)

Here β1 and β2 are two constant fermionic matrices whose
properties remain to be determined. This action looks
similar to the action for a free point particle in classical
mechanics, except that now the configuration variable
does not describe just matter but also its gravity. It is
interesting that the particle description (as opposed to the
description via fields) comes back in full force in ourmatrix
dynamics. This is understandable because classical space-
time is lost, and it would not be meaningful to talk of fields
when physical three-space is not there.

The equations of motion and their solutions obtained
from this action are highly instructive. These are:

2q̇B + (β1 + β2)q̇F � c1 (34)

q̇B(β1 + β2) + β1q̇Fβ2 + β2q̇Fβ1 � c2 (35)
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where c1 and c2 are constant bosonic and fermionic
matrices, respectively. These two equations are the
(matrix dynamics) precursors of the Einstein-Dirac
equation and the Schrödinger-Newton equation (matter
tells space-time how to curve; space-time tells matter how
to move).

There is one such action term for every STM atom. It is
not as if all the STM atoms together produce gravitation of
the universe; rather classical space-time emerges after the
fermionic parts of many entangled atoms undergo spon-
taneous localisation. This way, the material bodies of the
universe are formed and formed concurrently with the
emergence of space-time.

7 Incorporating gravity in trace
dynamics: track 2

In the Introduction section, we have argued that there
ought to exist an equivalent reformulation of quantum
(field) theory which does not refer to classical space-time.
One possible way to arrive at such a reformulation is to
raise space-time points to the status of noncommuting
matrices/operators, in the spirit of what was done in trace
dynamics above for material particles/matter fields. NCG
allows for such a possibility for space-time and its geom-
etry. In other words, Connes’ NCG program does for space-
time what trace dynamics does for matter fields. We pro-
pose to put NCG together with trace dynamics and propose
a matrix dynamics for matter Dirac fermions and the
(noncommutative) space-time geometry produced by
them. This new theory operates at Planck time/energy
scales, just as TD does. The statistical thermodynamics of
this new theory– i.e. coarse-graining over times larger than
Planck time, provides us with a candidate quantum theory
of gravity, which is also the sought for quantum (field)
theory without classical time [1].

Hereon we will assume a Euclidean space-time and
Euclidean general relativity. The case of Lorentzian space-
time still remains to be dealt with. In NCG [4], the definition
of a spectral action derives from the spectral definition of
infinitesimal distance using the distance operator dŝ. This

operator is related to the Dirac operator D as dŝ � D−1, thus
providing a definition of distance – equivalent to the
standard definition of distance (in terms of the metric) – as
and when a Riemannian geometry and a manifold exists.
This spectral definition of distance continues to hold also
when an underlying space-time manifold is absent, as for
instance when the algebra of coordinates does not
commute (transition to NCG).

Next, the integral ⨏T of a first order infinitesimal in

operator T is defined to be the coefficient of the logarithmic
divergence in the Trace of T [4]. We may visualise the in-
tegral of an operator as if it were the sum of its eigenvalues.
The spectral action relating to gravity S is defined as the
slash integral

S � ⨏ − d̂s
2 � ⨏ − D−2 (36)

a definition that holds whether or not an underlying
space-time manifold is present. When a manifold is pre-
sent, this spectral action can be shown to be equal to the
Einstein-Hilbert action, in the following manner. The

noncommutative integral ⨏ − dŝ2 � ⨏ − D−2 is given by the

Wodzicki residue ResWD
−2, which in turn is proportional to

the volume integral of the second coefficient in the heat
kernel expansion of D2. The Lichnerowicz formula relates
the square of the Dirac operator to the scalar curvature,
thus enabling the remarkable result [6]

⨏ − dŝ2 � − 1
48π2

∫
M

d4x 
��
g

√
 R (37)

In connection with the standard model of particle
physics coupling to gravity, the spectral action of the
gravity sector can be written as a simple function of the
square of the Dirac operator, using a cut-off function χ(u)
which vanishes for large u ([6] and references therein):

SG[D] � κTr[χ(L2PD2)] (38)

The constant κ is chosen so as to get the correct di-
mensions of action and the correct numerical coefficient.

At curvature scales smaller than Planck curvature, this
action can be related to the Einstein-Hilbert action using
the following well-known heat kernel expansion:

SG[D] � L−4P f 0  κ ∫
M

d4x 
��
g

√ + L−2p f 2κ ∫
M

d4x
��
g

√
R +… (39)

Here, f0 and f2 are known functions of χ and the further
terms which are of higher order in Lp

2 are ignored for the
present. Also, we will not consider the cosmological con-
stant term for the purpose of the present discussion. The
development of a full quantum theory of gravity must take
into account all higher order corrections. The present
program is a truncated approximation to such a future
theory.

Let us compare and contrast the above definition of
spectral action with how a trace action is defined in Adler’s
theory of trace dynamics. In trace dynamics it is the
Lagrangian (not the action) which is made of trace of a
polynomial. Thus, the way things stand, we cannot use the
spectral action directly in trace dynamics to bring in gravity
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into matrix dynamics. We need to think of the spectral
action as a Lagrangian, and we then need to integrate that
Lagrangian over time, to arrive at something analogous to
the action in trace dynamics. We can convert the spectral
action into a quantity with dimensions of a Lagrangian,
simply by multiplying it by c/Lp (equivalently, dividing by
Planck time). But which time parameter to integrate the
Lagrangian over? The space-time coordinates have already
been assumed to be noncommuting operators, (especially
in the definition of the atom of STM, as below, the case that
we are interested in). So it seems as if we have a
Lagrangian, but we do not have a time parameter over
which to integrate the Lagrangian, so as to make an action.
Fortunately, NCG itself comes with a ready-made answer!
The required time parameter is the Connes time τ, whichwe
discussed in earlier work. In NCG, according to the Tomita-
Takesaki theorem, there is a one-parameter group of inner
automorphisms of the algebra A of the noncommuting
coordinates – this serves as a ‘god-given’ (as Connes puts
it) time parameter with respect to which noncommutative
spaces evolve [4]. This Connes time τ has no analogue in
the commutative case, and we employ it here to describe
evolution in trace dynamics. Thus we define the action for
gravity, in trace dynamics, as

SGTD � κ
c
LP

 ∫
​
 dτ Tr[χ(L2

PD
2
B)] (40)

Note that SGTD has the correct dimensions, those of
action. Also, we will henceforth denote the standard Dirac
operator as DB, instead of as D.

Next, we derive the Lagrange equations for this trace
action. For this we need to figure out what the configuration
variables q are. In the presence of a manifold, those vari-
ableswould simplybe themetric. Butweno longerhave that
possibility here. We notice though that the operator DB is
like momentum, since it has dimensions of inverse length.

D2
B is like kinetic energy, so its trace is a good candidate

Lagrangian. Therefore, we define a new self-adjoint bosonic
operatorqB, having thedimension of length, andwedefinea
velocity dqB/dτ, which is defined to be related to the Dirac
operator DB by the following new relation

DB ≡
1
Lc

 
dqB
dτ

(41)

where L is a length scale whose significance will become
clear shortly. The action for gravity in trace dynamics can
now be written as

SGTD � κ
c
LP

 ∫
​
 dτ Tr[χ(L2

Pq̇
2/L2c2)] (42)

where the timederivative in q̇now indicates derivativewith
respect to Connes time. For the present, we will work with
the function χ(u)=u, leaving the consideration of conver-
gence for future work.

Wewould now like to incorporate matter fermions into
the theory. However we do not write the standard Dirac
action for fermions, add up over all the fermions and add
that action to the gravity trace action. This is because at the
Planck scale, where this theory operates, we do not make a
distinction between a material particle described by a fer-
mionic operator qF, and its associated gravity qB. Rather,
we define an ‘atom of STM’ (equivalently, an aikyon) by a
Grassmann operator q such that q=qB+qF. The natural split
of q into its bosonic and fermionic parts is equivalent to
considering the aikyon as a combination of its matter part
and its gravity part. The Hilbert space of the theory is
populated by many STM atoms, each with its own operator
qi. The operator qF of an STM atom is used to define the
“fermionic” Dirac operator DF:

DB ≡
1
Lc

 
dqF
dτ

(43)

DB is defined such that in the commutative limit, it
becomes the standard Dirac operator on a Riemannian
manifold.DF is defined such that it gives rise to the classical
action for a relativistic point particle, as we will see below.
An STM atom is assumed to be described by the following
action principle in this generalised trace dynamics
including gravity:

S
C0

� 1
2
∫
​
 
dτ
τPl

 Tr[ L2P
L2c2

 (q̇B + β1
L2
P

L2
q̇F) (q̇B + β2

L2
P

L2 q̇F)] (44)

where β1 and β2 are constant self-adjoint fermionic
matrices. These matrices make the Lagrangian bosonic.
The only two fundamental constants are Planck length and
Planck time – these scale the length scale L of the STM
atom, and the Connes time, respectively. C0 is a constant
with dimensions of action, which will be identified with
Planck’s constant in the emergent theory. The Lagrangian
and action are not restricted to be self-adjoint.

The canonical momenta obtained from this Lagrangian
are constant and are given by

pB � δL
δq̇B

� a
2
[2q̇B + L2P

L2 (β1 + β2)q̇F] � c1 (45)

pF � δL
δq̇F

� a
2
L2
P

L2 [q̇B(β1 + β2) + L2P
L2β1q̇Fβ2 +

L2
P

L2
β2q̇Fβ1] � c2

(46)
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where a ≡ LP
2 /L2c2. These equations can be integrated to

obtain the following solutions:

q̇B � 1
2
[c1 − (β1 + β2)(β1 − β2)−1[2c2

− c1(β1 + β2)](β2 − β1)−1] (47)

q̇F � (β1 − β2)−1[2c2 − c1(β1 + β2)](β2 − β1)−1 (48)

This means that the velocities q̇B and q̇F are constant,
and qB and qF evolve linearly in Connes time. The trace
Hamiltonian is given by

H � Tr
2
a
[(pBβ1 − pF)(β2 − β1)−1(pBβ2 − pF)(β1 − β2)−1]

(49)

The Adler-Millard charge is given by

(2/a) C̃ � [qB, 2q̇B + (β1 + β2)q̇F]  −  {qF , q̇B(β1 + β2) + β1q̇Fβ2
+ β2q̇Fβ1}

� [qB, 2q̇B] + [qB, (β1 + β2)q̇F]  −  {qF , q̇B(β1 + β2)} 
−  {qF , β1q̇Fβ2 + β2q̇Fβ1}

(50)

(In Eqs. 30–33 we have suppressed the factor LP
2/L2 so

as to keep the expression from being complicated; it is
understood that every β in these equations comes multi-
plied with this factor.) The equation for the bosonic mo-
mentum pB can be written as a modified Dirac equation
with a complex eigenvalue:

[DB + L2
P

L2
β1 + β2

2
DF]ψ � 1

L
(1 + i

L2
P

L2
)ψ (51)

Since DB is self-adjoint, the imaginary part to the
eigenvalue comes only from DF, and the relative magni-
tudes of the real and imaginary part are dictated by the
structure of the operator on the left. The eigenvector de-
pends on both qB and qF. This equation plays a crucial role
in the subsequent discussion below. We note that DF will
also contribute a term to the real part of the eigenvalue; let

us denote this term by L2P
L2
θ. In the limit L≫LP, this term is

negligible. It turns out this will be the quantum limit: the
imaginary part of the eigenvalue is also ignorable, and one
effectively has a self-adjoint trace Hamiltonian. In the limit
L≪L this term will be significant – this happens to be the
classical limit: there is also a non-negligible imaginary
‘fast’ component at the Planck scale, which gives rise to a
significant antiself-adjoint part in the Hamiltonian. It is not
clear to us at present as to what role the θ term is playing in
the classical limit. It appears to modify classical general

relativity but does not affect our subsequent calculation of
the black hole entropy.

We have now described our trace dynamics model
including gravity. If there are N aikyons in the system, the
above action iswritten for each aikyon (L canbe different in
magnitude for different aikyons), and the total action is the
sum of the individual actions. We call this theory sponta-
neous quantum gravity.

The next step is to carry out the statistical thermo-
dynamics for a large number of aikyons and to understand
the emergent quantum gravity theory, as well as the
emergence of classical space-time geometry after spon-
taneous localisation. Consider first a collection of STM
atoms each of which has the property L≫LP. Then the
imaginary component of the eigenvalue in the modified
Dirac equation becomes negligible. As a result, the trace
Hamiltonian is self-adjoint, and the Adler-Millard charge
is antiself-adjoint. This is also equivalent to justifiable
neglect of the “fast” imaginary component of the
dynamical variables xr at the Planck scale. Hence the
conditions necessary for arriving at the equilibrium sta-
tistical thermodynamics by coarse-graining over large
times are satisfied.

This sets the stage for the emergence of the averaged
quantum gravitational dynamics at statistical equilibrium.
A Ward identity, which is the equivalent of the equi-
partition theorem, is derived. As in trace dynamics, the
antiself-adjoint part of the conserved Adler-Millard charge
is equipartitioned over all the degrees of freedom, and the
equipartitioned value per degree of freedom is identified
with Planck’s constant ℏ. (The constant C0 is now identified
with ℏ.) At equilibrium, the standard quantum commuta-
tion relations of (an equivalent of) quantum general rela-
tivity emerge, for the canonical ensemble averages of the
various degrees of freedom:[qB, pB] � iℏ;  {qFS, pf

FAS} � iℏ;  {qFAS, pf
FS} � iℏ (52)

The subscript S/AS denote self-adjoint and antiself-
adjoint parts of the dynamical variables. The superscript f
denotes the fermionic part of the momentum pF, being the
part which depends on qF but not on qB: i.e.

pf
F � β1q̇Fβ2 + β2q̇Fβ1. All the other commutators and anti-

commutators amongst the canonical degrees of freedom
vanish at thermodynamic equilibrium. The above set of
commutation relations hold for every STM atom. We note
that we describe quantum general relativity in terms of
these q operators, and not in terms of the metric and its
conjugatemomenta, which are emergent concepts of levels
II and III. There is likely a possible connection between this
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description of quantum general relativity, and loop quan-
tum gravity, which remains to be explored.

Themassm of the aikyon is defined bym ≡ ℏ/Lc; and as
a consequence L is hence interpreted to be its Compton
wavelength. Newton’s gravitational constant G is defined

by G ≡ L2pc
3/ℏ, and Planck mass mP by mP � ℏ/LPc. Mass

and spin are both emergent concepts of level I; at level 0 the
aikyon only has an associated length L – this length is a
property of both the gravity aspect and thematter aspect of
the STM atom.

As a consequence of Hamilton’s equations for thematrix
dynamics at level 0, and as a consequence of the Ward
identity mentioned above, the canonical ensemble averages
of the canonical variables obey the Heisenberg equations of
motion of quantum theory, these being determined byHS, the
canonical average of the self-adjoint part of the Hamiltonian:

iℏ
∂qB
∂τ

� [qB,HS] ;  ℏ ∂pB

∂τ
� [pB,HS];

 iℏ
∂qF
∂τ

� [qF ,HS] ;  iℏ ∂pf
F

∂τ
� [pf

F ,HS] (53)

In analogywith quantum field theory, one can transform
from the above Heisenberg picture and write a Schrödinger
equation for the wave function Ψ(τ) of the full system:

iℏ
∂Ψ
∂τ

� HStotΨ(τ) (54)

where HStot is the sum of the self-adjoint parts of the
Hamiltonians of the individual STM atoms. Since the
Hamiltonian is self-adjoint, the norm of the state vector is
preserved during evolution. This equation is the analogue
of theWheeler-DeWitt equation in our theory, the equation
being valid at thermodynamic equilibrium at level I. This
equation can possibly resolve the problem of time in
quantum general relativity because to our understanding it
does not seem necessary that the physical state must be
annihilated by HStot. We have not arrived at this theory by
quantising classical general relativity; rather the classical
theory will emerge from here after spontaneous local-
isation, as we now describe.

It is known that the above emergence of quantum dy-
namics arises at equilibrium in the approximation that the
Adler-Millard conserved charge is antiself-adjoint, and its
sef-adjoint part can be neglected. In this approximation,
the Hamiltonian is self-adjoint. Another way of saying this
is that quantum dynamics arises when statistical fluctua-
tions around equilibrium (which are governed by the self-

adjoint part of C̃) can be neglected. These fluctuations
arise when the “fast” component due to the imaginary

eigenvalue in the modified Dirac equation becomes sig-
nificant. This happens if L≪LPl. For a single aikyon whose
mass is much less than Planck mass, this would be
impossible. Consider however a very large collection of
aikyons which are entangled with each other (level I
description). The effective Compton wavelength Leff, as it
would appear in the effective modified Dirac equation, is
then given by

1
Lef f

� ∑
i

1
Li

(55)

Clearly, if a very large number of aikyons get entan-
gled, their totalmass can exceed Planckmass significantly;
and the effective Compton wavelength becomes much
smaller than Planck length. This is indicative of emergent
classical behaviour as follows. The fast varying imaginary
component in the modified Dirac equation, on the Planck
scale, is represented as imaginary stochastic corrections to
the equilibrium quantum dynamics.

When the thermodynamical fluctuations are important,
one must represent them by adding a stochastic antiself-
adjoint operator function to the total self-adjoint Hamilto-
nian (note that one cannot simply add the antiself-adjoint
part of the Hamiltonian to the above Schrödinger equation,
because that equation is defined for canonically averaged
quantities; the only way to bring in fluctuations about
equilibrium is to represent them by stochastic functions).
This way of motivating spontaneous collapse is just as in
trace dynamics (see Chapter 6 of [3]), except that we are not
restricted to the nonrelativistic case, and evolution is with
respect to Connes time τ. Also, we do not have a classical
space-time background yet; this will emerge now, as a
consequence of spontaneous localisation (see also our
earlier related paper “Space-time from collapse of the wave
function” [17]).

Thus we can represent the inclusion of the antiself-
adjoint fluctuations in the above Schrödinger equation by a
stochastic function H(τ) as:

iℏ 
∂Ψ
∂τ

� [HStot +H(τ)]Ψ(τ) (56)

In general, this equation will not preserve norm of the
state vector during evolution. However, as we noted above,
every STM atom is in free particle motion. Hence it is
reasonable to demand that the state vector should preserve
norm during evolution, even after the stochastic fluctua-
tions have been added. Then, exactly as in collapsemodels
and in trace dynamics, a new state vector is defined, by
dividing Ψ by its norm, so that the new state vector pre-
serves norm. Then it follows that the new norm preserving
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state vector obeys an equation which gives rise to sponta-
neous localisation, just as in trace dynamics and collapse
models (see Chapter 6 of [3]). We should also mention that
the gravitational origin of the antiself-adjoint fluctuations
presented here (DF is likely of gravitational origin, and
relates to the antisymmetric part of an asymmetric metric)
agrees with Adler’s proposal that the stochastic noise in
collapse models is seeded by an imaginary component of
the metric [20, 21].

It turns out to be instructive to work in themomentum
basis where the state vector is labelled by the eigenvalues
of themomenta pB and pF. Since the Hamiltonian depends
only on the momenta, the antiself-adjoint fluctuation is
determined by the antiself-adjoint part of pF. Hence it is
reasonable to assume that spontaneous localisation takes

place onto one or the other eigenvalue of pf
F . No local-

isation takes place in pB – this helps understand the long
range nature of gravity (which results from qB and the
bosonic Dirac operator DB). We assume that the local-

isation of pf
F is accompanied by the localisation of qF, and

hence that an emergent classical space-time is defined
using the eigenvalues of qF as reference points. Space-
time emerges only as a consequence of the spontaneous
localisation of matter fermions. Thus we are proposing
that the eigenvalues of qF serve to define the space-time
manifold.

We need to ask how a space-timemanifold emerges after
spontaneous localisation of fermions. Localised fermions
serve as physicalmarkers of space-time points, in the spirit of
the Einstein hole argument. The recovery of the standard
(commutative) Riemannian manifold is achieved because
spontaneous localisation undoes the process [Space−time
points→Operators] achieved by going from a commutative
algebra of coordinates to anoncommutative algebra. Thus, to
begin with, there is a Riemannian geometry on a space-time
manifold (assumed to be four-dimensional); it is mapped
to a commutative algebra, including a (diffeomorphism
invariant) algebra of coordinates. When this algebra is made
noncommutative, geometric concepts such as distance,
metric and curvature can still be preserved, by employing the
Dirac operatorDB. In our theorywith STMatoms, eachatom is
by itself a NCG, complete with these concepts. This NCG has
been arrived at by raising each space-time point to operator/
matrix status. What spontaneous collapse does is to
dynamically reverse this process, and restore space-time
operators back to points. If sufficiently many STM atoms
undergo localisation, then the manifold, metric and curva-
ture concepts are recovered. The classical space-time mani-
fold acts as a boundary condition which has to be fulfilled by
the matrix dynamics. The space-time coordinates and metric

which were present before the lift to the noncommutative
case is restored.

As in objective collapse models, the rate of sponta-
neous localisation becomes significant only for objects
which consist of a large number ofmatter fermions – hence
the emergence of a classical space-time is possible only
when a sufficiently macroscopic object comprising many
STM atoms undergoes spontaneous localisation. The rate

of localisation T is in fact given by T � ℏ2/GM3cwhereM is
the total mass of the macroscopic entangled system. We
now give a quantitative estimate as to what qualifies as
being sufficiently macroscopic.

To arrive at these estimates,we recall the following two
earlier equations, the action principle for the aikyon itself,
and the eigenvalue equation for the full Dirac operator D:

LP
c

S
ℏ
� a
2
 ∫

​
 dτ Tr[q̇2B + q̇B

L2P
L2β2q̇F +

L2
P

L2
β1q̇F q̇B +

L4P
L4β1q̇Fβ2q̇F]

(57)

[DB + L2
P

L2
β1 + β2

2
DF]ψ � λψ ≡ (λR + iλI)ψ ≡ (1

L
+ i

1
LI
)ψ
(58)

In the second equation, since D is bosonic, we have
assumed that the eigenvalues λ are complex numbers, and
separated each eigenvalue into its real and imaginary part.
Recall that LI = L3/LP

2 . There is one such pair of equations
for each aikyon, and the total action of all aikyons will be
the sum of their individual actions, with the individual
action as given above.

When an aikyon undergoes spontaneous localisation,

pf
F localises to a specific eigenvalue. Since DF is also made

from q̇F , just as p
f
F is, we assume that DF also localises to a

specific eigenvalue, whose imaginary part is the LI intro-
duced above. Correspondingly, the DB associated with this
STM atom acquires a real eigenvalue, which we identify
with the λR ≡ 1/L above (setting aside for the moment the
otherwise plausible situation that in general pF will also
contribute to λR).

The spontaneous localisation of each aikyon to a
specific eigenvalue reduces the first term of the trace
Lagrangian to:

Tr[q̇2B]→ λ2R (59)

If sufficiently many aikyons undergo spontaneous

localisation to occupy the various eigenvalues λiR of the
Dirac operator DB, then we can conclude, from our
knowledge of the spectral action in NCG [6], that their net
contribution to the trace is:
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ℏa
2
 Tr[q̇2B] � ℏ

2
Tr[L2pD2

B] � ℏ
2
L2p∑

​(λiR)2 � ℏ

2L2
p

∫
​
 d4x 

��
g

√
 R

(60)

Thus we conclude that the Einstein-Hilbert action
emerges after spontaneous localisation of the matter fer-
mions. In that sense, gravitation is indeed an emergent
phenomenon. Also, the eigenvalues of the Dirac operator
DB have been proposed as dynamical observables for
general relativity [5], which in our opinion is a result of
great significance. This study also demonstrates how to
relate the eigenvalues of DB to the classical metric. In this
sense the matrix qB captures the information of the metric
field.

Let us now examine how the matter part of the general
relativity action arises from the trace Lagrangian (its sec-
ond and third terms) arises after spontaneous localisation.
These terms are given as

L2p
L2

aℏ
2
Tr[q̇Bβ2q̇F + β1q̇F q̇B] � ℏTr[L2

p ×
L2
P

L2

β1 + β2
2

DFDB]
(61)

Spontaneous localisation sends this term toLp
2 × 1/LI× 1/

L, where LI=L
3/LP

2 . There will be one such term for each STM
atom, and analogous to the case of TrDB

2 we anticipate that
the trace over all STM atoms gives rise to the “source term”

ℏ ∫
​
 
��
g

√
 d4x ∑

i
 [L−2

p ×  1/Li
I ×  1/Li] (62)

Consider the term for one aikyon. We make the plau-
sible assumption that spontaneous localisation localises
the STM atom to a size LI. This is analogous to the resolu-
tion length scale (conventionally denoted as rc in collapse
models). We know that Lp

2 LI=L
3. We recall that L is the

Compton wavelength ℏ/mc of the aikyon. Moreover, we
propose that the classical approximation consists of
replacing the inverse of the spatial volume of the localised
particle – 1/L3, by the spatial delta function δ3(x−x0) so that
the contribution to the matter source action becomes

ℏ ∫
​
 
��
g

√
 d4x [L−2

p ×  1/LI ×  1/L] � mc ∫
​
 ds (63)

which of course is the action for a relativistic point particle.
Putting everything together, we conclude that upon

spontaneous localisation, the fundamental trace based
action for a collection of aikyons becomes

S � ∫
​
 d4x 

��
g

√
 [ c3
2G

R + c ∑
i
 miδ3(x − x0)] (64)

In this way, we recover general relativity at level III,
as a result of spontaneous localisation of quantum
general relativity at level I. We should not think of the

gravitational field of the STM atom as being disjoint from
its related fermionic source: they both come from the
same eigenvalue λ, being, respectively, the real and
imaginary parts of this eigenvalue.

We can now explain why each of the point mass
localisations represents a Schwarzschild black hole. The
localisation takes place to a size LI = L3/LP

2 and since the
mass of the entangled atoms is much higher than Planck
mass, and since L is its effective Compton wavelength, LI is
much smaller than Planck length. Thus we have a point
mass like solution confined to below Planck length, which
we have plausibly approximated by a delta function. The
associated Schwarzschild radius LP

2 /L is much greater than
Planck length, implying that localisation happens much
inside the Schwarzschild radius. The gravitational field of
such a matter source is described by the emergent Einstein
equations written above and is hence a Schwarzschild
black hole. We note that spontaneous localisation is a
process different in nature from classical gravitational
collapse. Since the mass of the macroscopic object is
Planck mass or higher, repeated spontaneous localisation
to the same location keeps taking place at an extremely
rapid rate, keeping the object as a classical black hole. In
the next section we will calculate the entropy of one such
black hole. On the other hand, those entangled particles
whose total mass is less than Planck mass, remain quan-
tum after spontaneous localisation (i.e. do not form a
black hole) because the Compton wavelength exceeds
Schwarzschild radius. Thus there is a transition from
classical black hole phase to quantum phase, when the net
entangled mass becomes larger than Planck mass. Since
there are no nongravitational forces in our theory, spon-
taneous localisation of massive objects necessarily forms
black holes. As and when these other interactions are
included, spontaneous collapsewould give rise to ordinary
(nonblack hole) macroscopic objects. Interestingly, Planck
length becomes the minimum observable length because
when the Compton wavelength L is smaller than Planck
length, the associated Schwarzschild radius exceeds
Planck length and is the observable size. At Planck mass,
the Schwarzschild radius and Compton length are both
equal to Planck length this being the minimum observable
length.

8 Including Yang-Mills fields

Our theory thus far includes gravity and Dirac fermions,
both described by one common term in the action principle
for the aikyon. It is incomplete because it does not include
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Yang-Mills gauge fields. Fortunately, it turns out that it is
not difficult to include gauge fields in the action for the
aikyon. We recall that in quantum mechanics the gauge
potential is included as a correction to the momentum, i.e.
as a correction to the Dirac operator (why this should be so
becomes clearer from our recently proposed definition of
spin angular momentum in this matrix dynamics: the
matrix dynamics combines linear angular momentum and
spin angular momentum into real and imaginary parts of a
complex momentum, respectively). Since the Dirac oper-
ator is represented as the gravitational aspect q̇B of the
aikyon, we represent Yang-Mills gauge field as qB and the
associated fermionic current as qF. Thus we defined the
modified Dirac operators DBnewi and DFnewi by:

˙̃Q B � 1
L
(iαqB + Lq̇B) ;   ˙̃Q F � 1

L
(iαqF + Lq̇F); (65)

DBnewi � 1
L
˙̃Q B   and  DFnewi � L2

P

L2

β1 + β2
2Lc

˙̃Q F (66)

Here, α is the gauge coupling constant. The new
Lagrangian is given by [22]

L � Tr[L2
p

L2
( ˙̃Q B +

L2
p

L2
β1

˙̃Q F .)( ˙̃Q B +
L2
p

L2
β2

˙̃Q F .)] (67)

It is highly significant that this Lagrangian has the
same structure as for pure gravity, except that the
dynamical variable has now become complex. As if to
suggest that after including nongravitational interactions it
is still possible to obtain a geometric picture. The result
from geometry relating Tr[DB]

2 to the Einstein-Hilbert ac-
tion can be generalised to include Yang-Mills fields. It is
possible that these complex dynamical variables represent
a complex metric with an imaginary antisymmetric part,
and that the latter relates to torsion and in turn to Yang-
Mills gauge fields and spin. This important possibility is
currently under investigation. The space-time symmetry
group would then be a non-commutative and complex
generalisation of the Poincare group; with the Lorentz
group part relating to gravity, and the translations relating
to spin/torsion/gauge-fields. The inclusion of Yang-Mills
fields also facilitates an understanding of quantum spin,
and of the spin-statistics connection [23].

The analysis of the equations of motion, the statistical
thermodynamics, spontaneous localisation and the clas-
sical limit proceed along the same lines as for the pure
gravity case. Significantly, we employed this analysis to
show that the Kerr-Newman black has the same gyromag-
netic ratio as the electron (both being twice the classical
value), an intriguing fact for which there was no
convincing explanation so far [22]

9 Physical applications and
predictions of spontaneous
quantum gravity

Since our theory of quantum gravity is intimately con-
nected to fermions and Yang-Mills fields, and to the low-
energy universe, it makes several falsifiable predictions
which can be used to confirm or rule out the theory. These
are:
(1) Spontaneous localisation (the GRW theory) is a pre-

diction of this theory, and the GRW theory is being
tested in labs currently. If the GRW theory is ruled out
by experiments, our proposal will be ruled out too.

(2) We have predicted the novel phenomena of quantum
interference in time, and spontaneous collapse in time.
This is discussed in [17] and is falsifiable.

(3) We have given a derivation of the Bekenstein-Hawking
entropy of the Schwarzschild black hole, from the
microstates of the aikyons that make up the black hole
[7].

(4) The theory predicts the Karolyhazy length as a mini-
mum length, as a consequence of the relation between
L and LI. This is testable and falsifiable, as discussed in
[24].

(5) This theory predicts that dark energy is a quantum
gravitational phenomenon, as discussed in [25].

(6) We explain why the Kerr-Newman black hole has the
same gyromagnetic ratio as the electron, both being
twice the classical value [22].

We are currently investigating if our theory can accom-
modate the standard model of particle physics, or at least
explain some of its features.

10 A comparison with other
quantum gravity approaches

Our theory has been built on the following foundational
principle: there ought to exist a reformulation of quantum
theory which does not refer to classical time. This naturally
leads us to the aforesaid deterministic matrix dynamics on
the Planck scale, building on the theories of trace dynamics
and NCG. We recover quantum field theory, and classical
general relativity, as low-energy approximations below the
Planck scale. The absence of superpositions of space-time
geometries in the classical limit is explained dynamically
because the original Hamiltonian ofmatrix dynamics is not
self-adjoint. Quantum theory is recovered when the
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antiself-adjoint part is negligible. Spontaneous local-
isation and classical limit is recovered when the antiself-
adjoint part is significant.

These features make our approach to quantum gravity
quite different from the other existing approaches. Many of
the existing approaches accept the validity of quantum
field theory at the Planck scale. This then necessitates that
the recovery of the classical limit is through one or the other
interpretations of quantum mechanics, such as the many-
worlds interpretation, consistent histories, Bohmian me-
chanics, or one of the other interpretations. Thus, is it
dynamical spontaneous localisation, or a quantum inter-
pretation, which leads to classicality? This is the most
striking difference: whether spontaneous localisation is
right or not can be settled by experimental tests.

Leaving aside for the moment the issue of classicality,
there is perhaps interesting commonality with some of the
other approaches to quantum gravity. The action principle
for the aikyon, which unifies gravity, gauge fields and
fermions, could bear a similarity to the classical closed
string of string theory, and this is an aspect worth inves-
tigating further. The quantum gravity theory that emerges
from our matrix dynamics bears resemblance to the
Wheeler-deWitt equation as well as to loop quantum
gravity, and these aspects are worth investigating further.

Our work resonates strongly with attempts to incor-
porate the standard model of particle physics in Connes’
NCG [26]. In fact our approach is strongly inspired by their
description of geometry (both Riemannian and noncom-
mutative) in terms of the Dirac operator. Without this
finding of theirs, our theory would not stand. We used this
result to bring gravity within the fold of trace dynamics. It
now remains to be seen if the standard model can be
explained from our Planck scale matrix dynamics.

There have been other interesting ‘quantum-first’ ap-
proaches to gravity, for example, the work of Giddings [27,
28] and Carroll and collaborators [29, 30]. The idea here is
that instead of quantising an already given classical theory
of gravity, one looks to add fundamental structure to
quantum mechanics, which would enable the inclusion of
gravity (in a quantum gravity sense), and from which
classical space-time geometry will be emergent, possibly
as a consequence of entanglement. There are important
commonalties between these approaches and ours. The
commongoal is that something should be done to quantum
mechanics so as to include gravity in it and also to make
key use of entanglement. What we ‘do’ to quantum theory
is to remove classical space-time from it. However, there
are important differences too, from these approaches.
These approaches would like to retain the concepts of
unitarity and locality/separability. The matrix dynamics

we construct is nonunitary, with unitary quantum field
recovered as a low-energy approximation, in the limit of
sub-critical entanglement. Also, the matrix dynamics is
separable in the sense that the different STM atoms are
enumerable, but the dynamics is not local, in the sense that
space-time and matter are not distinct from each other.
Classical space-time, locality, andmaterial separability are
recovered in a low-energy approximation, as a conse-
quence of supercritical entanglement. The presence of an
antiself-adjoint part in the matrix Hamiltonian assists the
entangled STM atoms to undergo dynamical spontaneous
localisation, giving rise to emergent locality, separability,
and classicality. This same nonunitary aspects permits the
Karolyhazy relation to arise, and hence also the quantum
gravitational dark energy. To our understanding, in the
other quantum-first gravity approaches, the status of the
cosmological constant and vacuum energy is not changed.

In spirit and philosophy, our work is closest to the
theory of emergent quantum mechanics being developed
by Torrome [31]. We are currently exploring the points of
agreement and differences in our approaches.

11 Concluding remarks

Quantum gravity, in its most fundamental sense at level 0,
is a deterministicmatrix dynamics of STMatoms [32]. These
interact with each other via entanglement. Hence entan-
glement is more fundamental than quantum theory, and it
is first and foremost a property of STM atoms evolving in
Hilbert space. This also makes it very clear why quantum
entanglement is oblivious to space and time (quantum
nonlocality) – because entanglement originates from level
0 and level I, where there is no space-time. Quantum dy-
namics should strictly be described at level 0 or level I.
Describing it at level II is an approximation; this can
sometimes lead to puzzles – for instance– the EPR paradox
ariseswhenwe try to describe quantumnonlocality at level
II. There is no EPRparadox at levels 0 and I because there is
no space-time there, so there is no question of a space-like
separation. Space-time is emergent from Hilbert space,
after spontaneous localisation takes place.

Any quantum theory of gravity must also explain
why superpositions of space-time geometries are absent
in the classical world. Moreover, the absence of position
superpositions of macroscopic bodies is a prerequisite
for the existence of classical space-time geometry. In
this way of thinking it becomes apparent that the solution
of the quantum measurement problem must come from a
quantum theory of gravity. Since our quantum gravity
predicts spontaneous localisation of fermions, we see
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that the process responsible for the emergence of space-
time is the same as the one that solves the measurement
problem.

In order to have a relativistic theory of spontaneous
collapse, it is necessary to treat time at the same footing as
space. This requires that just like the position operator,
time should also be treated as an operator – then there is
spontaneous collapse of time as well. The loss of coordi-
nate time as a parameter is compensated by the appear-
ance of Connes time as the new time parameter.

Many researchers have made the case that gravity is
not a fundamental force, but an emergent thermodynamic
phenomenon (Sakharov, Jacobson, Padmanabhan, Ver-
linde, amongst others). There are underlying atoms of

space-time. Adler has made the case that quantum theory
is an emergent phenomenon. We agree with both these
cases and we have made the case that quantum gravity
itself is an emergent phenomenon, coming from thematrix
dynamics of STM atoms. Space-time and its geometry, as
well as the phenomenon of gravitation, emerge after the
spontaneous localisation of the fermionic part of STM
atoms. The thermodynamic properties of black holes testify
for the emergent nature of gravity;while the randomnature
of outcomes in a quantum measurement testifies for the
thermodynamic nature of quantum theory. In fact, the
same process, viz. spontaneous localisation, explains the
origin of black hole entropy, and also the collapse of the
wave function in a quantum measurement.

Our underlyingmatrix dynamics is a deterministic and
time-reversible theory; it is even linear! The apparent
irreversible nature of wave function collapse, as well as of
black hole evaporation, arises only because we are exam-
ining a coarse-grained version of the matrix dynamics. It
would have been hard to anticipate that the sought for
quantum theory of gravity will turn out to the statistical
thermodynamics corresponding to the microscopic dy-
namics of STM atoms. In hindsight though, it seems
obvious that it should be so, because both gravity and
quantum theory exhibit strong thermodynamic features.
Quantum gravity is to the matrix dynamics of STM atoms
same as the thermodynamic properties of a gas are to the
mechanical motion of its constituent microscopic
molecules.

Instead of developing this story in the top-down
fashion as we have done in this article, one can now also
describe it in a bottom-up fashion, by starting at the most
basic level 0. We start with the action principle for STM
atoms and work out their Lagrangian dynamics. The sta-
tistical mechanics of these atoms gives rise to quantum
gravity, and by spontaneous collapse, to classical general
relativity with matter sources. Quantum field theory is
arrived at by borrowing quantum matter from quantum
gravity, and classical space-time from level III.

Figure 1: The four levels of gravitational dynamics. In this bottom-up
theory, the fundamental level 0 describes the “classical” matrix
dynamics of atoms of STM. This level operates at the Planck scale.
Statistical thermodynamics of these atoms brings us below Planck
scale, to level I: the emergent equilibrium theory is quantum gravity.
Far from equilibrium, rapid spontaneous localisation results in level
III: emergence of classical space-time, obeying classical general
relativity with matter sources. Level II is a hybrid level built by taking
classical space-time from level III and quantum matter fields from
level I, whereas neglecting the quantumgravitation of level I. Strictly
speaking, all quantum field dynamics takes place at level I, but we
approximate that to level II [7].

Figure 2: Tested and untested regimes of
dynamics.
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