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Abstract: The present study uses the theory of weakly
nonlinear geometrical acoustics to derive the high-
frequency small amplitude asymptotic solution of the
one-dimensional quasilinear hyperbolic system of partial
differential equations characterizing compressible, un-
steady flow with generalized geometry in ideal gas flow
with dust particles. The method of multiple time scales is
applied to derive the transport equations for the amplitude
of resonantly interacting high-frequency waves in a dusty
gas. These transport equations are used for the qualitative
analysis of nonlinear wave interaction process and self-
interaction of nonlinear waves which exist in the system
under study. Further, the evolutionary behavior of weak
shock waves propagating in ideal gas flow with dust par-
ticles is examined here. The progressive wave nature of
nonresonant waves terminating into the shock wave and its
location is also studied. Further, we analyze the effect of
the small solid particles on the propagation of shock wave.

Keywords: asymptotic solution; dusty gas; interaction;
shock wave.

1 Introduction

The study of elementary wave interactions consist of either
interaction between two waves colliding, or one wave
overtaking another, or one wave meeting a discontinuity.
Such a phenomenon frequently happens while studying
the wave propagation in the field of space science, space
re-entry, astrophysical phenomenon and aerodynamics
etc. Also, the analysis of how shock waves interact with
each other, as well as with the exhaust plume of an aircraft,
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has been an area of great interest among scientists and
engineers.

The propagation of waves in a medium is governed by
quasilinear hyperbolic system of PDEs. One often en-
counters certain kinds of discontinuities known as accel-
eration waves, shock waves and weak waves. The study of
these waves has been of great significance in engineering
science and nonlinear science due to its application in
various fields such as nuclear physics, plasma physics,
geophysics, astrophysical sciences and interstellar gas
masses.

In the present paper, we use the method of asymptotic
analysis to study the evolutionary behavior of shock wave
which is widely used by many researchers, e.g. Choquet-
Bruhat [1], Hunter et al. [2], Majda et al. [3] over decades.
Also, the qualitative analysis of interaction of nonlinear
waves can be obtained by the interaction coefficients
which occur in transport equation and these coefficients
are measure the coupling strength between different types
of wave modes. The method of asymptotic analysis has
been widely used to study the propagation of weak shock
waves governed by the nonlinear hyperbolic system of
partial differential equations. The study of resonantly
interaction of shock waves by using “Asymptotic analysis
method” for one-dimensional ideal gas flow in presence of
the solid dust particles have not been analyzed by any
author till now. To analyze the evolutionary behavior of
shock wave in ideal gas with dust particles is more complex
in comparison to ideal gas flow. A different kind of physical
phenomenon which occurs in various processes such as
space re-entry, chemical explosion, nuclear explosions,
supersonic flow and collision of two or more galaxies are
described by mathematical model of quasilinear hyper-
bolic system of partial differential equations.

In last few decades, many attempts have been made to
analyze the asymptotic properties of shock waves in
various gasdynamic regimes where the governing equation
is a system of quasilinear hyperbolic partial differential
equations. The “Weakly nonlinear geometrical acoustics
theory” provides a methodical technique for dealing with
the interaction of nonlinear high-frequency small ampli-
tude waves. The wave propagation phenomenon with an
added effect of nonlinearity has been analyzed in past but
the closed form exact analytic solution of the equations
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governing the motion of waves has never been obtained. In
most of the literature, only approximate analytical or nu-
merical solutions are discussed. In this context, it is worth
to mention the contributions made by many authors like
Hunter and Ali [4], Gunderson [5], He and Moodie [6],
Whitham [7], Moodie et al. [8], Arora and Sharma [9], Arora
[10], Fusco [11].

From the physical and mathematical view point, the
discussion of shock waves in an ideal gas consisting of
solid particles is a topic of great interest because of its
numerous applications such as underground explosions,
interstellar masses, lunar ash flow and explosive volcanic
eruptions etc. Dusty gas is composed of small solid parti-
cles and gas in which solid particles do not attain more
than 5% of its entire volume. In mixture of gas and solid
particles, the study of shock wave has more significance
due to its wide applications in several areas such as
supersonic-vehicle in sand storms, supersonic flights in
polluted air, nuclear reaction, aerospace engineering sci-
ence etc. Vishwakarma et al. [12-14] have discussed the
propagation of shock wave in dusty gas with varying
density. Chaturvedi et al. [15-18] have discussed the evo-
lution of weak shock wave in two-dimensional, steady
supersonic flow in dusty gas. Sharma et al. [19] have used
the scheme of multiple time scales to study the wave
interaction in a nonequilibrium gas flow. Pooja et al. [20]
and Nath et al. [21, 22] have used an asymptotic technique
to analyze the evolution of weak shock waves in nonideal
magnetogasdynamics and nonideal radiating gas flow.
Singh et al. [23] have theoretically investigated the propa-
gation of shock wave in radiative magnetogasdynamics.
Propagation of shock wave in a mixture of gas and dust
particles has been widely investigated by several authors
such as Nath et al. [24], Nath [14, 25] and Nandkeolyar
et al. [26]. Singh et al. [27-30] have studied the evolu-
tionary behavior of shock wave in various gasdynamic
regimes. Bhattacharyya et al. [31, 32] have discussed
about the simulation of Cattaneo—Christov heat flux on
the flow of single and multiwalled carbon nanotubes
between two stretchable coaxial rotating disks. Seth et al.
[33] have studied the partial slip mechanism on free
convection flow of viscoelastic fluid past a nonlinearly
stretching surface. Jena et al. [34] and Radha et al. [35]
have applied the methods of relatively undistorted waves
and weakly nonlinear geometrical optics to study the
situations when the disturbance amplitude is finite,
arbitrarily small and not so small in nonideal gas flow
and relaxing gas.

The main motive of the present paper is to apply the
method of resonantly interacting multiple time scales to
study the small amplitude high-frequency waves for one-
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dimensional, unsteady planar flow, cylindrically symmet-
ric flow and spherically symmetric flow in a dusty gas. The
transport equations for the amplitude of resonantly inter-
acting high-frequency waves in a dusty gas are derived.
Also the existence of weak shock waves in a dusty gas is
discussed here. Further, the evolutionary behavior of weak
shock waves propagating in ideal gas flow with dust par-
ticles is examined here.

This paper is organized as follow: in Section 2, we
describe the basic equations for the dusty gas flow. Also,
we reformulate the governing equations into quasilinear
system and derive the characteristic for the system. In
Section 3, we use the multiple time scale method to
obtain high-frequency small amplitude asymptotic so-
lution to the system written in Section 2. The transport
equations for the propagation of shock are derived in
Section 4. In Section 5, we investigate the conditions
which explain the evolutionary behavior of shock wave
for the planar and nonplanar cases. In the last Section 6,
we discuss the results and conclusion of the present
work.

2 Problem formulation and
characteristics

The basic equations governing the one-dimensional
compressible, inviscid, unsteady planar and nonplanar
flows in a dusty gas mixture following the equation of state
of Mie Griineisen type

(1-ky)pRT

p= T1-2) )]

are written as [16-18, 21, 22]

ot ox x T Tx T 0, (2(2)

ov ov op
P(at ' Vax> o O (b))
op op o mv\
5 Vax +pc2<ax+x> =0, 2(0))

where v is the velocity of the particle along the spatial
coordinates x. The symbols p, p and ¢ represent the density,
pressure and time, respectively. T denotes the temperature
and R is the gas constant. Here, m = 0 exhibits the planar
flow, m = 1 exhibits the cylindrically symmetric flow and
m = 2 exhibits the spherically symmetric flow. The entity Z
is the volume fraction and k,, is the mass fraction of solid
particles in the mixture which are defined as
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where my, is the total mass of the solid particles, Vg, is
volumetric extension of the solid particles, Vg is the total
volume of the mixture and m, is the total mass of the
mixture. The quantity

c = (Tp/((1-6p)p))¥?, is the equilibrium speed of
sound with

= y(1+AB)/ (1+ABy), 3)
k s
where y = z—’v’,)lz (1—7pkp)’ﬁ:c(‘:_:' 4)

here ¢, is the specific heat of the solid patticles, c, and ¢,
are the specific heats of the gas at constant pressure and at
constant volume respectively. The relation between the
entities Z and k,, is defined as Z = ¢p, where ¢ = ” w1th
psp as the specific density of solid particles and e is the
internal energy per unit mass of the mixture which is given
by

_ a-2p
(T-1p)’

Now, we write Equation (2) in the following matrix
form

®)

oU ou
y + Pa + Q = 0, (6)
where U = (p,v,p)”, Q = (mpv/x,0,pc* mv/x)"and P is the

coefficient matrix of order 3 x 3 having the components P,
Pll — PZZ
Pl3 — PZl

=PP =y,

_ p3l _
=P =0, (7)

P? =p, P? = %, P? = pc® = Tp/ (1- ¢p).
Here the superscript “tr” represents transposition.
The eigenvalues of the matrix P are given as
A =v+c¢ A = v, A3 = v —c. Therefore, the system (6),
which has distinct eigenvalues, is strictly hyperbolic and has
three families of characteristics corresponding to three
distinct eigenvalues, out of these three characteristics two
represent waves moving in +x directions with speed v + c.
The remaining one characteristic exhibits the particle path
propagating with velocity v. Now, we suppose that the shock
waves are propagating into an initial back ground state
Uo = (o, 0, po)". At constant speed vy = 0, the character-
istics speeds are provided by A; =co, A, =0, A3 = —co,
where the subscript O indicates the evaluation at
U = Upwhich is identical with an equilibrium state.
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3 Weakly nonlinear resonant
waves

In this segment, the multiple time scale method will be
applied to obtain high-frequency small amplitude asymp-
totic solution to the system of Equation (6) when the
attenuation time scale (7,) is large in comparison to the
characteristic time scale (7.), it means & = 74,/7T, < 1. Let
19 and r( = 1,2,3), respectively, exhibit the left and right
eigenvectors of the matrix P, corresponding to the eigen-
values A; = ¢y, A, = 0,43 = —co. The eigenvectors I and r?
(i=1,2,3) satisfy the mnormalization conditions
197D = §;(1<i<3,1<j<3),where §; is Krénecker delta.
Now under the above assumptions the left and right ei-
genvectors are given by

1 C
l(l) = O>p—0:— > W = 1)_0>C2 >
2cy’ 2¢3 g Py °

-1
19 = (-¢,0,1), r? = <c_2’ o,o>, ®)
0

©) —Po 1 r® = —Co
l <O 2C0 2C2> L O’C%) ’

Now, we explore the asymptotic solution of Equa-
tion (6) as £ — Oin the following form

Ux,t) = Uy + £U1(x, t, §) +& U2<x, t§) +0(8), )

where U, is smooth bounded function of its arguments and
U, is bounded function in (x, f) coordinate in a definite
bounded portion containing atmost sublinear growth 9 as
d — +oo Sharma and Srinivasan [19]. Here 9 = (9,,9,,8;) is
@st variable and is symbolized as 9= 6/, with
6 = (6,,6,,05),0;(1<i<3) being the phase function of ith
wave communicated with the characteristics speed A;. Now
using the Taylor’s series expansion of matrices P and Q,
about the constant state U, in powers of ¢ and using
Equation (9) in Equation (6) and then substituting the
partial derivatives 0/0Y(Y will either be x or )
byd/dY + &' Y123 (96,/0Y)0/09; and equating to zero the
coefficients of & % and &' in resulting expression, we get

=3/ 00; 06;\ oU,

H(zat p ) e (10)
=3/ 00; 06;\ oU, oU, oU,
%(’E*Pa,c)as =5t P ~ (WY Qo

i3 06; oU,
llaf(Ul VP)O&TT (11)
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where V is the gradient operator with regard to the
dependent variable U, I is the identity matrix of order 3 x 3.
Now all the phase functions 6; (1 < i < 3) propitiate the
Eikonal equation:

de t<166 PQ()G) =0, (12)

ot ox
where (det) represents the determinant. Now we consider a
simplest phase function given as

0;(x,t) =x-Ajt, 1<i<3. (13)

We infer from Equation (10) that for all phase functions
0;,the derlvatlve terms "Ul are parallel to the right eigen-
vectors r of the matrix PO, thus we have

U, = If o; (x, t,9)r®, (14)
i=1

where the scalar function o; = (I'- Uy), is recognized as
wave amplitude that depends on the ith fast variable §;. The
wave which forms here, whether it is an oscillatory wave or
a pulse, is based on dependency of g; on 9;. Let us suppose
that o0; (x, t, 9;) has zero mean value with regard to the fast
variable 9;, it means

11r£1° j 0; (x,t,9,)d9; = 0. (15)

We utilize the Equation (14) in Equation (11) which
gives the following relationship for U,

Zm £
=1

(16)

Further, utilizing Equation (16) in Equation (11) and
pre-multiplying the resulting expression by I yields the
system of decoupled inhomogeneous first-order PDEs
which are given as

= om. o0, o0
E(A A)ag —y—/\a*—l (Uy-VQ)o
17)

zl<’>(U1 VP)y— g <i<3.

j=1

Now theterm £ + A; 2

i =, which exhibits the ray derivative, is

denoted by % d"’ hence the Equation (17) may be recast as
om; da,
];(A A)ag - _Bl i 11 lag ]zk ]k Jag

=Hi (X’ t> '91) 82)'93)) 1Si53~ (18)
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The ith characteristics in Equation (18) is provided
by

éZ (Ai—Aj) for i#j,éZO,r;li =H,'.

Therefore, we determine the asymptotic average of
Equation (18) along the characteristics and then sup-
plicate to the sub-linearity of U, in 9, which ensures that
there is no secular term in Equation (11). In view of
Equation (18) we have, along the characteristics, 9; are

stable and the asymptotic mean value of m vanishes
which implies that the wave amplitude o0;(1<i<3)
propitiating the succeeding system of coupled integro-
differential equations:

00; 00; 00;
ot g Hhor Qioigg
i 17 A
+ Z Q}k lim — J 0j [191 + (Al —Ai)S]Uk [191 + (Al —Aj)S]dS =0
izjzk T—eo 2T T
(19)
where g, = ""k and the coefficient §; and Q]’k are written
as

B =19(r'-vQ), Q=17 vP)r (20)

Now we have to determine the coefficients S;which
vanish for plane waves (m = 0) therefore in this case the
governing system does not contain any source term.
Further, in the absence of dust particles, Equation (19)
changes to the same equation as discussed in the study
by Majda and Rosales [3]. Furthermore, the interaction
coefficients Qj’:k are asymmetric in j and k which quantify
the coupling strength between jth and kth wave modes
where j # k that can produce an ith wave (i #j # k). The
interaction coefficients Q]’:k for i =j=k assign to the
nonlinear self-interaction. Here for genuinely
nonlinear waves, the interaction coefficients are
nonzero and zero for linearly degenerate waves. Also, it
is noticed that if each of the coupling coefficients
Q}k(i;éjv&k) are zero or the integral in Equation (19)
becomes zero, then we conclude that the wave do not
resonate and Equation (19) detracts to the uncoupled
system of Burger’s equations. Now from the Equa-
tion (20), in the governing system, the coefficients ;and
Q]’:k provide the qualitative picture of the nonlinear
interaction procedure and it can be demonstrated by the
formulas as given in (20).

Therefore, these coefficients are written as
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B = o » B,=0, ﬁ3 Ty
Q,=-Q = ; = o, (say)
? 2 2¢0po (1~ ¢p) l )
-2 3(1-T
Q= -5, = PPy + Co( ) @ (say), @)
Po(1-¢py)
Qéz = sz = ng =0,
co(1+T)
Q =-0) =—2"""7__ g(say).
S gpy )

Now after some simplification, the resonant Equa-
tion (19) can be written as

%+c %+@a +a o%
o Pox T TPToY,
Ll 540 @
+%1j£10—jk< 5 >03(x,t9)d9 0,
00,
—2-0, 2
ot 0 @)
%0y 00y mey, 00,
ox Yot x0T Ta8,
1 I 9; + (24)
_}ljgﬁ ka<x,, 5 )01(xt0)d9 0.
Here k is kernel which is written as
9+6 a; 00, 9+6
"(“n) 26.92< xh 2)‘ @)

In Equation (22), the integral average term shows the
contribution to the wave amplitude o; as a result of the
nonlinear interactions of the wave field o, with the wave
field o3. Equivalently from Equation (24), the integral
average term shows the contribution to the wave amplitude
03 as a result of the nonlinear interaction of the wave field
0, with the wave field ;. The nonlinear term proportional
to 0107 and 0507 in (22) and (24) account for self-interaction
which generates higher harmonics leading to the distor-
tions of the wave profile and consequent shock formation.
The result is that the two acoustic wave fields o; and o3
exhibits a strong effect from the nonlinearity present in the
system under study. More detailed analysis may be pre-
sented on the similar lines as given in the study by Sharma
and Srinivasan [19].

Let us consider that the initial value of o; at time t = 0
given by a? (x, 9;). Further from Equation (23), we obtain
o(x,t,9) = 08 (x,81). Therefore, the system of Equations
(22-24) reconstruct to the pair of equations for the wave
field 0, and wave field g3 which connect through the linear
integral operator containing the kernel which is given by
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(2} 60'2

> s == 3a > . 2
k(x,t,9) 2 29, (x,9) (26)
Now if the initial data o? (x, 9) are periodic function of
period 2 of the phase variable 9, the pair of resonant

asymptotic equations is written as

90, 001 me 001
ot Yox 2 7PN,
17 9, +0 7)
+£Ink<x,t, 3 )03(x,t,9)d9
:O,
003 003 _mc - 003
ot °ax % ° P79,
(28)

“5 jﬂk(x,

:O’

t, 83;9)01 (x,t,0)d0

The kernel k appearing in Equations (27) and (28) is
given by the Equation (26).

4 Nonlinear geometrical acoustics
solution

The approximate asymptotic solution of the form (9) of the
system (2) or (6) satisfy the small amplitude oscillating
initial data given by

0) = Uy + &UY (x,x /&) + O (&),

which is nonresonant when the functions Uf (x,x/&) are
smooth with a compact support [3]. In fact the expression
(9), with U; as provided by Equation (14), is uniformly valid
to the leading order if the shock waves are present in the
solution.

Further, the characteristics equations are written as

d&_a;ai dt_e,-
dx ¢, dx ¢’

U(x, (29)

(30)

where g; is either +1 or -1 for i = 1 and i = 3, respectively.
Thus in view of Equation (29), the decoupled Equations
(27) and (28) may be recast as
dl9i mao;
—_— =, 31
dx 2x GV
Now Equation (31) produces on integration along the
rays, S; = X — e; o t =constant

-m/2
0 X
0;=0; (S T)| — ,
Si

(32



206 = P.Gupta et al.: Wave interaction in dusty gas flow

where the function o? is derived from the initial data (29)
and the fast variable 1; parameterizes the set of character-
istics curves which are given in Equation (30).

Therefore, one can derive from Equation (30),

T =9 - eas 0¥ (s, T1)B™ (t), (33)

L eicot\ ™’
where B{™ (t) = f(l +'S—0> dt.
0 i

Here, we infer that the wave amplitude decays as x™?

which is similar to corresponding classical gasdynamic
case Hunter and Keller [2]. In view of U} (x,x/t) and the
initial data given by Equation (29), one can find the solu-
tion of the system of Equations (6) as

—m
2

P (6,t) = po +&(07 (51,71) (X/ (X = Cot))
+09 (53,73) (x/ (x+cOt)ﬁ)—C—"203 (6x/§)+0(&),
(34(a))
v(x,t>=€<;—2rr? (51,71) (x/ (x—cot)

—%02 (83,73) (x/ (X+Cof))7m>+0('fz)> (34(b))

0

Pt =po+&(cho? (s1,1) (x/ (x—cot))

4 )
+C,03 (S3,T3) (X/ (X+C0t)) ? )+O('{ )

Now let us suppose that the fast variable 7; given by
Equation (33), may be written at t = 0, 7; = x/¢ . Therefore,
with the help of solution (34) at t = 0, i.e. the initial values of
0; (1 <i < 3) are written as

1
00 (x6,1y) = %vi’ (6 T) + 5,587 06T, (35(a))
0% (x,11) = -2 p° (%, x/ &) + P (x,x /&), (35(b))
1
0% (x,1)) = —%v? (0T +5gP 06T (50

Therefore, we have obtained the complete solution
of the system of Equations (6) in view of (29) which is
given by (34) and (35). Further if there is any multivalued
overlap in the given solution then it has to be dealt by
introducing shock waves into the solution. Now by using the
Rankine-Hugoniot jump conditions, shock wave is intro-
duced into the solution to prohibit the multivaluedness.

5 Shock waves

The shock location 9; may be obtained from the following
relation Hunter and Keller [2],
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dd—i? = % Qo +0{7), (i=1, i=3), (36)
which is the shock speed in the t — 9; plane, where g{~ and
0" exhibit the value of the o; just ahead and behind the
shock wave serially. Furthermore, we have ai(’) = 0in the
undisturbed region for the shock front. Now by using the
Equations (36) and (32) and leaving the superscripts on §;
and ¢" in Equation (36), we obtain

dlgi _ a3 0 X /2
E - ?el O-i (Sz, T1)<S_,> .

Further, using the Equation (33) and Equation (37), we
obtain the following relation between e; and ¢ on the shock,

B™ (t) = —( 2e: ) To? (£)dt'.

G7)

(38)

a(09)" ) 0

Hence because of Equation (33), Equation (38) provides the
following equation which negotiates the shock path
parametrically.
9 =1;- 2 Tf o? (t)dt (39)
1 1 010 0 i M
Now we conclude that if 0? (0) # O then shock forms

immediately right from the origin [11, 15]. The approxi-
mation between 1; and t is provided as

Tj ~ —(%)ei o B™ (t); of =0°| ,hence

7;=0

.9,~~<"‘73>e1~ o} Bl.(””(t). Now it is indicating that the

-m/2
shock moves with velocity 5 e; o} (s%) which is totally

same as Equation (37). We also consider the case when only
outgoing waves are generated from the source, that is
compression, is followed by rarefaction implying as
o? (1)) > 0 as

7; — 7; which shows that in the surroundings of the
wavelet 7; = 7}, the wavelets will never approach the
shock and the shock is asymptotic to

. RY)
9 ~ 7} + Dei\2a; B{™, where D = (—¢; f:)’ o (£)dt)

and from Equation (32), the amplitude approximates

i -m/2 [ ¢ ) N\ —m/2 -1/2
2D<1+E‘C°t> (j<1+e‘cot> dt’) . (40)
a3 Si 0 Si

The effect of dust particles enters into the expression for
amplitude through the parameter a3 and c,. From the rela-
tion (40), we infer that the amplitude is inversely propor-
tional to as. Also, the amplitude o;varies according

as

g;~



DE GRUYTER

to (a;3)"Y2. Also an increase in a3 causes to decrease the
wave amplitudes. An increase in the dust particle density
causes to decrease the wave amplitude which causes to
enhance the wave decay process. Further, it is observed here
that the decreasing (increasing) values of the mass fraction
of dust particles causes to enhance (slow down) the ampli-
tude of the shock waves, as a result the shock formation
distance increases (decreases), i.e. the shock formation is
delayed (early). Also, the amplitude has been computed to
see the effect of dust particles which is presented in Table 1.
It is clear from Table 1 that the presence of dust particles has
same influence on the wave amplitude as reported qualita-
tively. Further, in the absence of dust particles, our results
are in close agreement to the results as reported in [7].

It is clear from the Equation (40) that in the absence of
dust particles,
t2 (m=0),
t—3/4 (m — 1),
t'(logt)™? (m=2).

We obtained that shock waves decay like 2 for
planar flow. In same manner shock waves decay like /4

shock waves decay like ~

and t'(logt)™? for cylindrically symmetric flow and
spherically symmetric flow, respectively. Hence, in case of
nonplanar flows, the shock formation distance increases in
comparison to the corresponding planar flows. Also, the
results obtained here are similar to the results as reported
in [31].

6 Results and conclusions
The present study uses the multiple scales method to derive
the small amplitude high-frequency asymptotic solution

for the system of nonlinear partial differential equations

Table 1: Wave amplitudes for nonplanar flow for different values of
k, and B.

k, B r Computed (0)
m=1 m=2

0.1 0.05 1.39587 10.7903488 14.7759488
0.1 0.1 1.39223 10.77965228 14.7253477
0.1 0.5 1.36556 10.70230137 14.4457068
0.2 0.05 1.39587 10.77689045 14.7261661
0.2 0.1 1.39223 10.75707175 14.5132022
0.2 0.5 1.36556 10.58033799 13.9716292
0.4 0.05 1.39587 10.74662136 14.5476528
0.4 0.1 1.39223 10.69203578 14.3121624
0.4 0.5 1.36556 10.37485453 12.86823074
0.6 0.05 1.39587 10.68405753 14.2726328
0.6 0.1 1.39223 10.57655768 13.76453187
0.6 0.5 1.36556 10.11834066 11.841303255
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characterizing one-dimensional compressible unsteady,
planar and nonplanar flows in a dusty gas. The theory of
weakly nonlinear geometrical acoustics is utilized to
examine the resonant interaction of waves and to analyze
the evolution of shock wave in a dusty gas flow. The
transport equations for the wave amplitude along the rays
for the dusty gas flow, comprising a system of inviscid
Berger’s equations with known kernel, has been derived.
The qualitative analysis of nonlinear wave interaction
process and self-interaction of nonlinear waves which exist
in the system under study can be made by using the co-
efficients occurring in the transport equations. In our dis-
cussion the Euler equations reduce to a pair of
asymptotically resonant equations for the fields of acoustic
wave. The nonlinear interaction of the wave fields and self-
interactions which generate higher harmonics leading to
the distortions of the wave profile and consequent shock
formation has been discussed. A nonresonant multiwave
mode matter has been discussed by Hunter and Keller [2].
Here, it is obtained that the wave fields do not get across
with each other which is connected with the particle path
way, however they interact with an acoustic wave field to
yield resonant contribution regarding the other acoustic
wave fields. The acoustic wave fields may or may not get
across to each other but in either case their entire contri-
bution toward the entropy field must be zero. We require a
suitable value of ¢, to assess the influence of dust particles,
which enters into the solution through the parameter c,.
Now any change in value of ¢, affects the velocity, pressure
and density of the high-frequency small amplitude type
waves. It is clear from Equation (34) that the increasing
values of ¢, causes the density, velocity and pressure of the
high-frequency small amplitude waves to increase. Also,
we have discussed here about the presence of shock and
their position in the dusty gas. It is noticed from Equa-
tion (33) that in a contracting piston motion having cylin-
drical symmetry, if the initial wave amplitude exceeds a
critical value then the shock forms before the focus, but in
case of spherical symmetry, a shock is always formed
before the formation of focus, does not matter how small be
the initial wave amplitude. The existence of shock wave in
a dusty gas is also discussed here. Therefore, we conclude
that for nonplanar flows the formation of shock wave de-
lays in comparison to the similar cases of the planar flows.
Also, the decreasing (increasing) values of the mass frac-
tion of dust particles causes to increase (decrease) the
amplitude of the shock waves, as a result the shock for-
mation distance increases (decreases), i.e. the shock for-
mation is delayed (early). Also, the results obtained here
are similar to the results as reported in the study by Pai
et al. [31].
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