DE GRUYTER

Z. Naturforsch. 2020; 75(7)a: 609-620 a

Shilpa Garai, Moumita Garain, Sudip Samanta and Nikhil Pal*

Dynamics of a discrete-time system with Z-type

control

https://doi.org/10.1515/ZNA-2020-0059
Received February 25, 2020; accepted May 13, 2020; published online
July 3, 2020

Abstract: In community ecology, the stability of a pred-
ator—prey system is a considerably desired issue; as a
result, population control of a predator—prey system is very
important. The dynamics of continuous-time models with
Z-type control is studied earlier. But, the effectiveness of
the Z-type control mechanism in a discrete-time set-up is
lacking. First, we consider a Lotka—Volterra type discrete-
time predator—prey model. We observe that without con-
trol, the system exhibits rich dynamical behaviors
including chaotic oscillations. We apply the Z-control
mechanism in both direct and indirect ways to the system
and observe that in both cases, controllers have the prop-
erty to drive the populations of the system to the desired
state. We conduct numerical simulation as supporting ev-
idence of our analytical results.

Keywords: chaos control; discrete-time system; ecosystem
conservation; stability; Z-type control.

1 Introduction

Ecology is the branch of biology, which addresses the full
scale of life of species together with their physical environ-
ment that spans the entire planet [1]. The study of ecology
provides information about the interactions among living
and non-living things and the energy transfer from one tro-
phic level to another trophic level through which the or-
ganisms survive in the world. Community ecology studies the
interactions between the populations, for example, compe-
tition and predation [2]. These relationships may be repre-
sented through a food web. A food web consists of several
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food chains and a food chain shows how the organisms are
related to each other by their food [3]. Each level of a food
chain represents a different trophic level and food energy is
transferred from one trophic level to another trophic level by
which the ecological balance is maintained [4]. But recently,
the ecological balance is disturbed due to the changing
climate, habitat loss, degradation, etc., [5]. For these reasons,
animal and plant species are moving in the way of destruc-
tion, which changes the ecosystem significantly. So, the
preservation of ecological balance is very important and it
will be possible if all species remain in the desired state.

To describe and analyze the predator—prey relation-
ships, mathematical model has become a very important
tool for its huge applications, where the models are usually
framed by a set of relations and variables [6]. In mathe-
matical modeling, there are mainly two alternative frame-
works, discrete-time set-up, and continuous-time set-up,
within which model variables develop over time. Contin-
uous-time systems are described by differential equations.
On the other hand, discrete-time systems are described by
difference equations [7]. Difference equations are used to
compute the population size at discrete points in time.
Discrete-time models are more appropriate in small pop-
ulation size or when the population having no overlapping
generation. Many annual plants and insect species (like
ants, grasshoppers, budmoths, and cicadidae, etc.,) have
no overlap in their successive generations, so their pop-
ulations obey discrete-time behavior [8, 9]. On the other
hand populations with overlapping generations are
modeled by continuous-time model [10]. However, we can
get rich and complex dynamics in just one-dimensional
discrete-time model. For instance, chaos can be exhibited
in one-dimensional discrete-time model [9]. Unfortunately,
empirical evidence to support this theoretical possibility is
scarce. Turchin and Taylor (1992) [11] fitted a minimum of
18 year’s time-series data for 14 insect and 22 vertebrate
populations by using single species difference equation
model. They observed chaos in only one insect population
(Phyllaphis fagi). They concluded that the complete spec-
trum of dynamical behaviors, ranging from stability to
chaos, is likely to be found among natural populations.
Costantino et al. (1995) [12] reported a joint theoretical and
experimental study to test the hypothesis that changes in
demographic parameters may change the predictability of
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population fluctuations. They predicted by using single
species difference equation model (three-dimensional
map for larva, pupa, and adult), that changes in adult
mortality rate would produce a substantial shift in pop-
ulation dynamic behavior. By experimentally manipu-
lating the adult mortality rate of flour beetle Tribolium,
they also observed changes in the dynamics from stable
fixed points to periodic cycles and aperiodic oscillations
that corresponded to the prediction of the mathematical
model. On the other hand, for showing chaotic behavior in
a continuous-time autonomous model minimum three
species are needed [13, 14]. Discrete-time models are easy
to understand, develop, and simulate. For modeling
experimental data, which are almost always discrete, it is
mostly suitable [15].

Various types of mathematical models have been
developed to describe and analyze different types of
biological phenomena by which one can predict the
future state of a system. Historically, at first, a single
species population model was formulated by Malthus
[16]. Also, it is well known that many ecological models
have been developed by incorporating logistic growth
term for the prey species and Holling type-II functional
response for the predator species after the pioneering
work of Lotka and Volterra [17-19]. In recent years, the
ecological balance is one of the most desirable and widely
investigated issue in both continuous-time and discrete-
time systems [8, 20]. If the population sizes of interacting
species are controlled anyhow, then the ecological bal-
ance may be maintained. Different biological phenomena
like imposition of a population floor [21, 22], addition of
refugia [23], omnivory [24], intraspecific density depen-
dence [25], toxic inhibition [26], spatial effect [27],
dispersal [28-30], predator switching [31, 32|, Allee effect
[33], additional predator [34], additional food [35], har-
vesting of predator [36], fear effect [37, 38], etc., may in-
crease the ecological stability. Although a system may be
stable by incorporating these phenomena, these are not
always capable to achieve desired population abundance.
But there is an effective and powerful control strategy
named Z-type control mechanism which is capable to
achieve ecological balance and to drive the abundance of
a species to the desired state. The Z-control mechanism
can keep species away from extinction and improve
ecosystem stability.

The Z-type control mechanism is a neural dynamic
approach. It is an error-based method that can be used to
control a system described in the form of a set of equations,
which are termed as system equations. In this method, the
design formula guarantees that each component of the
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error function converges to zero. This idea is performed by
compelling the difference between the actual output and
the desired output of the system to be zero. The Z-type
control can be applied through both the direct and indirect
ways in a system. In a direct way, control can be applied to
all the variables simultaneously for controlling the dy-
namics of the system. In indirect control, if one variable
needs to be controlled, then the control is applied to
another variable.

Many researchers have investigated different types of
continuous-time models with the Z-type control mecha-
nism. Zhang et al. [39] considered the Lotka—Volterra
predator—prey model with the Z-control mechanism in both
direct and indirect ways to drive the prey and predator
populations to the desired states for preventing species
from extinction. Lacitignola et al. [40] studied a general-
ized predator—prey system with Z-type control. Nadim et al.
[41] explored the possible applications of fear in the prey
population by changing the density of the predator popu-
lation and observed that after incorporating the Z-control
mechanism the system reaches to a stable steady-state.
Alzahrani et al. [42] studied an eco-epidemiological model
with Z-type controller on the predator population and
observed that the disease, as well as the chaotic oscilla-
tions, can be removed from the system. Samanta et al. [43]
proposed and analyzed an epidemic model with the Z-
control mechanism. Recently, Lacitignola et al. [44]
applied the Z-type approach to control backward bifurca-
tion phenomena in a SIR model. Very recently, Senapati
et al. [45] studied an SI type disease model employing
Z-control approach through the removal of the population.

So many continuous-time predator-prey models
equipped with the Z-type controller have been developed
successfully, but as far as our knowledge goes, there is no
such investigation on the predator—prey model with Z-type
control in the discrete-time system. This is the first liberal
attempt to investigate the predator—prey model with the
Z-type control mechanism in a discrete-time set-up.

Here, we consider a Lotka—Volterra type predator—
prey model in discrete-time set-up and apply Z-type control
mechanism in both direct and indirect ways for controlling
the populations. The rest of the paper is ordered as follows.
In Section 2, a direct Z-control mechanism is applied to a
predator—prey model. In Section 3, an indirect Z-controller
on the predator population is applied to control the prey
population density. In Section 4, we come to the end of the
paper with final remarks, in which we discuss how the
inclusion and/or exclusion of species into or from the
system depending on the sign of the update parameter
helps to get a desired state of the system.
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2 Direct control of populations

In this section, we discuss briefly the general design
procedure of direct Z-control laws for a discrete-time
system. To do this, a controller group is considered for the
simultaneous control of prey and predator populations
by taking the exogenous measures for both species and
applying the Z-type dynamic method. We also check
the convergence performance of the controller group
explicitly.

2.1 Controller-group design

Here, we consider a general two-dimensional model in
discrete-time set-up as follows:

{ Xp =f (XmJ/n),

2.1
yn+1 :g(Xn’yn)' ( )

After introducing two exogenous measures for inter-
acting species, the above model takes the following form:

{ Xn+1 =f (Xn) yn) ~ UnXp, 2.2

Y = g(men) — WnYn>

where the exogenous measures u, and w, denote the
direct control variables for species-I and species-II
respectively. Now our aim is to drive the populations of
species-I and species-II to the desired states simulta-
neously i. e., [X,,¥,]" — [P, q,]", where p, and g, denote
the desired population densities for species-Iand species-
II respectively and the superscript T denotes the trans-
pose of a vector or matrix. In this error-based method, to
design the Z-type controller group the following steps are
followed:

At first, a vector-valued error function e, is considered

e, = e:l = Xn = Pn .
"le] [V
Secondly, the design formula is defined in such a

way that the error function approaches to zero and it is
adopted as:

as

(2.3)

(2.4)

€ni1 = —€n,
m

where m>1 is the design parameter, used to scale
convergence rate.
Substituting Eq. (2.3) in Eq. (2.4), we get

[Xn+1 _pn+1 :| — i |:Xn _p" :| (25)
Vna1 ~ Anu m | Yn = dn
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Now from Eq. (2.2) and (2.5), finally we obtain the
analytical expression of the control variables as:

Up = Xln [f(men) _% (Xn _pn) _pml}’
(2.6)
1 1
W= [g(xn,yn) — 0= dn) - qml],
which is the Z-type controller group for the simultaneous
control of species-I and species-II.

2.2 Theoretical analysis

In this subsection, the convergence performance of the Z-
type controller group for the above generalized two-
dimensional model is examined theoretically. Here, it is
shown that each component of the tracking error vector for
the above model (2.2) converges to zero.

Theorem 1: For a bounded desired state [p,,q,]”, starting
from a positive initial state [xo,yO]T, the tracking error
vector e, of the above model (2.2) furnished with the Z-type
controller group (2.6) converges to zero.

Proof: According to the design procedure of Z-type
controller group (2.6), we have

1
1 _ 1
en+1 - men’
@.7)
1
2 _ 2
en+1 - men’

where, the design parameter is m(>1).
Now, we evaluate the Jacobian matrix (J) for the above
system of equations (2.7) and it is given as follows:

1
" 0
J= 1
0 —
m

The eigenvalues of the matrix Jare L, L. Ttis clear that, |1| < 1
as m > 1, which shows that the system (2.7) converges to the
fixed point (0,0) i. e. the tracking errors become zero.
Hence, we can conclude that both the species-I and species-
I of the system (2.2) converge to the respective desired states.

2.3 Example of direct control

In this subsection, we consider a Lotka—Volterra type
predator—prey model in discrete-time set-up as follows:

Xn
{ Xns1 = Xn exp(r(l - ?) —/ty,,>,

Y1 = Vn eXp(CAXn - d)’

(2.8)
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where, x, and y, denote the prey and predator population
densities respectively. Here, r and k denote the birth rate
and the carrying capacity of prey species respectively, A is
the maximum predation rate of predator species, c is the
conversion rate and d is the natural death rate of predator
species. After introducing exogenous measures on both
species the above model takes the following form

Xn
Xns1 = Xn exp(r(l - ?> - /\yn) — UpXp»
(29

Yner = Vn €XP (CAX, — d) — WyY s

where, the exogenous measures u, and w, denote the Z-
controllers (or update parameters) for prey and predator
species respectively, which vary over time. The positive
values of u, and w, imply that we should remove
(emigration, harvesting, culling) prey and/or predators
from the system, whereas, the negative values imply that
we should add (immigration) prey and/or predators into
the system to obtain the desired prey and predator popu-
lation densities. Now our aim is to attain the respective
desired states, i. e., x, — p,, and y,, — g,,.. For this purpose,
we consider the error function and adopt the design for-
mula as described in subsection 2.1. Finally, we obtain the
control variables u,, and w, for the above model (2.9) as
follows:

1 Xn 1
Up = X_n [Xn eXP(r(l _?) _Ayn> - E (Xn _pn) _pn+l]>

1 1
Wy, = y [yn exp (cAx, - d) T Vo —qn) - qnﬂ],

n

(2.10)

which is the controller group for the simultaneous control
of prey and predator populations.

Therefore, using the error function and the design
formula we can obtain the explicit expressions for inputs
u, and w,, which act as the exogenous measure, and these
input variables (update parameters) depend on the
parameter values, state variables, and the Z control
parameter. Therefore, if we change the prey and predator
population abundance following the update parameters uj,
and w,, then the error functions e,l,, =X,—-p, and
e =y, — g, will converge to zero and the desired prey and
predator densities can be achieved.

2.4 Numerical simulation

In this subsection, explanatory simulation results are given
to show the feasibility of the controller group (2.10) for the
simultaneous control of prey and predator populations.
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Here, our main goal is to show numerically, how the
different dynamical behavior of the uncontrolled system
(2.8) (chaotic oscillation, periodic oscillation, and stable
dynamics) are controlled by the Z-type controller group
(2.10) and also to show both prey and predator populations
reach to the desired states in each case. Here, we consider
the value of the parameters as

k=1,d=01,A=2c=01 (2.11)

with initial condition (0.8,0.5). In Figure 1 it is seen that
the uncontrolled system shows chaotic dynamics with
an increase of the value of the parameter r via period-
doubling bifurcation. For better visualization of
switching of the dynamics, we consider three different
values of r (3,5, 6) and draw time-series solutions for the
prey population (Figure 2). Now we apply direct Z-type
control in the uncontrolled system (2.8), where the value
of the design parameter m = 3 and the desired popula-
tion densities are p,=p,,=2 and q,=¢q,, =5 We
consider three different values of r, for which the un-
controlled system (2.8) shows chaotic oscillation, peri-
odic oscillation and stable dynamics respectively. We
observe that in all these three cases, Z-type controllers
drive the populations to the desired states and these
results are plotted in Figure 3, Figure 4 and Figure 5
respectively. Figure 3 shows the chaotic or irregular
oscillation of the uncontrolled system (2.8) for r=6
together with how the Z-type controller group (2.10)
removes the irregular oscillation from the controlled
system (2.9). In Figure 4, we see that the uncontrolled
system (2.8) shows periodic oscillation for r = 5 whereas
the controlled system shows stable dynamics. For r = 3
both the uncontrolled and controlled systems show
stable dynamics, which is exhibited in Figure 5 and also
for the controlled system (2.9) the desired population
densities are achieved through the Z-type controllers
(2.10). In the last row of each figure, the first one reveals
the time-series evaluation of tracking errors e}, and €2,
from which it is seen that they converge to zero. It en-
sures about the success of Z-type control mechanism.
The last one of each figure exhibits the time-series
evaluation of control variables u, and w,,.

3 Indirect control of population

In this section, the design procedure of indirect Z-control
laws for a discrete-time system is discussed. Here we intend
to control the prey population density by taking control
measure on the predator population and applying indirect
Z-type control mechanism. Also, this section provides
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Figure 3: Here, the first two rows of left column show the chaotic
oscillation for the uncontrolled system (2.8) when r = 6 and the first
two rows of right column show the stable dynamics for the controlled
system (2.9). Here m = 3 and the other parameter values are same as
in equation (2.11). The desired states are p, = 2 and g,, = 5. The last
row displays the time-series evaluations of tracking errors and
update parameters for the successful execution of Z-type control.

Figure 4: Here, the first two rows of left column exhibit periodic
oscillation for the uncontrolled system (2.8), whereas the first two
rows of the right column show stable dynamics of the controlled
system (2.9). Here, r = 5, m = 3 and the other parameter values are
same as equation in (2.11). The last row shows that tracking errors
converge to zero and the variation of the update parameters.
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Figure 5: Here, both uncontrolled and controlled systems exhibit
stable dynamics, which are shown in the first two rows for r = 3,
m = 3 and the other parameter values are same as in equation (2.11).

theoretical analysis to show the effectiveness of indirect Z-
type control law.

3.1 Controller design

Here, we apply indirect Z-type control on the predator—
prey model (2.8). For this purpose we introduce an exoge-
nous measure on the predator population and then the
model (2.8) takes the following form:

Xost = X exp(r(l —%) _Ay">’ G.1)

Vi1 = Vn exp (cAx, - d) - WnYns

where, w, denotes the indirect control variable for prey
population.

Now, our aim is to find the analytical expression of the
indirect control variable w,.

For this, first we define an error function as

el =Vl =Xy~ Py (3.2)
Next we consider the design formula as
1 1 1
Vs = -V (3.3)

where, m(>1) is the design parameter. Now substituting
(3.2) in (3.3), we get
(3.4)

Xn+1 = Ppa1 = (Xn _pn)’

m

but equation (3.4) does not contain y,,; in which the con-
trol variable w, is included. Thus we have to define another
error function. Let us consider the second error function as
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2 _ .1 1, (3.5)
Vi = Vo ~ Evn’ .

3 2 3 13 2 _ 1,2

and the behavior of v, is same as v, i.e. v, = V..
Using v2,; = Lv2 in equation (3.5), we get the following

expression
2 1
1 1 1

Vi =7 Vit ¥V = 0. (3.6)

n
Now putting the value of v}, in equation (3.6), we get

2 1
Xn+2 _pn+2 - E (XrH—l _pn+1) + ﬁ (Xn _pn) = 0 (37)

After that substituting the value of x,,, in equation
(3.7), we get

1 2 1
Vnu :Z[r(l_ k )_10g<a (Xn+1_pn+1)_ﬁ(xn_pn)

+ pn+2> + IOg (Xn+1) :|
(3.8)
and finally we obtain the control variable as
h
W, = exp(cAx, — d) - ~ (3.9)
where
1 Xn+1 2 1
h :Z [T(l - k ) - 10g<ﬁ (Xn+l _pn+1) - ﬁ (X" _pn)
+pn+2> +log (xml)].
(3.10)

Here equation (3.9) gives the indirect controller for the
controlled system (3.1).

Therefore, using the error function and the design for-
mula we obtain the analytical expression for input w,,, which
acts as an exogenous measure and if we change the predator
population abundance following the update parameter (wy,),
then the error function e}, = x, — p,, will converge to zero and
the desired prey density can be achieved.

3.2 Theoretical analysis

In this subsection, the convergence performance of the Z-
type controller (3.9) for the model (3.1) is examined theo-
retically. Here, we show that the error for the model (3.1)
equipped with indirect Z-controller converges to zero.

Theorem 2: For a bounded desired state p,, starting from a
positive initial state [xo, Y] T the tracking error e}l (or v,11) for



DE GRUYTER

the model (3.1) furnished with Z-type controller (3.9) con-
verges to zero.

Proof: According to the design procedure of Z-type
controller (3.9), we obtain that

1
Vi=vh, - Evﬂ,. (G.11)
Now, substituting (3.11) into v;,; = Lv2 we get
1
Vi, - EV:M + ﬁv; =0. (.12

Solving the above difference equation (3.12) we get
1 1 !
v, = (c1 + cm)(E) ,

where cj, ¢, are arbitrary constants.
Using the initial condition, we obtain ¢; = xo — p, and

c = m(xo exp(r(l —%) —Ayo) —p1> - (xo = po)-

Therefore, the tracking error e} (or v}) converges to
zero for large values of nand V m > 1, which implies that
the prey population x,, converges to the desired population
Dn, 1. €., Xn — p,,. This completes the proof.

3.3 Numerical simulation

In this subsection, numerical simulations are offered to
verify the success of the indirect Z-type controller (3.9).
Here, we consider the same parameter values and initial
conditions as taken in subsection 2.4. In a similar manner,
as described in the direct case, we choose the value of the
parameter r in such a way that the system (2.8) without Z-
control shows chaotic, periodic and stable dynamics
respectively. Then we apply indirect Z-type controller on
the predator population for controlling the prey population
density. Here we choose the value of the design parameter
m =2 and p, = p,,; = 0.7. From Figure 6, we see that the
irregular oscillation has eliminated from the uncontrolled
system (2.8) due to the controller (3.9) and also the
controller drives the prey population to the desired state,
where the desired prey population density is p,, = 0.7. From
Figure 7, it is seen that the controller removes the periodic
oscillation from the uncontrolled system (2.8) and the prey
population density tends to the desired state p,, = 0.7. In
Figure 8, we see that both the controlled as well as un-
controlled systems are stable and the desired prey popu-
lation density is achieved for the controlled system due to
the controller (3.9). Also in each figure, we observe that the
tracking error converges to zero, which agrees with the
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Figure 6: Here, the first two rows of left column show chaotic
dynamics of the uncontrolled system (2.8) for r = 6, whereas the first
two rows of right column exhibit stable dynamics for the controlled
system (3.1). Here m = 2 and the other parameter values are taken as in
equation (2.11) and desired prey population density p, = 0.7. The last
row shows the time-series evaluation of tracking error and update
parameter for the successful execution of indirect Z-type control.

theoretical analysis. The last one of each figure displays the
time-series evaluation of the update parameter (or
controller).

Now we draw the basin of attractions of the controlled
system (3.1) for two different values of the design param-
eter m (2 and 2.5), with desired prey population density
p, = 0.7. Here, r = 3 and the other parameter values are

15 0.8 R
j=4 1 j=4
* 05 = 07
0 0.6
20 40 60 80 100 10 20 30 40 50
Time Time
0.8
c 1 c
0.5
20 40 60 80 100 10 20 30 40 50
Time Time
0.1 . 0.05 ,
= 2
S 0.05 |\ s 0}/
° < .0.05
0 8
-0.1
10 20 30 40 50 10 20 30 40 50
Time Time

Figure 7: In this figure, the first two rows of left column show that
the uncontrolled system (2.8) oscillates periodically, while the
controlled system shows stable dynamics for r = 5, where m = 2
and the other parameters are same as in equation (2.11) with the
desired state p,, = 0.7.
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20 40 60 80 100 10 20 30 40 50
Time Time
0 - [\
= o 0
2. e
5 01 \/ £ 0.2
-0.2 © .04
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Time Time

Figure 8: Here, both the controlled and uncontrolled systems show
stable dynamics, which are executed in the first two rows of first and
second column for r = 3, where m = 2, p, = 0.7 and the other
parameters are given in equation (2.11).

same as equation (2.11). In Figure 9, for the sub-figure (9a)
we choose m = 2, where the green region denotes the set of
initial conditions for which the positivity of both prey and
predator populations are satisfied and this region is
ecologically meaningful. The yellow and red regions
denote the set of initial conditions for which the Z-control
approach works, but the positivity condition for the prey/
predator populations is violated. In the yellow region,
predator population density becomes negative and in the
red region, prey population density becomes negative in
the temporal dynamics. Both yellow and red regions are
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not ecologically meaningful. Next, we choose m = 2.5 and
investigate the same phenomena. We see that the ecolog-
ically feasible region (green shaded region) increases with
an increase in the value of the design parameter m.

For a better interpretation of these phenomena, we
select different initial conditions(0.5,1.2), (0.4,4), and
(1.5,3.8) from the green, yellow, and red regions respec-
tively and plot the time-series evaluations of prey and
predator populations. In Figure 10, from the first row, it is
seen that both prey and predator populations satisfy pos-
itivity conditions, whereas from the second row we observe
that although the prey population is at positive level with
desired prey population density, but the predator popula-
tion has lost positivity condition. Lastly, from the third row,
it is seen that both prey and predator populations have lost
positivity condition. So it is important to note that, the
selection of initial conditions is very significant while
applying the Z-control mechanism to a system for attaining
the desired population density.

3.3.1 Application of indirect Z-controller for a periodic
desired state

The controller (3.9) is also capable to drive the prey pop-
ulation to a periodic desired state whereas the uncontrolled
system shows chaotic, periodic, and stable dynamics
respectively. For the successful execution of these phe-
nomena, we consider the parameter values and the initial
state same as subsection 2.4. We also choose the periodic
desired states of the prey population as p; = 0.6, p;,; =1

0 02 04 06 08 1 12 14 16 18 2

X

(b)

Figure 9: Figure shows the basin of attraction of the Z-controlled system (3.1) for two different values of the design parameter m. Here, in the
left figurem = 2 and intheright figure m = 2.5 with r = 3 and the other parametervalues are same as in equation (2.11). The value of the desired
state is p, = 0.7. For larger values of m, ecologically feasible region (green shaded region) increases.
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Figure 10: Here, from the first row it is seen that both prey and
predator populations remain at positive level for the initial state
(0.5,1.2). Second row shows that the prey population remains at
positive level but predator population has lost positivity condition,
where the initial state is (0.4, 4). The third row shows that both prey
and predator populations have lost positivity condition for the initial
state (1.5,3.8). Here,m = 2,r = 3and the other parametervalues are
same as in equation (2.11).
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Figure 11: In this figure, the first two rows of left column show the
chaotic dynamics for the uncontrolled system (2.8) for r = 6. On the
other hand, the first two rows of right column exhibit periodic
behavior of the controlled system (3.1). Here m = 2 and the other
parameter values are taken as in equation (2.11). The last row
displays the time-series evaluations of tracking error and update
parameter, which execute successful implementation of indirect Z-
type control.

and p;,, = p;, where i is a positive integer. The value of the
design parameter is chosen as m = 2. From Figure 11, we
observe that the controller drives the prey population to a
periodic desired state after eliminating irregular oscillation
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Figure 12: Here, from the first two rows, it is seen that both
uncontrolled and controlled systems show periodic oscillations for
r =5, m = 2 and the other parameter values are same as in equation
(2.12).

from the uncontrolled system (2.8). From Figure 12, it is
seen that both the uncontrolled and the controlled systems
show periodic oscillation. Here our aim is to show that the
controller can drive the prey population density periodi-
cally in a desired state, which is away from zero. Lastly,
from Figure 13 it is observed that the uncontrolled system
shows stable dynamics, whereas, in the controlled system,
the prey population converges to a periodic desired state
due to the controller (3.9). In all these cases, we see that the
tracking error converges to zero, which confirms the suc-
cess of indirect Z-controller (3.9).
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Figure 13: Here, the first two rows of left column show stable

dynamics of the uncontrolled system (2.8), on the other hand, from
the first two rows of right column itis observed that the desired state
of prey population of the controlled system (3.1) is periodic for r = 3,
m = 2 and the other parameter values are given in equation (2.11).
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4 Conclusion

In the real-world, all species are important to maintain
the ecological balance, and they interact with each other
and also with their environment in an elegantly balanced
cycle. But as time goes, ecological imbalance increases
due to the excessive growth of some species, sudden
death of some species, careless human activities,
changing climate, habitat loss, degradation, etc., for
which negative consequences occur in the ecosystem. But
for the survival of all species in the world, preservation of
ecological balance is very important and it will be main-
tained if all the species are in the desired states. So it is
sometimes needed to control the population of a system
to a reasonable level, because either this population
drives others to become extinct or even itself becomes
extinct. According to top-down control, predator plays an
important role in controlling the prey population size and
community structure in a food web ecology. However, a
pre-defined prey population abundance may not be
achieved only through top-down control. It can be done
successfully by applying Z-type controller, which is a
combination of immigration, emigration, culling, and
harvesting.

To investigate the effectiveness of Z-type control
mechanism in a discrete-time predator—prey system, we
have considered a Lotka-Volterra type predator—prey
model with direct and indirect Z-control laws in discrete-
time set-up. We observed that in both direct and indirect
cases the Z-type controller group (2.10) (for prey and
predator species) and the controller (3.9) (for the prey
species) drive the populations to the respective desired
states. It is also investigated that the controller is able to
keep species far from the risk of disappearance i.e. the
species do not die out from the environment. Here, the
time-series evaluation of the update parameters (or
parameter) has great importance. We have observed that
the update parameters can take both positive and nega-
tive values for achieving the desired population density.
In both the direct and indirect Z-control mechanisms, the
positive value of the update parameter implies the
removal of a population from the system through
emigration, harvesting, or culling, whereas the negative
value of the update parameter implies the addition of
population into the system through immigration. In the
Z-type control mechanism, we can change the prey and
predator population densities or predator population
density through emigration, immigration, culling, or
harvesting to obtain the desired dynamics. For direct
control, addition or removal of a certain amount of prey
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and predator species (for indirect control, addition, or
removal of a certain amount of predator species) stabilize
the system. Now it is worthy to note that the rate at which
the species should be added into or removed from the
system to achieve the desired state and it is quantified by
the magnitude of the update parameter. Also, we have
observed that for any value of the design parameter
m(m > 1) the Z-type controller drives the population to the
desired state. It is also interesting to note that the choice
of initial conditions is very important from an ecological
point of view. We have drawn basin of attractions and
observed that depending on the initial condition, the
solutions may converge to the desired population density
via negative solution trajectories, which are not ecologi-
cally meaningful. The density of prey or predator popu-
lation becomes negative in the transient dynamics means
that the extinction of the respective populations. So, we
have to careful while implementing the Z-control mech-
anism, otherwise one or both of the populations may go to
extinction.

We can conclude that such an error-based dynamic
method (Z-type control) plays an important role for
maintaining the ecological balance. Riechert et al. [46]
experimentally showed that when spiders are added in
the vegetable system, then the number of pests signifi-
cantly decline and the amount of average damage
reduced to 31.8% from 93.3%. Therefore, predators limit
associated prey populations. The above experimental
results can be implemented in an ecosystem most effec-
tively by using Z-control mechanism. This error based Z-
control mechanism is very useful for serving ecosystems,
via, stabilizing the unstable equilibrium point, origi-
nating new stable equilibrium point or shifting the pop-
ulation oscillation away from zero. Therefore, Z-type
control mechanism can be considered as a control
mechanism that can be applied for conservation biology
and strategic management of pest control in an ecological
system.
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