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Abstract: The primary motive of this study is to examine
boundary layer flow of Carreau fluid over a convectively
heated disk stretching with nonlinear velocity. The flow is
assumed to be two dimensional. Moreover, viscous dissi-
pation possessions are taken into description. The domi-
nating nonlinear differential equations involving partial
derivatives are changed into nonlinear differential equa-
tions involving ordinary derivatives by applying suitable
transformations. Numerical outcomes for velocity and
temperature are obtained from MATLAB’s built-in solver
bvp4c and presented graphically and in tabular form.

Keywords: Carreau fluid; convective boundary conditions;
radially stretching disk; viscous dissipation.

Nomenclature

u Velocity component in x direction

w Velocity component in y direction

T Temperature of the fluid

T Temperature of the fluid below the sheet
Too Ambient fluid temperature

Uy Stretching velocity along x direction
Re Local Reynolds number

Ec Eckert number

We Local Weissenberg number

Ty Shear stress of the wall

u Thermal viscosity

% Kinematic viscosity of the fluid

0 Nondimensional temperature

[ Specific heat at constant pressure
f Dimensionless stream function

m Stretching parameter

qw Local heat flux of the surface
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he Convective heat transfer coefficient
Nu, Local Nusselt number

Pr Prandtl number

Cqr Local skin friction coefficient

Y Generalized Biot number
k Thermal conductivity

p Fluid density

n Similarity variable

n Power law index

1 Introduction

Fluid flow owing to stretching boundary is a significant
problem in various engineering progressions with solici-
tations in industries such as extrusion, hot rolling, melt-
spinning, wire depiction, glass fiber fabrication, manu-
facture of plastic and rubber sheets, compression course of
metallic plate in a cooling bath and glass and also in
polymer industries.

It appears that Sakiadis [1] stood first who described
fluid flow motion owing to a stretched surface. After this
innovative work, analysis of fluid flow past a stretching
sheet has increased inclusive devotion among in-
vestigators. The fluid flow problem of Blasius type owing to
a stretching sheet has been considered by Crane [2]. Gupta
and Gupta [3] prolonged this work with addition of the
suction and injection effects. A few other substantial
studies connecting to the structures of stretching sheets are
discussed by many researchers [4-8]. Turkyilmazoglu [9]
explained fluid flow analysis due to a stretching rotating
disk in the occurrence of heat transfer and magnetohy-
drodynamic (MHD). In another paper, Turkyilmazoglu [10]
debated combined possessions of flow and heat transfer
tempted by two stretchable rotating disks. Eid et al. [11]
provided numerical solution for Carreau nanofluid stream
problem over a nonlinear stretching surface in the presence
of porous medium.

The non-Newtonian fluid flow research has intense
attention amongst the researchers because of its diversity
of solicitations in engineering, chemical and petroleum
industries. The non-Newtonian fluids hypothetically
seemed in the engineering of foods, optical fibers, coated
sheets, plastic polymers, drilling muds, etc. Due to
complexity of the non-Newtonian fluids, a single
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constitutive formula is not available in the literature that
can be executed to calculate all the assorted possessions
of non-Newtonian constituents. The non-Newtonian
constitutive equations of fluids are usually with greater
order, problematical and are nonlinear in contrast of
meek theory of Navier—Stokes. The power-law viscosity
model has the constraint, i.e., it cannot be sufficiently
expecting the viscosity for very small and large shear
rates. Owing to such shortcomings of power law model,
constitutive equation of Carreau fluid model [12] depicts
both high and low shear rate. Owing to the importance of
Carreau fluid model, numerous authors had discussed
Carreau fluid model with diverse geometries and with
different conventions. Raju and Sandeep [13] discussed
Falkner—Skan stream of a magnetic-Carreau fluid past a
wedge in the existence of cross diffusion possessions. In
another paper, Raju et al. [14] deliberated bioconvection
analysis on the nonlinear radiative stream of a Carreau
fluid above a stirring wedge with suction or injection.
Further studies associated to this spectacle are quoted by
studies by Raju et al. [15] and Upadhya et al. [16] and
Mamatha Upadhya et al. [17].

Viscous dissipation plays a role of energy source to
change temperature distribution, that leads to affected
heat transfer rates. The virtue of the outcome of viscous
dissipation be contingent on the situation in which the
plate is actuality cooled or heated. Orhan et al. [18]
examined inspiration of viscous dissipation on heat
transfer for a Poiseuille flow. Gireesha et al. [19] explored
heat transfers for MHD dusty fluid flow with viscous
dissipation due to a stretching sheet. Khan et al. [20]
explained heat transfer investigation for magneto hy-
drodynamics axisymmetric flow concerning stretching
disks in the occurrence of Joule heating and viscous
dissipation. Influence of unsteady magneto hydrody-
namic flow and heat transfer of a fluid over a stretching
sheet in the occurrence of heat source and viscous dissi-
pation is discussed by Reddy et al. [21]. For more appli-
cation about heat transfer reader is referred to mentions
[22-30] to the references therein.

The convective heat transfer has gained significance
impact in procedures in which high temperatures are
convoluted. For example, gas turbines, nuclear plants,
storing of thermal energy, etc. Due to numerous
manufacturing and industrial techniques of the convec-
tive boundary conditions, several investigators have
deliberated and stated results on this subject. Bataller [31]
analyzed the impact of radiation for the Blasius and
Sakiadis flows over the convective boundary surface. Abu
Bakar et al. [32] depicted stretching sheet impact under
the boundary layer approximation in the occurrence of
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convective and slip boundary conditions. Makinde and
Aziz [33] examined two dimensional boundary layer nano
fluid flows past a stretching sheet in the occurrence of
convective boundary conditions, and delivered numerical
solution for the assumed problem. Besthapu et al. [34]
debated stagnation flow of a casson nanofluid owing to a
stretching disk comprising the possessions of MHD,
convective boundary condition and heat source/sink.
Magnetohydrodynamic convective boundary layer flow in
the occurrence of slip and heat transfer above nonlinearly
stretching pipe surrounded in a thermally stratified in-
termediate is discussed by Tamoor [35].

In this article, exploration of axisymmetric Carreau
fluid flow owing to a convectively heated stretching disk in
the existence of viscous dissipation effect is discussed.
Resulting coupled equations are resolved numerically by
bvp4c. Further, the numerical results are compared to
those Khan and Hashim [36]. The profiles of velocity and
temperature are presented in graphical form, whereas the

results of Re:C rrand ReN u, are represented numerically in
tabular style.

2 Problem formulation

Assuming the boundary layer axisymmetric flow of Car-
reau fluid characterized as two-dimensional (r, z), steady
and incompressible, generated by convectively heated
stretching disk which coincides with z = 0. Here it is
considered that the flow is being restricted to z > 0. The
nonlinear convectively heated disk has uniform convective
temperature T; along with the ambient fluid temperature
To. (Ty> T.).

Thus the simplified expressions of the continuity,
linear momentum and heat equations in the existence of
viscous dissipation after the solicitation of typical bound-
ary layer guesses yield the form as [37]

ou ow u_

$+$+r_0’ (€]

ou du du L(u\ o

u$+w$—v$[l+r<$>:| +v(n-1)
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The associated limitations at the boundary are
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u(r,0)=U, =br'",w(r,0)=0
%)
kaé;’ O _nT, + B T(r,0)
u(r,o0) - 0,T(r,00) > T... (5)
Introducing the following suitable transformations
(37]
2bv m+3
\j V (m+ l f
0(n) = =———— (6)

Tf—Tx,’

where 1 represents the independent variable and ¥ (r, z)
the Stroke’s stream function which is demarcated as

u= -1 a‘*’) and w = 1(“’) that gives
u="U.f" (n) and
e ) () o

By means of the above conversions, Eq. (1) is identi-
cally contented and Egs. (2) and (3) are compact to

[enwe (7 Y] we(r Y] o (22)
(m + 1)f 0, ®)
& +pr(( 3 )of 4 Eels Y=o -

In the above transformed equations the prime symbolizes
differentiation w.r.t 1, We( %W) the local Weis-

senberg number, Pr( "C") denotes the Prandtl number

and Ec( = ) the Eckert number.

W
(T-T<)Cy

The relevant conditions at the boundary reduced to

fm=0, f(m)=1 6()=-y[1-6(m)], atn=0,
(10)
f(n)—0, 6(m)—0 as n— oo, (1)
where y( }Z b(rznv—1)> indicates the generalized Biot
number.

The physical terms, Cs and Nu, are illustrated as

u = — qu|z:0
(T -Ts)’

Tw |z:0

pU () (12

Gy, =

when local shear stress of the wall ,, and local heat flux of
the surface gq,, are described by the following expression
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ou ou e
TW|Z 0 — rlOa { [1 r2<az> ] }
oT
quz:O = _k<$> -0

Thus, using Egs. (6) and (13) into Eq. (12), we obtain

RelC;, = \/mglf"(O)[l+ Wez(f"(O))z]%,

14 (0),

>

z=0

(13)

Re*Nu, = — (14)

where Re( ) expresses the local Reynolds number.

3 Solution methodology

The system of BVPs defined by Egs. (8—11) is first converted
into system of IVPs as follows

=y =yuy = Vs

’ 2m(y,) - y,y; (m+3)

Y3 = 5 NE=E (15)
(m+1)(1+nWe (y;)°)(1+ We2(y,)") ?
, , , (m+3)
0=V 0=y =ysys = -Prysyy -5 -Ec(n:)s (16)
along with conditions
¥1(0)=0, ¥, (0) =1, ys(0)=-y+yy,(0). 17)

Afterward, these IVPs are resolved numerically by
means of MATLAB’s built-in solver bvp4c.

4 Discussion of the results

The main drive of this unit is to discuss the numerical so-
lutions obtained for the profiles of flow and temperature
corresponding to distinct values of parameters involving in
the equations. Egs. (8) and (9) along with the conditions
defined at the boundaries (10) and (11) are solved by using
MATLAB’s built-in solver bvp4c, numerically. The numer-
ical consequences are explained from Figures 2 to 7 and
Tables 1 to 4. The comparison of the values of Re%Cf, (the

local skin friction coefficient) and Re?Nu;, (the local Nus-

selt number) is also well explained through these tables.
In Tables 1 and 2, we made contrast between our

calculated results with those of Khan and Hashim [36] for
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Figure 1: Physical modal of problem.

Figure 2 (a, b): The profiles of velocity f’ (n)
and temperature plot 6(n) for several power
law index n values while We =3,y =0.1,

m = 5.0 and Ec = 0.4 are fixed.

Figure 3 (a, b): The plots of velocity f (17) and
temperature 6(n) for several stretching
parameter m values when Pr=1.0, y = 0.1,
We = 3, Ec = 0.4 and n = 0.5 are fixed.
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1 T 0.8 T
(a) (b)
0.8
06
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T We =1.0,2.0,3.0,5.0 T 04f =1.0,2.0,3.0,5.0
0.4
02 0.2 Figure 4(a, b): The diagrams of velocity f’(q)
’ and temperature 6(n) for several for several
0 0 values of We for shear thinning fluid when
0 1 2 3 4 5 6 0 1 2 3 4 5 6 S=5Pr=10,y=0.1,Ec=0.4andn=0.5
n n are fixed.

Re%Cf, and Re”N u, for various power index n values while
m =1and We = 3 are fixed in order to analyze the efficiency
of the current results. The contrast is found to be corrected
upto five decimal places. Tables 3 and 4 illustrate the nu-
merical values for ReiC 7 and Re’N u,. In Table 3, an
increasing behavior of skin friction is clearly shown for
increasing power law index n values and stretching
parameter m, respectively. An increasing behavior in local
Nusselt number represented in Table 4 with the increasing
n, m, Pr, Ec and y values while it shows a reverse behavior
for swelling values of We.

Figure 2a and b depicts the behavior of velocity and
temperature plots for power law index n. For increasing the
power law index n values the velocity profile f (n) in-
creases however, the temperature profile 6(n) is
decreasing. Furthermore, both figures demonstrate that
thickness of the momentum and thermal boundary layers

0-8 ' T T T T

0.6

Pr=1.0,1.5,2.0,2.5

0.2

Figure 5: The temperature plot 6(n) for diverse Prandtl number Pr
values when We =3, m =5, y = 0.1, Ec = 0.4 are fixed.

in shear thinning fluids is incrementing with an increment
in the power index n values.

Figure 3a and b displays the inspiration of velocity and
temperature graphs for various values of stretching
parameter m while considering shear thinning fluids. It is
established from these figures that the fluid velocity de-
clines with swelling standards of stretching parameter m
for shear thinning fluids (0 < n < 1) and also renowned that
large standards of stretching parameter m decreases the
thickness of boundary layer. Also, it clearly appears that
increasing stretching parameter m values outcomes in an
upsurge in the temperature sketch, which promote upturns
the boundary layer thickness.

Figure 4a and b illustrates the consequences of the We
on the graphs of velocity and temperature for pseudo-
plastic fluids (0 < n < 1). It can be examine that the profile of
velocity is depressed by uplifting the We for shear thinning

0-8 ! T T T T

vy =1.0,2.0,3.0,5.0 1

Figure 6: The temperature plot 6(n) for diverse Biot number y when
m=1, Pr=1, We =3 and Ec = 0.1 are fixed.



830 —— R. Malik et al.: Analysis of Carreau fluid flow

0-8 T T T T T

¢=0.1,0.2, 0.3, 0. y

0(n)

Figure 7: The temperature plot 6() for several Eckert number Ec
values when m =1, Pr=1, We = 3 and y = 1 are fixed.

Table 1: A contrast of the values of local skin friction Re%Cf, with the
obtained results in works for diverse standards of n for m = 1 and
We = 3.0.

—Re%Cf,
n Present study Khan and Hashim [36]
0.5 0.8299504 0.829955
1.0 1.1737218 1.173718
1.5 1.4524310 1.452433
2.0 1.6890080 1.689011
2.5 1.8958584 1.895859

Table 2: A contrast of Nusselt number Re2Nu, with the obtained
results in literature for diverse values of n for Pr=1, m =1, y—co,
We =3 and Ec = 0.

—Re :Nu,
n Present study Khan and Hashim [36]
0.5 0.75284821 0.752 802
1.0 0.85199807 0.851 995
1.5 0.91000686 0.910 010
2.0 0.94657118 0.946 575
2.5 0.97124077 0.971 246

fluids because increase in the relaxation time of the fluid
generates friction in the fluid particles so, as a result the
velocity decreases. However, it is vibrant that for shear
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Table 3: Numerical results of —ReCy, for diverse standards of n We
and m.

Fixed parameters Parameter —ReiCy
We =3.0,m=1.0 n 0.5 0.82995
1.0 1.17372
1.5 1.45243
2.0 1.68901
2.5 1.89586
n=0.5 We=3.0 m 1.0 0.82995
2.0 1.04592
3.0 1.22518
4.0 1.38159
5.0 1.52212
m=1.0,n=0.5 We 0.5 1.14351
1.0 1.07288
2.0 0.92975
4.0 0.76036
5.0 0.70876

Table 4: Numerical results of —Re? Nu, (the local Nusselt number)
for diverse We, Ec, n, y, Pr and m values.

Fixed parameters Parameters —Re? Nu,
m=1.0,We=3.0,Ec=1.0,y=0.5, n 0.5 0.0266878
Pr=1.0
0.6 0.2330453
1.0 0.1231931
n=0.5We=3.0,Pr=1.0,Ec=1.0, m 1.0 0.0266878
y=0.5
2.0 0.0634195
3.0 0.0862917
Pr=1.0,n=0.5,m=1.0, Ec=1.0, We 0.5 0.1145170
y=0.5
1.0 0.0915464
2.0 0.0306914
n=0.5m=1.0, We=3.0,Ec=1.0, Pr 0.5 0.2094927
y=0.5
1.0 0.0266878
1.5 0.0668495
n=0.5m=1.0, We=3.0, Ec=1.0, Ec 1.0 0.0266878
y=0.5
2.0 0.3538291
3.0 0.6809703
n=0.5Pr=1.0,m=1.0, We=3.0, y 0.5 0.0266878
Ec=1.0

1.0 0.0381500
2.0 0.0485833

thinning fluids the temperature graph upsurges with a
boost in the We values.

Figure 5 shows the temperature profile 6(r) of shear
thinning fluids for various Pr values. It is witnessed that
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with the swelling of Pr values, the profile of temperature
declines which causes decline in thickness of thermal
boundary layer. Physically, Prandtl number Pr depends
upon the thermal diffusivity and larger the Prandtl number
Pr values agrees to a weaker thermal diffusivity which
creates a reduction in the 6(r) and hence declines the
thickness of thermal boundary layer.

Significance of temperature distribution 6(n) for Biot
number y is accessible in Figure 6. It appears from this
figure that the higher standards of Biot number y corre-
sponds to development in the temperature graph, as well
as the thickness of thermal boundary layer. Figure 7 depicts
the variation in 6(r) for various Eckert number Ec values. It
is perceived that swelling of the Eckert number Ec values
enhances the thickness of thermal boundary layer.

5 Deductions

In this article, a flow analysis of Carreau fluid over a con-
vectively heated disk was investigated. We concluded that
momentum boundary layer thickness upsurges and ther-
mal boundary layer thickness declines for the swelling
standards of the power law index n. Swelling the Weis-
senberg number We concentrated the scale of the fluid
velocity for shear thinning. The temperature and thermal
boundary layer thickness was low by swelling the Prandtl
number Pr. The thermal boundary layer thickness was
amplified with the swelling standards of Biot number y and
Eckert number Ec.
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