DE GRUYTER

Z. Naturforsch. 2020; 75(5)a: 475-481

Robin Heveling*, Lars Knipschild and Jochen Gemmer

Modeling the Impact of Hamiltonian Perturbations
on Expectation Value Dynamics

https://doi.org/10.1515/zna-2020-0034
Received February 3, 2020; accepted February 23, 2020

Abstract: Evidently, some relaxation dynamics, e.g. expo-
nential decays, are much more common in nature than
others. Recently there have been attempts to explain
this observation on the basis of “typicality of perturba-
tions” with respect to their impact on expectation value
dynamics. These theories suggest that a majority of the
very numerous, possible Hamiltonian perturbations entail
more or less the same type of alteration of the decay
dynamics. Thus, in this paper, we study how the approach
towards equilibrium in closed quantum systems is altered
due to weak perturbations. To this end, we perform numer-
ical experiments on a particular, exemplary spin system.
We compare our numerical data to predictions from three
particular theories. We find satisfying agreement in the
weak perturbation regime for one of these approaches.
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1 Introduction

The issue of the apparent emergence of irreversible
dynamics from the underlying theory of quantum mechan-
ics still lacks an entirely satisfying answer [1]. While con-
cepts like the “eigenstate thermalization hypothesis” [2, 3]
or “typicality” [4-6] hint at fundamental mechanisms
ensuring eventual equilibration, they are not concerned
in which manner this equilibrium is reached. It is an
empirical fact that some relaxation dynamics, e.g. expo-
nential decays, occur much more often in nature that oth-
ers, e.g. recurrence dynamics. There are efforts to attribute
this dominance to a certain sturdiness of some dynamics
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against a large class of small alterations of the Hamilto-
nian [7]. In general, it is of course impossible to predict
how the unperturbed dynamics will change due to an arbi-
trary perturbation. However, theories aiming at captur-
ing the typical impact of generic perturbations have been
recently suggested.

In the following, three such theories that predict
the altered dynamics due to weak, generic pertubations
are very briefly presented. Notably, Refs. [7-9] are con-
cerned with describing the modified dynamics under cer-
tain assumptions, cf. also Section 5.

In Ref. [8] the authors consider an entire ensemble
of “realistic” Hamiltonian pertubations, i.e. the ensemble
members are sparse and possibly banded in the eigenba-
sis of the unperturbed Hamiltonian. The authors analyt-
ically calculate the ensemble average of time-dependent
expectation values and argue firstly that the ensemble
variance is small and secondly that thus a perturbation of
actual interest is likely a “typical” member of the ensem-
ble. Calculating the ensemble average, the authors even-
tually arrive at the result that the unperturbed dynamics
will likely be exponentially damped with a damping factor
scaling quadratically with the perturbation strength.

A similar random matrix approach is taken in Ref.
[9]. In this paper, the authors base their argument on
projection operator techniques. Again, the ensemble of
perturbations that are essentially random matrices in the
eigenbasis of the unperturbed Hamiltonian leads to an
exponential damping of the unperturbed dynamics at suf-
ficiently long times, with a damping constant scaling
quadratically with the pertubation strength. Routinely,
the specific projection operator technique (“time convo-
lutionless” [10]) yields a time-dependent damping fac-
tor, which ensures that the slope of the time-dependent
expectation value at ¢t = O remains unchanged by the
perturbation.

Lastly, the authors of Ref. [7], other than the authors of
Refs. [8, 9], focus on the matrix structure of the perturba-
tion in the eigenbasis of the observable rather than in the
eigenbasis of the unperturbed Hamiltonian. In this paper,
the modified dynamics is not necessarily obtained by a
direct damping, but rather by an exponential damping of
the memory-kernel. As the predictions of this scheme are
somewhat involved, we specifically outline them below in
Section 2.
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This paper is structured as follows. Firstly, in Section 2
we give a short introduction to the memory-kernel ansatz
employed in Ref. [7]. The numerical setup is described
in Section 3. In Section 4 the numerical results from the
solution of the Schrédinger equation are presented and
discussed. Section 5 scrutinizes the possible application
of the above three theories [7-9] to the obtained numeri-
cal results and the accuracy of the respective predictions.
Eventually, we conclude in Section 6.

2 Memory-Kernel Ansatz

To outline the memory-kernel ansatz we first need to intro-
duce the general description of dynamics by means of
integro-differential equations of the Nakajima—-Zwanzig
type [11]. Consider some (reasonably well-behaved) time-
dependent function a(t), e.g. the expectation value of
an unitarily evolving observable. There exists a map
between a(t) and its so-called memory-kernel K(7), implic-
itly defined by the integro-differential equation

da(t)
dt

t
_ / K(t— P)at)dt = —(K=a)®). (1)

0

This map is bijective, i.e. it is possible to calculate
the memory-kernel K(7) solely from the function a(t) and,
vice versa, it is possible to calculate the function a(t),
given the memory-kernel K(7) and some initial value a(0).
Broadly speaking, the memory-kernel describes how a
system remembers its history. Ref. [7] now suggests that
the generic impact of a certain class of perturbations is
best captured by describing its effect on the respective
memory-kernel. If the perturbation V is narrow-banded
in the eigenbasis of the observable A4, i.e. [V, A] = 0, then
the memory-kernel K(7) corresponding to the unperturbed
dynamics will be exponentially damped as

K(1) = exp(—yT)K(1) . ®)

To obtain the modified dynamics, we proceed as fol-
lows: from a(t) we calculate the memory-kernel K(r) and
damp it according to (2). Plugging K(7) back into (1) and
solving for a(t) yields the modified dynamics. In this pro-
cedure vy is a free fit parameter.

a(t) — K(r) — K(r) — a(t) G)

Note that, in the context of the below (cf. Sect. 3)
defined spin ladders, this is an heuristic approach. How-
ever, for other scenarios, this memory-kernel ansatz is
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proven to hold [12]. These scenarios feature systems for
which the eigenstate thermalization hypothesis (ETH) [3]
applies to some observable A. The role of the perturbation
is taken by an environment, which induces pure dephas-
ing in the eigenbasis of A. The memory-kernel ansatz
then applies to the expectation value of A. The rationale
behind using the memory-kernel ansatz in the context
of, e.g. isolated spin ladders, is that a generic perturba-
tion V with [V, A] = 0 may have an effect comparable to
the above dephasing. Moreover, the applicability of the
memory-kernel ansatz to closed systems has been numer-
ically demonstrated for some concrete but rather abstract
examples in Ref. [7]. It has also been found to yield sur-
prisingly accurate results for systems similar to the ones
discussed below [13].

3 Setup

We consider a periodic spin-1/2 ladder described by the
(unperturbed) Hamiltonian

Ho=H+H,, (%)

with the chain Hamiltonian

2

L
H, =] Z Z Stk Styk 5)
1=1

k=1
and the rung Hamiltonian

L
H, :]J_Zsl,l “S1,2, (6)
=1

where §1, k= (S S{ «» Si1) are spin-1/2 operators on lat-
tice site (I, k) and L + 1 = 1. The interaction strength
along the legs (rungs) is denoted by J; (J,) and set to
unity. Additional diagonal bonds act as a pertubation V,
the parameter A indicates the pertubation strength. This
results in the total Hamiltonian

H=Hy+AV,

which is displayed in Figure 1. The observables of interest
are the magnetisations on each rung, which are given by

S? = il + Siz ) (7)

and the respective Fourier modes

L

Sq= Zcos[q(l —L/2)]S%, (8)

=1
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Figure 1: Orange circles mark spin sites, solid black lines mark
Heisenberg interaction. Dashed diagonal lines indicate the
pertubation.

with discrete momenta g = 27k/L with k=0,1,...,
L — 1. We numerically solve the Schrédinger equation and
study the dynamics of the time-dependent expectation
values p;(t) = (S7(t)) of the magnetisation profile along
the ladder as well as time-dependent expectation values
pq(t) = (S7(8)) of the Fourier modes, especially the slow-
est mode with ¢ = 27r/L. In order to be able to clearly
discriminate between predictions from the memory-kernel
ansatz and the other two theories, we choose a pertur-
bation with a specific, yet physically common property
named below. This pertubation on the diagonals of the
ladder only consists of S?S?-terms.

L
V= Z(Silslerll + Slz,zsﬁl,l) 9)
=1

In this manner, the observables of interest do com-
mute with the pertubation, i.e. [V, S7] = 0.In other words,
the pertubation V is diagonal in the eigenbasis of the
observable.

We consider two types of initial states. The first initial
state is given by

p1(0) x 1 -5, (10)

where ¢ is a small, positive, real number. This state can
be regarded as the high temperature, strong magnetic field
limit (8 — 0 while BB = ¢) of the Gibbs state

p2(0) o< exp[—B(H + BS )], (11)

which is the second initial state of interest.

4 Numerical Results on the
Perturbed Dynamics

We now present our numerical results. We prepare a spin
ladder with L = 13 rungs (i.e. N = 26 spins) in the initial
states mentioned aboved, which both feature a sharp mag-
netisation peak in the middle of the ladder. During the real
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time evolution the magnetisation will spread throughout
the ladder diffusively [13], which can be seen in Figure 2.

From (8) we obtain the Fourier modes of the broad-
ening process. We choose to investigate the slowest mode
with ¢ = 271/13 in depth as it is closest to an exponential
decay. In Figure 3 the slowest mode is depicted for differ-
ent pertubation strengths for the first initial state p;(0).
The unperturbed dynamic (red curve, A = 0.0) remains
basically unaltered by weak pertubations. Cranking up
the pertubation strength (to A = 0.4 or A = 0.7) leads to a
noticable deviation and the equilibration process is much
slower than in the weakly perturbed case.

The same qualitative behaviour remains when going
to finite temperature f = 0.1 and finite magnetic field
B =5.0.

n(t)
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4 0.1
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t

Figure 2: Broadening of the magnetisation profile of a spin ladder
with L = 13 rungs prepared in the initial state p1(0).
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Figure 3: The time-dependence of the slowest mode with g = 2m/13
is depicted for various pertubation strengths for the initial state
p1(0). For small pertubations the unpertubed dynamic (A = 0.0,

red curve) remains basically unchanged. For stronger pertubations
there is a noticeable deviation.
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Figure 4: The time-dependence of the slowest mode with ¢ = 2m/13
is depicted for various perturbation strengths for a Gibbsian initial
state p,(0) with B = 0.1and B = 5.0. Similar behaviour as for the
first initial state can be observed.

In this case, the initial value p4(0) depends on the
pertubation strength A as the total Hamiltonian is part
of the initial state p,(0), cf. (11). To be able to compare
the dynamics for various A values, the curves are scaled
such that they all start at the same initial value of the
unperturbed dynamic. The results are depicted in Figure 4.
For weak pertubations the deviation from the unperturbed
dynamic is again small, although now clearly visible.
For stronger pertubations the dynamics equilibrate again
more slowly, however, the discrepancy to the unperturbed
dynamic is more severe compared to the first initial state
p1(0) in Figure 3. A rough estimate indicates that at inverse
temperature S = 0.1 the mean energy is down-shifted by
approximately half a standard deviation of the full energy
spectrum of the system with respect to the infinite temper-
ature case (B = 0). Thus, 8 = 0.1 is noticeable far away
from infinite temperature while still not exhibiting low
temperature phenomena.

5 Modelling the Perturbed
Dynamics

Is it possible to describe the observed behaviour to some
extend by any the three theories mentioned in the intro-
duction? Before we present a somewhat bold, simple com-
parison of the predictions from said modelling schemes
with the actual perturbed dynamics, we briefly comment
on the agreement of our setup (cf. Sect. 3) with the precon-
ditions of the respective theories.

The theory advocated in Ref. [8] relies on a constant
density of states (DOS) within the energy interval occu-
pied by the initial state p(0) with respect to the unper-
turbed Hamiltonian Hy. First of all it should be noted that
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it is rather hard to check whether or not this criterion
applies in standard situations with larger systems. How-
ever, a histogram corresponding to the DOS of H, for a
“small” system with N = 12 spins is depicted in Figure 5.
The red dashed vertical lines are intended to mark the
regime of more or less constant DOS (of course this choice
is rather arbitrary). The initial state p;(0) populates the
full spectrum with equal weight, i.e. 57% of the weight falls
into the interval of approximately constant DOS. Likewise,
although populating more low-lying energy eigenstates, a
large portion (54%) of the weight of the initial state p,(0)
still falls into the interval of approximately constant DOS,
cf. Figure 5.

The assessment of this finding is two-fold: On the one
hand, “natural” initial states like p1(0) and p,(0) do not
necessarily live entirely in an energy window of strictly
constant DOS. On the other hand, Figure 5 indicates that
the states p1(0) and p,(0) are not completely off such a
description. One may thus be inclined to expect at least
qualitatively reasonable results from an application of the
theory presented in Ref. [8]. Concerning perturbations V,
the approach in Ref. [8] strictly speaking makes no restric-
tions, except for “smallness”. But the result from Ref. [8]
is of statistical nature: to the overwhelming majority of
the ensemble of matrices V that is generatated by draw-
ing matrix elements in the eigenbasis of Hy independently
at random (according to some probability distribution,
which may give rise to some sparseness) the prediction of
Ref. [8] (exponential damping) applies. While any V may
be viewed as an instance of this set, not all V are equally
likely. Again, judging the “typicality” of some concrete V is
hard. However, for a qualitative evaluation of the typicality

—— LDOS py(0)
—— DOS
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0.04

N(E)/d/ 7(E)
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-10 -5 0 5 10
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Figure 5: Density of states (DOS) (black) for N = 12 spins. The quan-
tity N(E) is the number of energy eigenstates in a particular bin of
size one, d = 4096 is the Hilbert space dimension. The interval

of approximately constant DOS is marked from E = —3 ... 3 by
red lines. A histogram of the local density of states (LDOS), i.e. the
probability to find the system at a certain energy, is shown in blue.
The quantity p(E) indicates the weight in a given bin. The LDOS of
p1(0) is exactly identical to the DOS (black) and not shown again.
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of the pertubation V at hand with respect to the above
ensemble, a colour-scaled plot of V in the energy eigen-
basis of Hy for N = 12is depicted in Figure 6. The red lines
correspond to the energy regime marked in Figure 5. Obvi-
ously, there is some sparseness, about 2% of all elements
differ from zero. Other than that the assessment of this
finding is also two-fold: on the one hand, some structure
is visible in Figure 6. On the other hand, this structure is
not sufficient to clearly identify V as particularly untypi-
cal. Hence, again, one may be inclined to expect at least
qualitatively reasonable results from an application of the
theory presented in Ref. [8].

The theory advocated in Ref. [9] relies on projection
operator techniques [10] and thus has, in principle, no
formal applicability limit. However, as projection opera-
tor techniques result in perturbative expansions, concrete
predictions going beyond leading order are very hard to
obtain [14]. Even the accurate computation of the lead-
ing order requiring the knowledge of the detailed form
of the matrix depicted in Figure 6 has to be taken into
account. The simple guess of an exponential damping at
sufficiently long times only results under preconditions
that are rather similar to the ones on which the approach
from Ref. [8] is based. The conditions under which the
dynamics is well captured by a leading order description
are technically hard to define and even harder to check.
However, there are indications that the sparseness of the
matrix depicted in Figure 6 threatens the correctness of a
leading order calculation [15].

1 1000 2000 3000 4096

1 L

1000

2000

3000

4096

Figure 6: Matrix plot of the pertubation V in the eigenbasis of
the unperturbed Hamiltonian Hy. Red lines mark the interval of
approximately constant DOS, cf. Figure 5.
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The approach advocated in Ref. [7] is heuristic and pri-
marily based on some numerical evidence, thus no formal
preconditions may be formulated so far, cf. Section 2.
However, the numerical examples in Ref. [7] to which
this scheme applies do feature unperturbed Hamiltoni-
ans with constant DOS, weak perturbations (small A) and
initial states of the type p;(0). Furthermore the VVs in
the examples in Ref. [7] are matrices whose elements, in
the eigenbasis of the observable, are independently drawn
at random according to some probability distribution. As
already mentioned in Section 2, in contrast to Refs. [8, 9],
the approach in Ref. [7] takes the structure of V in the
eigenbasis of the observable (here S7) rather than of Hy
into account. Only if the latter approximately commute,
i.e. [V, A] = 0, the prediction computed as described in
Section 2 applies. For our setup we indeed have [V, A] = 0,
cf. Section 3.

We now embark on the announced bold comparison
of the perturbed dynamics with the predictions from the
three theories.

Firstly, note that for both initial states the perturbed
curves lie above the unperturbed one, i.e. the stronger the
perturbation the slower the relaxation occurs. Thus, the-
ories predicting a damping of the unperturbed dynamics
are not a viable option in this case. Without any further
quantitative analysis this already renders the predictions
from Refs. [8, 9] qualitatively unsuitable. Moreover, it can
be shown (at least for the first initial state) that all curves
must feature zero slope at t = 0. An exponential damp-
ing (with a constant damping factor) would always change
the slope at t = 0 to a non-zero value. A time-dependent
damping factor I'(¢) with ['(0) = 0 (as employed in Ref. [9])
at least preserves the zero slope att = 0.

These findings suggest that the pertubation V is
indeed one of the mathematically extremely untypical
members of the ensemble considered in Ref. [8], even
though the matrix visualisation in Figure 6 does not nec-
essarily indicate this. However, even though V is untyp-
ical with respect to an ensemble of random matrices, it
is a physically simple, common pertubation consisting of
standard spin-spin interactions.

The failure of the scheme presented in Ref. [9] indi-
cates that the V at hand does not allow for a leading order
truncation of the projective scheme employed therein, not
even for very small A. This leaves the memory-kernel model
from Ref. [7] as the only feasible theory to describe the
observed behaviour.

In the following, to test the approach from Ref. [7],
we apply the memory-kernel ansatz to the two unper-
turbed dynamics (red curves in Figs. 3and 4). The damping
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constant y from (2) functions as a fit parameter and is opti-
mised such that the L?-error of the two curves in question
(perturbed dynamics and memory-kernel prediction) is
minimised.

For the infinite-temperature initial state p;(0) the
results are depicted in Figure 7, for the Gibbsian initial
state p,(0) the results are depicted in Figure 8. Each curve
is vertically shifted to avoid clutter.

For the infinite-temperature initial state p;1(0) and
weak pertubations (A = 0.1 and A = 0.2) the memory-
kernel model seems to perfectly capture the modified
dynamics. For stronger pertubations (A = 0.4and A = 0.7)
there are deviations visible, e.g. for short times (¢t ~ 2)
the memory-kernel prediction for A = 0.7 overshoots the

0.4 p1(0) x 1 — €57 )5 0.1
’ — Perturbed dynamics N i 8421
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Figure 7: Slowest mode with g = 2m/13 of the infinite-temperature
initial state p1(0) depicted for various pertubation strengths. Solid
lines represent the original data from Figure 3, vertically shifted

in steps of —0.1 for better visibility. Crosses indicate the data
obtained from an exponentially damped memory-kernel.
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Figure 8: Slowest mode with g = 2m/13 of the Gibbsian initial state
p2(0) with B = 0.1and B = 5.0 depicted for various pertubation
strengths. Solid lines represent the original data from Figure 4, ver-
tically shifted in steps of —0.05 for better visibility. Crosses indicate
the data obtained from an exponentially damped memory-kernel.
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perturbed dynamic while for longer times ¢t > 10 it under-
shoots. For the Gibbsian initial state p,(0) the qualitative
behaviour remains the same as for the first initial state.
For weak pertubations the memory-kernel ansatz captures
the modifications due to the pertubation extremly well.
For stronger pertubations there are again more notice-
able deviations. However, it comes as no surprise that the
memory-kernel model loses potency in the strong pertuba-
tion regime, as it was originally conceived to describe the
alteration of dynamics due to weak pertubations.

6 Summary and Conclusion

In the paper at hand we numerically analyzed the appli-
cability of three theories predicting the generic impact of
Hamiltonian perturbations on expectation value dynam-
ics to a Heisenberg spin ladder. To this end, we numer-
ically calculated the time-dependent spatial distribution
of the magnetisation along the ladder for various pertuba-
tion strengths. We focussed on a particular perturbation
that commutes with the observable, e.g. the considered
perturbation V consisting of $*S?-couplings on the ladder
diagonals commutes with the observed spatial magneti-
sation distribution. We consider both, infinite and finite
temperatures. Two out of three scrutinised theories fea-
ture in principle well-defined conditions for their applica-
bility [8, 9], a third one is rather heuristic [7]. One of the
theories with well-defined conditions [8] only predicts the
overwhelmingly likely behaviour with respect to a hypo-
thetical, large, “random matrix ensemble” of in principle
possible perturbations V. Only the heuristic theory takes
the commutativity of the observable and the perturbation
as a specifically relevant structural feature into account.
It turns out to be hard to judge a priori whether or not the
concrete spin ladder example falls into the realm of appli-
cability of the two theories with well-defined conditions.
However, direct comparison of the theoretical predictions
with the numerically computed results clearly shows that
both theories fail even qualitativley. This suggests that,
while the considered V is very common from a physical
point of view, it must be very rare and exotic with respect
to the above random matrix ensemble. Only the heuristic
theory was found to yield good results for weak pertur-
bations (and acceptable results for strong perturbations).
This indicates that the commutator of ¥ with the observ-
ableis a specifically relevant structural feature that should
be taken into account. A survey of the three theories for
perturbations V that do not commute with the observable
is left for further research.
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