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Abstract: Evidently, some relaxation dynamics, e.g. expo-
nential decays, are much more common in nature than
others. Recently there have been attempts to explain
this observation on the basis of “typicality of perturba-
tions” with respect to their impact on expectation value
dynamics. These theories suggest that a majority of the
very numerous, possible Hamiltonian perturbations entail
more or less the same type of alteration of the decay
dynamics. Thus, in this paper, we study how the approach
towards equilibrium in closed quantum systems is altered
due toweakperturbations. To this end,weperformnumer-
ical experiments on a particular, exemplary spin system.
We compare our numerical data to predictions from three
particular theories. We find satisfying agreement in the
weak perturbation regime for one of these approaches.

Keywords: Equilibration; Exponential Decay; Pertubation
Theory; Spin Systems.

1 Introduction
The issue of the apparent emergence of irreversible
dynamics from theunderlying theory of quantummechan-
ics still lacks an entirely satisfying answer [1]. While con-
cepts like the “eigenstate thermalization hypothesis” [2, 3]
or “typicality” [4–6] hint at fundamental mechanisms
ensuring eventual equilibration, they are not concerned
in which manner this equilibrium is reached. It is an
empirical fact that some relaxation dynamics, e.g. expo-
nential decays, occur much more often in nature that oth-
ers, e.g. recurrence dynamics. There are efforts to attribute
this dominance to a certain sturdiness of some dynamics
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against a large class of small alterations of the Hamilto-
nian [7]. In general, it is of course impossible to predict
how the unperturbed dynamicswill change due to an arbi-
trary perturbation. However, theories aiming at captur-
ing the typical impact of generic perturbations have been
recently suggested.

In the following, three such theories that predict
the altered dynamics due to weak, generic pertubations
are very briefly presented. Notably, Refs. [7–9] are con-
cerned with describing the modified dynamics under cer-
tain assumptions, cf. also Section 5.

In Ref. [8] the authors consider an entire ensemble
of “realistic” Hamiltonian pertubations, i.e. the ensemble
members are sparse and possibly banded in the eigenba-
sis of the unperturbed Hamiltonian. The authors analyt-
ically calculate the ensemble average of time-dependent
expectation values and argue firstly that the ensemble
variance is small and secondly that thus a perturbation of
actual interest is likely a “typical” member of the ensem-
ble. Calculating the ensemble average, the authors even-
tually arrive at the result that the unperturbed dynamics
will likely be exponentially dampedwith a damping factor
scaling quadratically with the perturbation strength.

A similar random matrix approach is taken in Ref.
[9]. In this paper, the authors base their argument on
projection operator techniques. Again, the ensemble of
perturbations that are essentially random matrices in the
eigenbasis of the unperturbed Hamiltonian leads to an
exponential damping of the unperturbed dynamics at suf-
ficiently long times, with a damping constant scaling
quadratically with the pertubation strength. Routinely,
the specific projection operator technique (“time convo-
lutionless” [10]) yields a time-dependent damping fac-
tor, which ensures that the slope of the time-dependent
expectation value at t = 0 remains unchanged by the
perturbation.

Lastly, the authors of Ref. [7], other than the authors of
Refs. [8, 9], focus on the matrix structure of the perturba-
tion in the eigenbasis of the observable rather than in the
eigenbasis of the unperturbed Hamiltonian. In this paper,
the modified dynamics is not necessarily obtained by a
direct damping, but rather by an exponential damping of
the memory-kernel. As the predictions of this scheme are
somewhat involved, we specifically outline them below in
Section 2.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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This paper is structured as follows. Firstly, in Section 2
we give a short introduction to the memory-kernel ansatz
employed in Ref. [7]. The numerical setup is described
in Section 3. In Section 4 the numerical results from the
solution of the Schrödinger equation are presented and
discussed. Section 5 scrutinizes the possible application
of the above three theories [7–9] to the obtained numeri-
cal results and the accuracy of the respective predictions.
Eventually, we conclude in Section 6.

2 Memory-Kernel Ansatz
To outline thememory-kernel ansatz we first need to intro-
duce the general description of dynamics by means of
integro-differential equations of the Nakajima–Zwanzig
type [11]. Consider some (reasonably well-behaved) time-
dependent function a(t), e.g. the expectation value of
an unitarily evolving observable. There exists a map
between a(t) and its so-calledmemory-kernelK(τ), implic-
itly defined by the integro-differential equation

da(t)
dt = −

t∫︁

0

K(t − t′)a(t′) dt′ = −(K * a )(t) . (1)

This map is bijective, i.e. it is possible to calculate
the memory-kernel K(τ) solely from the function a(t) and,
vice versa, it is possible to calculate the function a(t),
given the memory-kernel K(τ) and some initial value a(0).
Broadly speaking, the memory-kernel describes how a
system remembers its history. Ref. [7] now suggests that
the generic impact of a certain class of perturbations is
best captured by describing its effect on the respective
memory-kernel. If the perturbation V is narrow-banded
in the eigenbasis of the observable A, i.e. [V , A] ≈ 0, then
thememory-kernelK(τ) corresponding to the unperturbed
dynamics will be exponentially damped as

K̃(τ) = exp(−γτ)K(τ) . (2)

To obtain the modified dynamics, we proceed as fol-
lows: from a(t) we calculate the memory-kernel K(τ) and
damp it according to (2). Plugging K̃(τ) back into (1) and
solving for ã(t) yields the modified dynamics. In this pro-
cedure γ is a free fit parameter.

a(t) → K(τ) → K̃(τ) → ã(t) (3)

Note that, in the context of the below (cf. Sect. 3)
defined spin ladders, this is an heuristic approach. How-
ever, for other scenarios, this memory-kernel ansatz is

proven to hold [12]. These scenarios feature systems for
which the eigenstate thermalization hypothesis (ETH) [3]
applies to some observable A. The role of the perturbation
is taken by an environment, which induces pure dephas-
ing in the eigenbasis of A. The memory-kernel ansatz
then applies to the expectation value of A. The rationale
behind using the memory-kernel ansatz in the context
of, e.g. isolated spin ladders, is that a generic perturba-
tion V with [V , A] ≈ 0 may have an effect comparable to
the above dephasing. Moreover, the applicability of the
memory-kernel ansatz to closed systems has been numer-
ically demonstrated for some concrete but rather abstract
examples in Ref. [7]. It has also been found to yield sur-
prisingly accurate results for systems similar to the ones
discussed below [13].

3 Setup
We consider a periodic spin-1/2 ladder described by the
(unperturbed) Hamiltonian

H0 = H|| + H⊥ , (4)

with the chain Hamiltonian

H|| = J||
2∑︁

k=1

L∑︁
l=1

S⃗l,k · S⃗l+1,k (5)

and the rung Hamiltonian

H⊥ = J⊥
L∑︁

l=1
S⃗l,1 · S⃗l,2 , (6)

where S⃗l,k = (Sxl,k , S
y
l,k , S

z
l,k) are spin-1/2 operators on lat-

tice site (l, k) and L + 1 ≡ 1. The interaction strength
along the legs (rungs) is denoted by J|| (J⊥) and set to
unity. Additional diagonal bonds act as a pertubation V,
the parameter λ indicates the pertubation strength. This
results in the total Hamiltonian

H = H0 + λV ,

which is displayed in Figure 1. The observables of interest
are the magnetisations on each rung, which are given by

Szl = Szl,1 + Szl,2 , (7)

and the respective Fourier modes

Szq =
L∑︁

l=1
cos[q(l − L/2)]Szl , (8)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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This paper is structured as follows. Firstly, in Section 2
we give a short introduction to the memory-kernel ansatz
employed in Ref. [7]. The numerical setup is described
in Section 3. In Section 4 the numerical results from the
solution of the Schrödinger equation are presented and
discussed. Section 5 scrutinizes the possible application
of the above three theories [7–9] to the obtained numeri-
cal results and the accuracy of the respective predictions.
Eventually, we conclude in Section 6.

2 Memory-Kernel Ansatz
To outline thememory-kernel ansatz we first need to intro-
duce the general description of dynamics by means of
integro-differential equations of the Nakajima–Zwanzig
type [11]. Consider some (reasonably well-behaved) time-
dependent function a(t), e.g. the expectation value of
an unitarily evolving observable. There exists a map
between a(t) and its so-calledmemory-kernelK(τ), implic-
itly defined by the integro-differential equation

da(t)
dt = −

t∫︁

0

K(t − t′)a(t′) dt′ = −(K * a )(t) . (1)

This map is bijective, i.e. it is possible to calculate
the memory-kernel K(τ) solely from the function a(t) and,
vice versa, it is possible to calculate the function a(t),
given the memory-kernel K(τ) and some initial value a(0).
Broadly speaking, the memory-kernel describes how a
system remembers its history. Ref. [7] now suggests that
the generic impact of a certain class of perturbations is
best captured by describing its effect on the respective
memory-kernel. If the perturbation V is narrow-banded
in the eigenbasis of the observable A, i.e. [V , A] ≈ 0, then
thememory-kernelK(τ) corresponding to the unperturbed
dynamics will be exponentially damped as

K̃(τ) = exp(−γτ)K(τ) . (2)

To obtain the modified dynamics, we proceed as fol-
lows: from a(t) we calculate the memory-kernel K(τ) and
damp it according to (2). Plugging K̃(τ) back into (1) and
solving for ã(t) yields the modified dynamics. In this pro-
cedure γ is a free fit parameter.

a(t) → K(τ) → K̃(τ) → ã(t) (3)

Note that, in the context of the below (cf. Sect. 3)
defined spin ladders, this is an heuristic approach. How-
ever, for other scenarios, this memory-kernel ansatz is

proven to hold [12]. These scenarios feature systems for
which the eigenstate thermalization hypothesis (ETH) [3]
applies to some observable A. The role of the perturbation
is taken by an environment, which induces pure dephas-
ing in the eigenbasis of A. The memory-kernel ansatz
then applies to the expectation value of A. The rationale
behind using the memory-kernel ansatz in the context
of, e.g. isolated spin ladders, is that a generic perturba-
tion V with [V , A] ≈ 0 may have an effect comparable to
the above dephasing. Moreover, the applicability of the
memory-kernel ansatz to closed systems has been numer-
ically demonstrated for some concrete but rather abstract
examples in Ref. [7]. It has also been found to yield sur-
prisingly accurate results for systems similar to the ones
discussed below [13].

3 Setup
We consider a periodic spin-1/2 ladder described by the
(unperturbed) Hamiltonian

H0 = H|| + H⊥ , (4)

with the chain Hamiltonian

H|| = J||
2∑︁

k=1

L∑︁
l=1

S⃗l,k · S⃗l+1,k (5)

and the rung Hamiltonian

H⊥ = J⊥
L∑︁

l=1
S⃗l,1 · S⃗l,2 , (6)

where S⃗l,k = (Sxl,k , S
y
l,k , S

z
l,k) are spin-1/2 operators on lat-

tice site (l, k) and L + 1 ≡ 1. The interaction strength
along the legs (rungs) is denoted by J|| (J⊥) and set to
unity. Additional diagonal bonds act as a pertubation V,
the parameter λ indicates the pertubation strength. This
results in the total Hamiltonian

H = H0 + λV ,

which is displayed in Figure 1. The observables of interest
are the magnetisations on each rung, which are given by

Szl = Szl,1 + Szl,2 , (7)

and the respective Fourier modes

Szq =
L∑︁

l=1
cos[q(l − L/2)]Szl , (8)
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Figure 1: Orange circles mark spin sites, solid black lines mark
Heisenberg interaction. Dashed diagonal lines indicate the
pertubation.

with discrete momenta q = 2πk/L with k = 0, 1, . . . ,
L−1. We numerically solve the Schrödinger equation and
study the dynamics of the time-dependent expectation
values pl(t) = ⟨Szl (t)⟩ of the magnetisation profile along
the ladder as well as time-dependent expectation values
pq(t) = ⟨Szq(t)⟩ of the Fourier modes, especially the slow-
est mode with q = 2π/L. In order to be able to clearly
discriminate between predictions from thememory-kernel
ansatz and the other two theories, we choose a pertur-
bation with a specific, yet physically common property
named below. This pertubation on the diagonals of the
ladder only consists of SzSz-terms.

V =
L∑︁

l=1
(Szl,1S

z
l+1,2 + Szl,2S

z
l+1,1) (9)

In this manner, the observables of interest do com-
mutewith the pertubation, i.e. [V , Szq] = 0. In otherwords,
the pertubation V is diagonal in the eigenbasis of the
observable.

We consider two types of initial states. The first initial
state is given by

ρ1(0) ∝ 1 − ε SzL/2 , (10)

where ε is a small, positive, real number. This state can
be regarded as the high temperature, strongmagnetic field
limit (β → 0 while βB = ε) of the Gibbs state

ρ2(0) ∝ exp[−β(H + BSzL/2)] , (11)

which is the second initial state of interest.

4 Numerical Results on the
Perturbed Dynamics

We now present our numerical results. We prepare a spin
ladder with L = 13 rungs (i.e. N = 26 spins) in the initial
statesmentioned aboved, which both feature a sharpmag-
netisation peak in themiddle of the ladder. During the real

time evolution the magnetisation will spread throughout
the ladder diffusively [13], which can be seen in Figure 2.

From (8) we obtain the Fourier modes of the broad-
ening process. We choose to investigate the slowest mode
with q = 2π/13 in depth as it is closest to an exponential
decay. In Figure 3 the slowest mode is depicted for differ-
ent pertubation strengths for the first initial state ρ1(0).
The unperturbed dynamic (red curve, λ = 0.0) remains
basically unaltered by weak pertubations. Cranking up
the pertubation strength (to λ = 0.4 or λ = 0.7) leads to a
noticable deviation and the equilibration process is much
slower than in the weakly perturbed case.

The same qualitative behaviour remains when going
to finite temperature β = 0.1 and finite magnetic field
B = 5.0.

Figure 2: Broadening of the magnetisation profile of a spin ladder
with L = 13 rungs prepared in the initial state ρ1(0).
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Figure 3: The time-dependence of the slowest mode with q = 2π/13
is depicted for various pertubation strengths for the initial state
ρ1(0). For small pertubations the unpertubed dynamic (λ = 0.0,
red curve) remains basically unchanged. For stronger pertubations
there is a noticeable deviation.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 4: The time-dependence of the slowest mode with q = 2π/13
is depicted for various perturbation strengths for a Gibbsian initial
state ρ2(0) with β = 0.1 and B = 5.0. Similar behaviour as for the
first initial state can be observed.

In this case, the initial value pq(0) depends on the
pertubation strength λ as the total Hamiltonian is part
of the initial state ρ2(0), cf. (11). To be able to compare
the dynamics for various λ values, the curves are scaled
such that they all start at the same initial value of the
unperturbed dynamic. The results are depicted in Figure 4.
Forweak pertubations the deviation from the unperturbed
dynamic is again small, although now clearly visible.
For stronger pertubations the dynamics equilibrate again
more slowly, however, the discrepancy to the unperturbed
dynamic is more severe compared to the first initial state
ρ1(0) in Figure 3. A rough estimate indicates that at inverse
temperature β = 0.1 the mean energy is down-shifted by
approximately half a standard deviation of the full energy
spectrum of the systemwith respect to the infinite temper-
ature case (β = 0). Thus, β = 0.1 is noticeable far away
from infinite temperature while still not exhibiting low
temperature phenomena.

5 Modelling the Perturbed
Dynamics

Is it possible to describe the observed behaviour to some
extend by any the three theories mentioned in the intro-
duction? Before we present a somewhat bold, simple com-
parison of the predictions from said modelling schemes
with the actual perturbed dynamics, we briefly comment
on the agreement of our setup (cf. Sect. 3) with the precon-
ditions of the respective theories.

The theory advocated in Ref. [8] relies on a constant
density of states (DOS) within the energy interval occu-
pied by the initial state ρ(0) with respect to the unper-
turbed Hamiltonian H0. First of all it should be noted that

it is rather hard to check whether or not this criterion
applies in standard situations with larger systems. How-
ever, a histogram corresponding to the DOS of H0 for a
“small” system with N = 12 spins is depicted in Figure 5.
The red dashed vertical lines are intended to mark the
regime of more or less constant DOS (of course this choice
is rather arbitrary). The initial state ρ1(0) populates the
full spectrumwith equalweight, i.e. 57%of theweight falls
into the interval of approximately constant DOS. Likewise,
although populating more low-lying energy eigenstates, a
large portion (54%) of the weight of the initial state ρ2(0)
still falls into the interval of approximately constant DOS,
cf. Figure 5.

The assessment of this finding is two-fold: On the one
hand, “natural” initial states like ρ1(0) and ρ2(0) do not
necessarily live entirely in an energy window of strictly
constant DOS. On the other hand, Figure 5 indicates that
the states ρ1(0) and ρ2(0) are not completely off such a
description. One may thus be inclined to expect at least
qualitatively reasonable results from an application of the
theory presented in Ref. [8]. Concerning perturbations V,
the approach in Ref. [8] strictly speaking makes no restric-
tions, except for “smallness”. But the result from Ref. [8]
is of statistical nature: to the overwhelming majority of
the ensemble of matrices V that is generatated by draw-
ingmatrix elements in the eigenbasis ofH0 independently
at random (according to some probability distribution,
which may give rise to some sparseness) the prediction of
Ref. [8] (exponential damping) applies. While any V may
be viewed as an instance of this set, not all V are equally
likely. Again, judging the “typicality” of some concreteV is
hard.However, for a qualitative evaluationof the typicality
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Figure 5: Density of states (DOS) (black) for N = 12 spins. The quan-
tity N(E) is the number of energy eigenstates in a particular bin of
size one, d = 4096 is the Hilbert space dimension. The interval
of approximately constant DOS is marked from E = −3 . . . 3 by
red lines. A histogram of the local density of states (LDOS), i.e. the
probability to find the system at a certain energy, is shown in blue.
The quantity ρ̄(E) indicates the weight in a given bin. The LDOS of
ρ1(0) is exactly identical to the DOS (black) and not shown again.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 4: The time-dependence of the slowest mode with q = 2π/13
is depicted for various perturbation strengths for a Gibbsian initial
state ρ2(0) with β = 0.1 and B = 5.0. Similar behaviour as for the
first initial state can be observed.

In this case, the initial value pq(0) depends on the
pertubation strength λ as the total Hamiltonian is part
of the initial state ρ2(0), cf. (11). To be able to compare
the dynamics for various λ values, the curves are scaled
such that they all start at the same initial value of the
unperturbed dynamic. The results are depicted in Figure 4.
Forweak pertubations the deviation from the unperturbed
dynamic is again small, although now clearly visible.
For stronger pertubations the dynamics equilibrate again
more slowly, however, the discrepancy to the unperturbed
dynamic is more severe compared to the first initial state
ρ1(0) in Figure 3. A rough estimate indicates that at inverse
temperature β = 0.1 the mean energy is down-shifted by
approximately half a standard deviation of the full energy
spectrum of the systemwith respect to the infinite temper-
ature case (β = 0). Thus, β = 0.1 is noticeable far away
from infinite temperature while still not exhibiting low
temperature phenomena.

5 Modelling the Perturbed
Dynamics

Is it possible to describe the observed behaviour to some
extend by any the three theories mentioned in the intro-
duction? Before we present a somewhat bold, simple com-
parison of the predictions from said modelling schemes
with the actual perturbed dynamics, we briefly comment
on the agreement of our setup (cf. Sect. 3) with the precon-
ditions of the respective theories.

The theory advocated in Ref. [8] relies on a constant
density of states (DOS) within the energy interval occu-
pied by the initial state ρ(0) with respect to the unper-
turbed Hamiltonian H0. First of all it should be noted that

it is rather hard to check whether or not this criterion
applies in standard situations with larger systems. How-
ever, a histogram corresponding to the DOS of H0 for a
“small” system with N = 12 spins is depicted in Figure 5.
The red dashed vertical lines are intended to mark the
regime of more or less constant DOS (of course this choice
is rather arbitrary). The initial state ρ1(0) populates the
full spectrumwith equalweight, i.e. 57%of theweight falls
into the interval of approximately constant DOS. Likewise,
although populating more low-lying energy eigenstates, a
large portion (54%) of the weight of the initial state ρ2(0)
still falls into the interval of approximately constant DOS,
cf. Figure 5.

The assessment of this finding is two-fold: On the one
hand, “natural” initial states like ρ1(0) and ρ2(0) do not
necessarily live entirely in an energy window of strictly
constant DOS. On the other hand, Figure 5 indicates that
the states ρ1(0) and ρ2(0) are not completely off such a
description. One may thus be inclined to expect at least
qualitatively reasonable results from an application of the
theory presented in Ref. [8]. Concerning perturbations V,
the approach in Ref. [8] strictly speaking makes no restric-
tions, except for “smallness”. But the result from Ref. [8]
is of statistical nature: to the overwhelming majority of
the ensemble of matrices V that is generatated by draw-
ingmatrix elements in the eigenbasis ofH0 independently
at random (according to some probability distribution,
which may give rise to some sparseness) the prediction of
Ref. [8] (exponential damping) applies. While any V may
be viewed as an instance of this set, not all V are equally
likely. Again, judging the “typicality” of some concreteV is
hard.However, for a qualitative evaluationof the typicality
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Figure 5: Density of states (DOS) (black) for N = 12 spins. The quan-
tity N(E) is the number of energy eigenstates in a particular bin of
size one, d = 4096 is the Hilbert space dimension. The interval
of approximately constant DOS is marked from E = −3 . . . 3 by
red lines. A histogram of the local density of states (LDOS), i.e. the
probability to find the system at a certain energy, is shown in blue.
The quantity ρ̄(E) indicates the weight in a given bin. The LDOS of
ρ1(0) is exactly identical to the DOS (black) and not shown again.
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of the pertubation V at hand with respect to the above
ensemble, a colour-scaled plot of V in the energy eigen-
basis ofH0 forN = 12 is depicted in Figure 6. The red lines
correspond to the energy regimemarked in Figure 5. Obvi-
ously, there is some sparseness, about 2% of all elements
differ from zero. Other than that the assessment of this
finding is also two-fold: on the one hand, some structure
is visible in Figure 6. On the other hand, this structure is
not sufficient to clearly identify V as particularly untypi-
cal. Hence, again, one may be inclined to expect at least
qualitatively reasonable results from an application of the
theory presented in Ref. [8].

The theory advocated in Ref. [9] relies on projection
operator techniques [10] and thus has, in principle, no
formal applicability limit. However, as projection opera-
tor techniques result in perturbative expansions, concrete
predictions going beyond leading order are very hard to
obtain [14]. Even the accurate computation of the lead-
ing order requiring the knowledge of the detailed form
of the matrix depicted in Figure 6 has to be taken into
account. The simple guess of an exponential damping at
sufficiently long times only results under preconditions
that are rather similar to the ones on which the approach
from Ref. [8] is based. The conditions under which the
dynamics is well captured by a leading order description
are technically hard to define and even harder to check.
However, there are indications that the sparseness of the
matrix depicted in Figure 6 threatens the correctness of a
leading order calculation [15].
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Figure 6:Matrix plot of the pertubation V in the eigenbasis of
the unperturbed Hamiltonian H0. Red lines mark the interval of
approximately constant DOS, cf. Figure 5.

The approach advocated in Ref. [7] is heuristic and pri-
marily based on some numerical evidence, thus no formal
preconditions may be formulated so far, cf. Section 2.
However, the numerical examples in Ref. [7] to which
this scheme applies do feature unperturbed Hamiltoni-
ans with constant DOS, weak perturbations (small λ) and
initial states of the type ρ1(0). Furthermore the VVs in
the examples in Ref. [7] are matrices whose elements, in
the eigenbasis of the observable, are independently drawn
at random according to some probability distribution. As
already mentioned in Section 2, in contrast to Refs. [8, 9],
the approach in Ref. [7] takes the structure of V in the
eigenbasis of the observable (here Szq) rather than of H0
into account. Only if the latter approximately commute,
i.e. [V , A] ≈ 0, the prediction computed as described in
Section 2 applies. For our setupwe indeedhave [V , A] = 0,
cf. Section 3.

We now embark on the announced bold comparison
of the perturbed dynamics with the predictions from the
three theories.

Firstly, note that for both initial states the perturbed
curves lie above the unperturbed one, i.e. the stronger the
perturbation the slower the relaxation occurs. Thus, the-
ories predicting a damping of the unperturbed dynamics
are not a viable option in this case. Without any further
quantitative analysis this already renders the predictions
from Refs. [8, 9] qualitatively unsuitable. Moreover, it can
be shown (at least for the first initial state) that all curves
must feature zero slope at t = 0. An exponential damp-
ing (with a constant damping factor) would always change
the slope at t = 0 to a non-zero value. A time-dependent
damping factor Γ(t) with Γ(0) = 0 (as employed in Ref. [9])
at least preserves the zero slope at t = 0.

These findings suggest that the pertubation V is
indeed one of the mathematically extremely untypical
members of the ensemble considered in Ref. [8], even
though the matrix visualisation in Figure 6 does not nec-
essarily indicate this. However, even though V is untyp-
ical with respect to an ensemble of random matrices, it
is a physically simple, common pertubation consisting of
standard spin-spin interactions.

The failure of the scheme presented in Ref. [9] indi-
cates that the V at hand does not allow for a leading order
truncation of the projective scheme employed therein, not
even for very small λ. This leaves thememory-kernelmodel
from Ref. [7] as the only feasible theory to describe the
observed behaviour.

In the following, to test the approach from Ref. [7],
we apply the memory-kernel ansatz to the two unper-
turbeddynamics (red curves in Figs. 3 and4). Thedamping
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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constant γ from (2) functions as a fit parameter and is opti-
mised such that the L2-error of the two curves in question
(perturbed dynamics and memory-kernel prediction) is
minimised.

For the infinite-temperature initial state ρ1(0) the
results are depicted in Figure 7, for the Gibbsian initial
state ρ2(0) the results are depicted in Figure 8. Each curve
is vertically shifted to avoid clutter.

For the infinite-temperature initial state ρ1(0) and
weak pertubations (λ = 0.1 and λ = 0.2) the memory-
kernel model seems to perfectly capture the modified
dynamics. For stronger pertubations (λ = 0.4 and λ = 0.7)
there are deviations visible, e.g. for short times (t ∼ 2)
the memory-kernel prediction for λ = 0.7 overshoots the

Figure 7: Slowest mode with q = 2π/13 of the infinite-temperature
initial state ρ1(0) depicted for various pertubation strengths. Solid
lines represent the original data from Figure 3, vertically shifted
in steps of −0.1 for better visibility. Crosses indicate the data
obtained from an exponentially damped memory-kernel.

Figure 8: Slowest mode with q = 2π/13 of the Gibbsian initial state
ρ2(0) with β = 0.1 and B = 5.0 depicted for various pertubation
strengths. Solid lines represent the original data from Figure 4, ver-
tically shifted in steps of −0.05 for better visibility. Crosses indicate
the data obtained from an exponentially damped memory-kernel.

perturbed dynamic while for longer times t � 10 it under-
shoots. For the Gibbsian initial state ρ2(0) the qualitative
behaviour remains the same as for the first initial state.
For weak pertubations thememory-kernel ansatz captures
the modifications due to the pertubation extremly well.
For stronger pertubations there are again more notice-
able deviations. However, it comes as no surprise that the
memory-kernelmodel loses potency in the strong pertuba-
tion regime, as it was originally conceived to describe the
alteration of dynamics due to weak pertubations.

6 Summary and Conclusion
In the paper at hand we numerically analyzed the appli-
cability of three theories predicting the generic impact of
Hamiltonian perturbations on expectation value dynam-
ics to a Heisenberg spin ladder. To this end, we numer-
ically calculated the time-dependent spatial distribution
of the magnetisation along the ladder for various pertuba-
tion strengths. We focussed on a particular perturbation
that commutes with the observable, e.g. the considered
perturbation V consisting of SzSz-couplings on the ladder
diagonals commutes with the observed spatial magneti-
sation distribution. We consider both, infinite and finite
temperatures. Two out of three scrutinised theories fea-
ture in principle well-defined conditions for their applica-
bility [8, 9], a third one is rather heuristic [7]. One of the
theories with well-defined conditions [8] only predicts the
overwhelmingly likely behaviour with respect to a hypo-
thetical, large, “random matrix ensemble” of in principle
possible perturbations V. Only the heuristic theory takes
the commutativity of the observable and the perturbation
as a specifically relevant structural feature into account.
It turns out to be hard to judge a priori whether or not the
concrete spin ladder example falls into the realm of appli-
cability of the two theories with well-defined conditions.
However, direct comparison of the theoretical predictions
with the numerically computed results clearly shows that
both theories fail even qualitativley. This suggests that,
while the considered V is very common from a physical
point of view, it must be very rare and exotic with respect
to the above random matrix ensemble. Only the heuristic
theory was found to yield good results for weak pertur-
bations (and acceptable results for strong perturbations).
This indicates that the commutator of V with the observ-
able is a specifically relevant structural feature that should
be taken into account. A survey of the three theories for
perturbations V that do not commute with the observable
is left for further research.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.

2 L. Balzer et al.: TMLE for Rare Outcomes

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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constant γ from (2) functions as a fit parameter and is opti-
mised such that the L2-error of the two curves in question
(perturbed dynamics and memory-kernel prediction) is
minimised.

For the infinite-temperature initial state ρ1(0) the
results are depicted in Figure 7, for the Gibbsian initial
state ρ2(0) the results are depicted in Figure 8. Each curve
is vertically shifted to avoid clutter.

For the infinite-temperature initial state ρ1(0) and
weak pertubations (λ = 0.1 and λ = 0.2) the memory-
kernel model seems to perfectly capture the modified
dynamics. For stronger pertubations (λ = 0.4 and λ = 0.7)
there are deviations visible, e.g. for short times (t ∼ 2)
the memory-kernel prediction for λ = 0.7 overshoots the

Figure 7: Slowest mode with q = 2π/13 of the infinite-temperature
initial state ρ1(0) depicted for various pertubation strengths. Solid
lines represent the original data from Figure 3, vertically shifted
in steps of −0.1 for better visibility. Crosses indicate the data
obtained from an exponentially damped memory-kernel.

Figure 8: Slowest mode with q = 2π/13 of the Gibbsian initial state
ρ2(0) with β = 0.1 and B = 5.0 depicted for various pertubation
strengths. Solid lines represent the original data from Figure 4, ver-
tically shifted in steps of −0.05 for better visibility. Crosses indicate
the data obtained from an exponentially damped memory-kernel.

perturbed dynamic while for longer times t � 10 it under-
shoots. For the Gibbsian initial state ρ2(0) the qualitative
behaviour remains the same as for the first initial state.
For weak pertubations thememory-kernel ansatz captures
the modifications due to the pertubation extremly well.
For stronger pertubations there are again more notice-
able deviations. However, it comes as no surprise that the
memory-kernelmodel loses potency in the strong pertuba-
tion regime, as it was originally conceived to describe the
alteration of dynamics due to weak pertubations.

6 Summary and Conclusion
In the paper at hand we numerically analyzed the appli-
cability of three theories predicting the generic impact of
Hamiltonian perturbations on expectation value dynam-
ics to a Heisenberg spin ladder. To this end, we numer-
ically calculated the time-dependent spatial distribution
of the magnetisation along the ladder for various pertuba-
tion strengths. We focussed on a particular perturbation
that commutes with the observable, e.g. the considered
perturbation V consisting of SzSz-couplings on the ladder
diagonals commutes with the observed spatial magneti-
sation distribution. We consider both, infinite and finite
temperatures. Two out of three scrutinised theories fea-
ture in principle well-defined conditions for their applica-
bility [8, 9], a third one is rather heuristic [7]. One of the
theories with well-defined conditions [8] only predicts the
overwhelmingly likely behaviour with respect to a hypo-
thetical, large, “random matrix ensemble” of in principle
possible perturbations V. Only the heuristic theory takes
the commutativity of the observable and the perturbation
as a specifically relevant structural feature into account.
It turns out to be hard to judge a priori whether or not the
concrete spin ladder example falls into the realm of appli-
cability of the two theories with well-defined conditions.
However, direct comparison of the theoretical predictions
with the numerically computed results clearly shows that
both theories fail even qualitativley. This suggests that,
while the considered V is very common from a physical
point of view, it must be very rare and exotic with respect
to the above random matrix ensemble. Only the heuristic
theory was found to yield good results for weak pertur-
bations (and acceptable results for strong perturbations).
This indicates that the commutator of V with the observ-
able is a specifically relevant structural feature that should
be taken into account. A survey of the three theories for
perturbations V that do not commute with the observable
is left for further research.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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